[1]

JC1 H2 Mathematics (9758) Term 4 Revision Topical Quick Check Chapter 3 Functions

1 YIJC Promo 9758/2022/Q9 (modified)

The function f is defined by

$$f: x \mapsto x^2 - 4x - 5$$
, for $x \in \mathbb{R}$, $x \le 2$.

- (a) Find $f^{-1}(x)$ and state the domain of f^{-1} . [3]
- (b) On the same diagram, sketch the graphs of f and f^{-1} . [3]
- (c) Find the exact solution of the equation $f(x) = f^{-1}(x)$. [3]

The function g is defined by

$$g: x \mapsto 1-x^2$$
, for $x \in \mathbb{R}$, $x < 1$.

(d) Explain why the composite function fg exists and find the range of fg. [3]

2 HCI Promo 9758/2022/Q6

The function h is defined as follows.

$$h: x \mapsto \frac{1}{8} (x^3 - 6x^2 + 32), \quad x \in \mathbb{R}.$$

- (i) Explain why h does not have an inverse.
- (ii) If the domain of h is restricted to $0 \le x \le k$, state the largest value of k for which the function h^{-1} exists.

Use the domain of h in part (ii) for the rest of this question.

- (iii) Sketch the graphs of h and h⁻¹ on the same diagram, showing clearly the relationship between the two graphs, and the coordinates of the end points for both graphs.[3]
- (iv) Deduce the solution(s) of the equation $h(x) = h^{-1}(x)$. [2]
- (v) The function g is defined as follows.

$$g: x \mapsto \ln((x-3)^2+1), \qquad x \in \mathbb{R}.$$

Show that the composite function gh exists and find the exact range of gh. [2]

3 CJC Promo 9758/2022/Q10(b)

Functions g and h are defined by

$$g: x \mapsto \frac{1}{1-x^2}, \qquad x \in \mathbb{R}, x > 1,$$

 $h: x \mapsto 1-2x, \qquad x \in \mathbb{R}.$

- (i) Explain why the composite function gh does not exist. [2]
- (ii) Find hg(x). [1]
- (iii) Find the range of hg(x). [2]
- (iv) By using the result in part (ii), or otherwise find $(hg)^{-1}(4)$. [3]