
PUF	PURE CHEMISTRY (6092)			PRACTICAL REVISION NOTES 2023			
		Beat	y Secondary School				
			condary 4	•			
		NOW W SED ARTE	-	•			
Nan	ne:		_()	Class: 4E1		Date:	
Pra	actical Rev	ision: Volume	tric Analy	vsis (Titrati	on)		
Key	Concepts:						
Titra	ate solution Q	with solution P / Tit	trate solution	Q against sol	ution P?		
		sol	lution P in th	e burette		S S S S S S S S S S S S S S S S S S S	
A.	General Ti						
	1. Rin	se the funnel and ation.	burette wit	h deionised w	vater before	e the start of	the
		eck for air bubbles a chemicals.	at the tip of th	ne burette / lea	king of solu	tion before rin	sing
	3. Re	nove the filter fun	nel before th	ne start of titrat	tion.		
	4. Rin	se the pipette with	deionised wa	ater before pla	cing into the	e reagent bottl	e.
	5. Check if there is liquid in the pipette filler. Deflate it completely to ensure no liquid is trapped inside.						e no
		the tip of the pip ximum volume of so			ical flask to	o ensure that	the
						I FIPI	
В.	Presentatio	on of Data and Mea	surement				
	Measurem	ent and Accuracy o	of Data:				
		apparatus	6	accuracy			
		burette		2 decimal pla	,		
		pipette	25.0 Cm ³	(1 decimal pla	ace)		
	Presentation of Data (Titre volumes should be consistent within ± 0.20 cm ³):						
		ion number	rough	1	2	3	44.5
		tte reading / cm ³	25.10	28.60	24.60	49.20	7
		tte reading / cm ³	0.00	4.30	0.00	24.60	
		quid Q added / cm ³ ration results	25.10	24.30	24.60	24.60	
	Results:				* 494	2 _ 24	1.1227
	Average vo	blume of Q used =	$\frac{24.60 + 24.6}{2}$	$\frac{0}{2} = 24.60 \text{ cm}^3$	(2 decimal	places)	24.1B
		P used = <u>25.0 cm³</u>	2			?	d.p.

PRACTICAL REVISION NOTES 2023

PRACTICAL REVISION NOTES 2023 PURE CHEMISTRY (6092) F. Rationale behind experimental procedures 1. General Titrations (Acid-Base / Acid-Carbonate) Q(a) The filter funnel was left on top of the burette during the course of titration. Explain the effect on the titration results. Excess solution from the funnel may be added to the burette. The volume of solution A(a) added to the conical flask may be larger than expected / The volume of solution recorded in the burette will be smaller than expected volume used. Improvement: Remove the filter funnel and repeat the titration several times to values ± 0.20 cm³. A student suggested that the investigation could be improved by making the titrations Q(b) more accurate. He said that the concentrations of solution in the burette should be reduced. State and explain whether or not this suggestion would make the titrations more accurate. Qm3 A(b) The titration results would be more accurate since the titre volume is bigger. Hence there will be a smaller percentage error. 5,5·1 cm³ 25.0 Sian 2. **Redox Titrations** In a titration involving aqueous iron(II) sulfate against potassium manganate(VII), 25 Q(a) cm³ of sulfuric acid was added to the conical flask. Explain why sulfuric acid was added and why the volume of acid does not need to be measured accurately. The purpose of the acid is to remove soluble carbonate impurities present, hence A(a) accurate volumes of the acid added is not necessary. Q(b) Dilute sulfuric acid is added to acidify aqueous potassium manganate(VII) as it is stable to oxidation and provides hydrogen ions as a catalyst to speed up the reaction. Suggest why dilute hydrochloric acid is **not** used in the reaction. A(b) Aqueous potassium manganate(VII) is a strong oxidising agent and will oxidise hydrochloric acid to liberate chlorine gas, causing a side reaction. ¥ stor [] 3. Iodometric Titrations (sodium thiosulfate with potassium iodide/iodate) Q(a) Suggest why starch solution is added as an indicator. The resulting mixture is a pale yellow solution which is difficult to determine the end-A(a) point visually. Starch solution detects any free iodine and reacts with iodine to form a complex to give a dark blue colour. The colour change from blue to colourless is more visible and gives a sharp end-point. Q(b) Suggest why the starch indicator is **not** added at the start of the titration. The starch-iodine complex formed at high iodine concentrations is relatively stable, A(b) which is difficult to decompose. The correct titre volume will be higher than expected volume used when starch indicator was added at the start.

Practical Revision: Thermochemistry (Energy Changes)

Key Concepts:

A. Presentation of Data and Measurement

Measurement and Accuracy of Data:

apparatus	accuracy		
thermometer	0.5 °C (1 decimal place)		
measuring cylinder	0.5 cm ³ (1 decimal place)		
electronic balance	0.01 g (2 decimal places)		

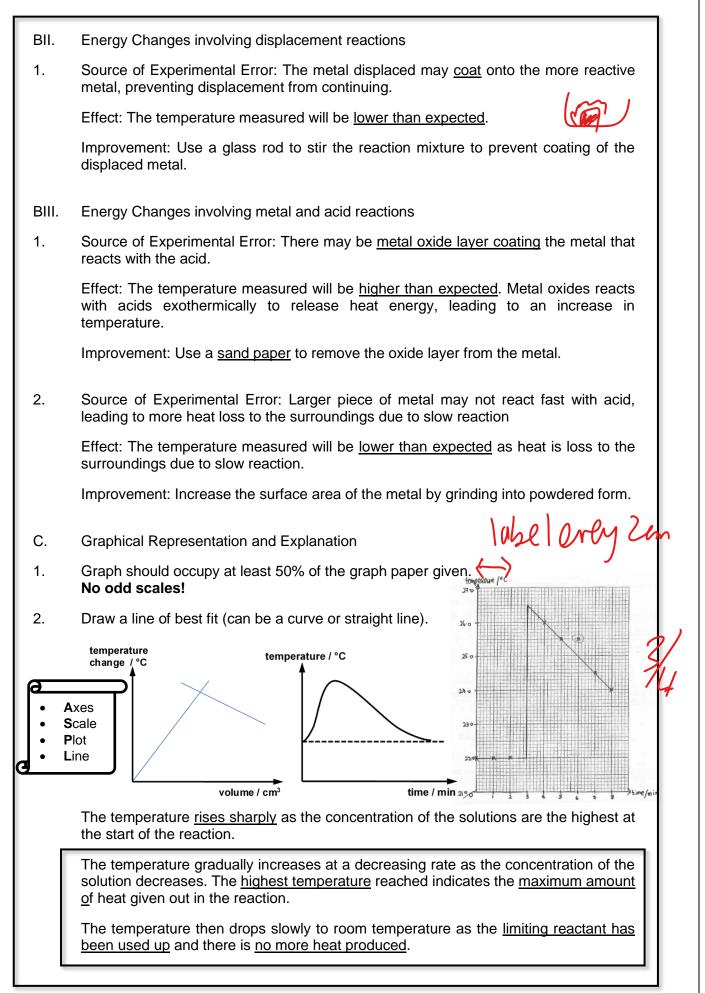
Presentation of Data:

highest temperature	total temperature
reached / °C	change / °C
28.0	0.0
29.0	+ 1.0
31.0	+ 3.0
32.0	4.0
33.5	→ 4.5
34.5	+ 6.5
35.0	7.0
34.5	+ 6.5
34.0	+ 6.0
	reached / °C 28.0 29.0 31.0 32.0 33.5 34.5 35.0 34.5

- B. Sources of Error, Effects and Improvement
- BI. Thermometric Titration (measuring heat change involving burette and styrofoam cup)
- 1. Source of Experimental Error: There may be heat loss to the surroundings (for exothermic reaction) / heat gained from the surroundings (for endothermic reaction)

Effect: The temperature measured will be <u>lower than expected (exothermic) / higher</u> than expected (endothermic).

Improvement to <u>minimise heat loss</u>: Use a styrofoam cup covered with lid to reduce heat loss to the surroundings. Nest the styrofoam cup in a beaker to ensure stability.


Improvements to improve accuracy: Measure the volume of solution using a more precise burette instead of a measuring cylinder / Use a more precise thermometer e.g. more subdivisions, reading to 0.1 °C / Take the initial temperature of both solutions and calculate the mean of temperature / Repeat the experiment and take the average temperature change

2. Source of Experimental Error: There may be <u>slow run of the solution from burette</u>, leading to <u>more heat loss</u> to surrounding before taking temperature readings.

Effect: The temperature measured will be lower than expected.

Improvement: Measure the temperature taken <u>without any delay</u> to minimise the heat loss to the surroundings. <u>Repeat</u> the experiment twice and take the average reading to improve accuracy.

0.

Presentation of	Data and Meas	surement) T
Measurement and Accuracy of Data:					
apparatus adcuracy 27					
•	opwatch	1 s (0 decimal place)			
measuring cylinder		0.5 cm ³ (1 decimal place)			
electro	onic balance	0.01 g (2 decimal p	olaces)	
Presentation of	Data:				
volume of	volume of	volume of	time		total volume
$Na_2S_2O_3$	water added	HC <i>l</i> added /	taken, t ₁	/ <mark>- / s⁻</mark>	of mixture /
added / cm ³ 25.0	/ cm ³	cm ³ 5.0	/ s 12	0.0730	cm ³ 50.0
20.0	5.0	5.0	12	0.0640	50.0
15.0	10.0	5.0	21	0.0466	50.0
10.0	15.0	5.0	31	0.0294	50.0
5.0	20.0	5.0	62	0.0161	50.0
Na ₂ S ₂ O ₃	(aq) + 2HC <i>l</i> (a	recipitation of so $q) \rightarrow 2NaCl$ (a	aq) + SO ₂		
Na ₂ S ₂ O ₃ Source of Expe / fluctuates / ter	(aq) + 2HC <i>l</i> (a erimental Error: mperature chan	aq) $\rightarrow 2 \text{NaC}l$ (a The <u>temperatur</u> ge is not the sa	aq) + SO ₂ <u>e of the rea</u> me for each	action is not n run of mixt	<u>always consta</u> ture.
Na ₂ S ₂ O ₃ Source of Expe / fluctuates / ter Effect: The time	(aq) + 2HC <i>l</i> (a erimental Error: mperature chan e taken will be <u>ir</u>	aq) $ ightarrow$ 2NaC l (a	aq) + SO ₂ <u>e of the rea</u> me for each e rate of rea	action is not n run of mixt	<u>always consta</u> ture.
Na ₂ S ₂ O ₃ Source of Expe / fluctuates / ter Effect: The time / rate of reactio Improvement: F the constant te temperature flucture as	(aq) + 2HC <i>l</i> (a erimental Error: mperature chan e taken will be <u>in</u> n is dependent Place the conica emperature / Us uctuations / Ta s soon as the	$q) \rightarrow 2NaCl (a)$ The <u>temperatur</u> ge is not the same <u>naccurate</u> as the	aq) + SO ₂ e of the reame for each e rate of react g the solution ically contra rature of is obscure	action is not n run of mixt action may r on in a <u>water</u> folled water the initial ed and calc	always consta ture. not be consiste <u>bath</u> to mainta bath to preve mixing and th culate the mea
Na ₂ S ₂ O ₃ Source of Expe / fluctuates / ter Effect: The time / rate of reactio Improvement: F the constant te temperature fluct temperature / temperature / temperature Source of Expendence perception of	(aq) + 2HC <i>l</i> (a erimental Error: mperature chan e taken will be <u>in</u> n is dependent Place the conica emperature / Us uctuations / Ta s soon as the Take the temperature erimental Error: when the cros	aq) → 2NaC <i>l</i> (a The <u>temperatur</u> ge is not the sau <u>naccurate</u> as the on temperature. I flask containing se a thermostat ake the tempe printed insert	aq) + SO ₂ e of the rea me for each e rate of rea g the solution ically contre- rature of is obscure th solution sulfur dep <u>raries</u> from	action is not n run of mixt action may r on in a <u>water</u> folled water the initial and calc s and calc	always consta ture. not be consiste <u>bath</u> to mainta bath to preve mixing and the culate the mea culate the mea but constant / <u>O</u>
Na ₂ S ₂ O ₃ Source of Expe / fluctuates / ter Effect: The time / rate of reactio Improvement: F the constant te temperature fluctemperature / temperature / temperature Source of Expe perception of because the ter temperature.	(aq) + 2HC <i>l</i> (a erimental Error: mperature chan e taken will be <u>in</u> n is dependent Place the conica emperature / Us uctuations / Ta s soon as the Take the temp erimental Error: <u>when the cros</u> urbidity of the	aq) → 2NaCl (a The temperatur ge is not the saunation maccurate as the on temperature. I flask containing se a thermostat ake the temper printed insert perature of boor The amount of <u>s disappears v</u> solution decreased or and inaccurate	aq) + SO ₂ <u>e of the rea</u> me for each e rate of rea g the solution ically contre- rature of is obscure th solutions sulfur depresent ases with leases	action is not n run of mixt action may r on in a water colled water the initial ed and calc s and calc s and calc	<u>always consta</u> ture. not be consiste <u>to bath</u> to mainta bath to preve mixing and the culate the mea culate the mea but constant / <u>O</u> at to experime entration / low

PRACTICAL REVISION NOTES 2023

3. Source of Experimental Error: There may be <u>human reaction time due to the delay in</u> <u>the stopping of the stopwatch</u>.

Effect: The time taken will be longer than expected.

Improvement: Repeat the experiment for a <u>few more times</u> and take the <u>average</u> reading of the time taken to improve the <u>accuracy</u> of the results.

4. **Human** Error: There is inconsistent swirling of the solution mixture.

Effect: The time taken will be <u>inaccurate</u> as more swirling will lead to a shorter time taken.

Improvement: Fix the number of swirling of the solution mixture at the start of the experiment.

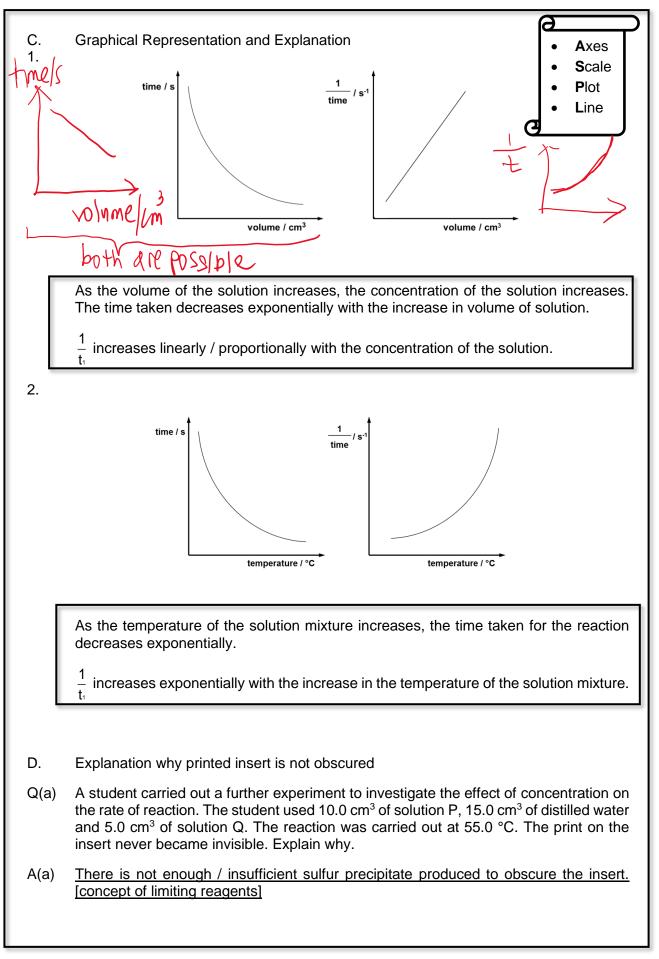
- BII. Speed of Reaction involving metal and acid reactions
- 1. Source of Experimental Error: There may be <u>metal oxide layer coating</u> the metal that reacts with the acid.

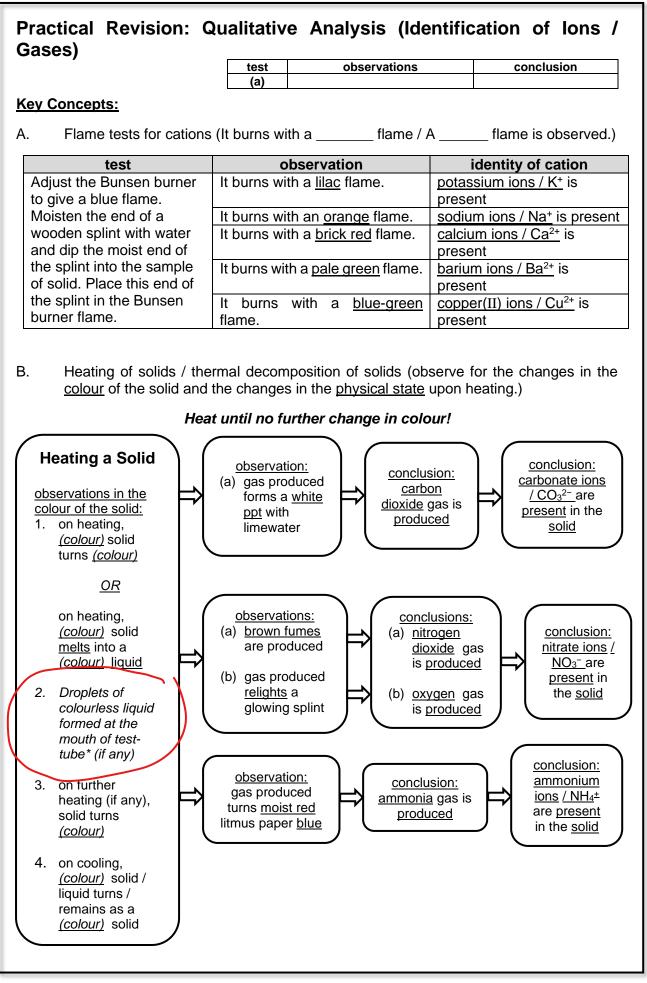
Effect: The time taken for the metal to completely react will be longer than expected.

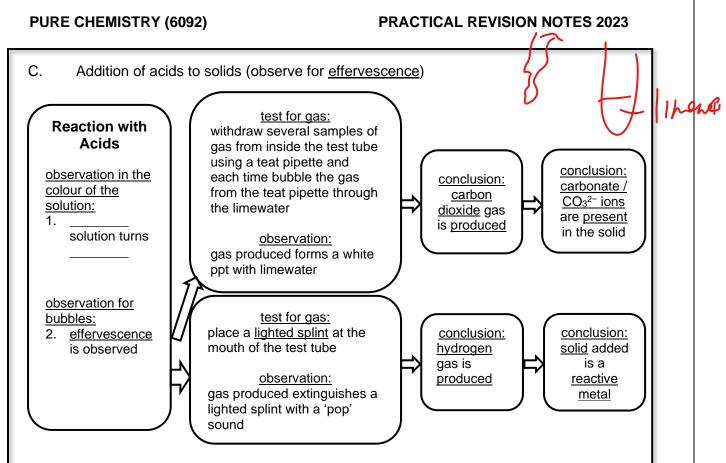
Improvement: Use a sand paper to remove the oxide layer from the metal.

- BIII Speed of Reaction involving decomposition of hydrogen peroxide with the use of catalyst
- 1 Source of Experimental Error: The <u>delay</u> in connecting the gas syringe leads to loss of some gas.

Effect: The volume of gas collected and recorded will be <u>lower than the actual volume</u> that was produced from the reaction.

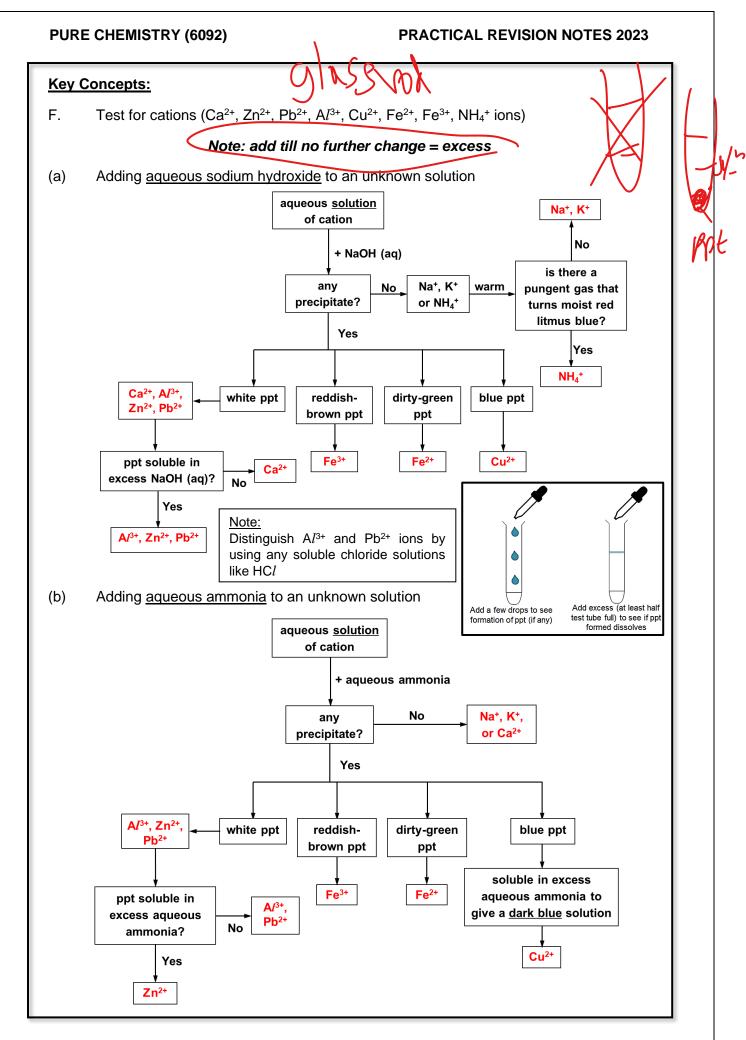

Improvement: Use displacement of water with graduated tube.


2 Source of Experimental Error: Friction between the plunger and the syringe leads to erratic spikes in the volume of gas collected caused by the gas compressed in the syringe.


Effect: The volume readings will be inaccurate.

Improvement: Use displacement of water with graduated tube.

PRACTICAL REVISION NOTES 2023


D. Oxidising and reducing agents (observe for the <u>changes in solution colour</u>)

test	observations	conclusion
To 2 cm ³ of <u>acidified potassium</u>	purple acidified potassium	A reducing agent is
manganate(VII), KMnO ₄ , add a	manganate(VII) turns	present in the
few drops of unknown solution.	<u>colourless</u>	unknown solution.
To 2 cm ³ of <u>aqueous acidified</u>	green solution turns brown	An oxidising agent
iron(II) sulfate, FeSO ₄ , add a few	<u>/ yellow</u>	is present in the
drops of unknown solution.		unknown solution.
To 2 cm ³ of <u>aqueous acidified</u>	cream precipitate	An oxidising agent
potassium iodide, KI, add a few	formed in a brown	is present in the
drops of unknown solution.	solution	unknown solution.
Add 2 to 4 drops of starch	blue-black colouration is	
solution / indicator and shake the	observed	
test tube.		

Note: hydrogen peroxide can function as an oxidising and/or a reducing agent. Equation for decomposition: $2H_2O_2 \rightarrow O_2 + 2H_2O$

E. Metal displacement reactions (observe for the <u>changes in solution colour</u> and <u>solid</u> <u>deposit</u>)

test	observations	conclusion
To 2 cm ³ of solution, add 3	blue solution fades / turns	Magnesium
pieces of <u>magnesium ribbon</u> to the test tube.	<u>colourless</u> reddish-brown solid / deposit is	displaces the less reactive metal from
	formed	the solution.
To 2 cm ³ of solution, add 3 to	yellow solution fades / turns	Zinc displaces the
4 pieces of granulated zinc to	<u>colourless</u> .	less reactive metal
the test tube.	<u>grey solid / deposit</u> is formed	from the solution.

Key Concepts:							
G. Test for gases (H ₂ , O ₂ , CO ₂ , SO ₂ , C l_2 , NH ₃)							
Types of Gases							
			<u> </u>				
		*	▼				
	Alk	aline	Neutral				
	o amm	nonia	o oxygen o hydrogen		 carbon dioxide chlorine sulfur dioxide 		
	gas		description of test		observations		
	ammonia		a piece of <u>moist red l</u> r at the mouth of the		gas evolved turns moist red litmus paper blue		
	hydroger		e a <u>lighted splint</u> at the h of the test tube		gas evolved extinguishes a lighted splint with a 'pop' sound		
	oxygen	test to			gas evolved relights / rekindles a glowing splint		
	carbon diox	limew	bubble gas evolved through limewater place a piece of moist blue litmus paper at the mouth of the test tube		gas evolved forms a white precipitate with limewater		
	chlorine	litmus			gas evolved turns moist blue litmus paper red before bleaches it		
	sulfur dioxi	soake <u>mang</u>	a piece of filter paper ed with <u>acidified potas</u> ganate(VII) at the mou est tube	<u>sium</u>	gas evolved turns purple aqueous acidified potassium manganate(VII) colourless		
н. т	Test for anion	s (C <i>l</i> ⁻, I⁻, S	$SO_4^{2^-}$, $NO_3^- CO_3^{2^-}$ io Types of Anior				
	Format	ion of Precip	pitate		Production of Gases		
		↓).				
	 chloride ion iodide ion (I sulfate ion (S 			0			
	anion	de	scription of test		observations / equations		
	chloride	add dilute silver nitra	e nitric acid, then a <u>te</u> solution		white precipitate is formed Cl^- (aq) + Ag ⁺ (aq) \rightarrow AgCl (s)		
	iodide	iodide add dilute nitric acid, then add silver nitrate solution			a yellow precipitate is formed I⁻ (aq) + Ag⁺ (aq) → AgI (s)		
	sulfate		add dilute nitric acid, then add barium nitrate solution		a white precipitate is formed SO₄²⁻ (aq) + Ba²+ (aq) → BaSO₄ (s)		
	carbonate	add dilute	add dilute acid		effervescence is observed gas evolved forms a white precipitate with limewater CO_2 (g) + Ca(OH) ₂ (aq) \rightarrow CaCO ₃ (s) + H ₂ O (<i>l</i>)		
	nitrate	then add a	m hydroxide solution, a piece of <u>aluminium fo</u> rming the mixture	<u>bil</u> g	iffervescence is observed as evolved turns moist red litmus paper plue		

Practical Revision: Gravimetric Analysis (Thermal Decomposition of Solids) / Salt Preparation							
Key Concepts:							
Α.	Presentation of Data and Measurement						
	Measurement and Accuracy of Data:						
	apparatus accuracy						
	measuring cylinder 0.5 cm ³ (1 decimal place)						
	electronic balance 0.01 g (2 decimal places)						
	Presentation of Data:						
(Mass of dry sodium chloride with evaporating dish / g 47.15						
	Mass of empty evaporating dish / g46.50Mass of dry sodium chloride / g0.65						
В.	Sources of Error, Effects and Improvement						
BI.	Preparation of Soluble Salts						
1.	Source of Experimental Error: There is a loss of sodium chloride salt from the evaporating dish due to sputtering.						
	Effect: The mass of sodium chloride salt obtained is lower than expected.						
	Improvement: Evaporate the solution with a gentler flame.						
2.	Source of Experimental Error: Sodium chloride salt may <u>absorb moisture from the air</u> / not dried completely.						
	Effect: The mass of sodium chloride salt obtained is larger than expected.						
BII.	Preparation of Insoluble Salts						
1.	Source of Experimental Error: There may be loss of copper(II) carbonate during filtration or transfer into the container.						
	Effect: The mass of copper(II) carbonate salt obtained is lower than expected.						
BIII.	Gravimetric Analysis / Thermal Decomposition of Solid						
1.	Water of crystallisation is not completely removed from the hydrated salt.						
	Effect: The residue would have a larger mass measured than expected						
	Improvement: Heat the solid for a longer period of time until a constant mass is reached.						

PRACTICAL REVISION NOTES 2023

Colours of Common Substances

General Note:

As a general guide, the colours of most <u>ammonium</u>, <u>Group I</u> and <u>Group II</u> compounds (simple salts like NaC*l*, KOH, CaSO₄) are either colourless or <u>white</u> (colourless crystals / white powder).

The aqueous solutions of these compounds are colourless.

Most metals are grey or silver. Copper (reddish-brown / pink) and gold are the two most common exceptions. Most transition metals form coloured compounds.

Substances	Observations / Colours	Remarks	
Copper and its compounds			
Copper metal	Reddish-brown / Pink	-	
Copper(II) sulfate, CuSO ₄ solution		Most copper(II) compounds in the solid	
Copper(II) nitrate, Cu(NO ₃) ₂		or aqueous state are usually blue or	
solution	Blue	green.	
Copper(II) chloride, CuCl ₂ solution	2100		
Copper(II) hydroxide, Cu(OH) ₂		$CuCl_2$ solution is green when	
solid / precipitate		concentrated but blue when dilute	
Copper(II) carbonate, CuCO3 solid	Green	Commonly asked about the thermal decomposition of CuCO ₃ :	
Coppor(II) ovide CuO colid	Black	$CuCO_3 \rightarrow CuO + CO_2$	
Copper(II) oxide, CuO solid	DIACK	green black	
	Deddiek kassas / Driek and	Not commonly asked [Benedict's test for	
Copper(I) oxide, Cu_2O solid	Reddish-brown / Brick-red	reducing sugars].	
Iron and its compounds			
Iron(II) nitrate, Fe(NO ₃) ₂ solution			
Iron(II) sulfate, FeSO ₄ solution			
Iron(II) hydroxide, Fe(OH) ₂ solid /	Green	Most iron(II) compounds in the solid or	
precipitate		aqueous state are green.	
Iron(II) chloride, $FeCl_2$ solution			
Iron(II) oxide, FeO solid	Black	-	
Iron(III) oxide, Fe ₂ O ₃ solid	Reddish-brown	Most iron(III) compounds in the solid	
Iron(III) hydroxide, Fe(OH)3 solid /	Reddish-brown	state are brown / reddish-brown.	
precipitate	Reduisii-biowii	Most iron(III) compounds in the aqueous	
Iron(III) chloride, $FeCl_3$ solution	Yellow / Brown	state are yellow / brown.	
Redox Chemistry			
Aqueous Manganate(VII), MnO4 ⁻	Durale	Oxidising Agent	
ions	Purple	Colour change: Purple to Colourless	
		Reducing Agent	
Aqueous Iodide, I ⁻ ions	Colourless	Colour change: <u>Colourless</u> to <u>Brown</u>	
		(due to <u>aqueous iodine</u> displaced)	
Halogens and halides			
Aqueous chlorine, Cl_2 (aq)	Pale yellow	Commonly asked for observations of	
Aqueous bromine, Br ₂ (aq)	Reddish-brown / Orange	colour changes in displacement	
		reactions.	
Aqueous iodine, I_2 (aq)	Brown	I ₂ (s) is black. Some black solid may appear in displacement reactions.	
Description of models with stoom to		· ••	
Reaction of metals with steam to	iorm <u>metaroxide</u> and <u>nydro</u>		
Magnesium, Mg	Bright white glow	Observed during the reaction. White powder of MgO is formed	
	Yellow when hot, white	ZnO is yellow when hot, white when	
Zinc, Zn	when cold	cold.	
Others		•	
Carbon powder, C (s)	Black	-	
Manganese(IV) oxide, MnO ₂ solid		-	
[catalyst for decomposition of	Black		
H ₂ O ₂]			