Year:

2022

Exam:

Preliminary Examination

Level/Stream: 4E

Subject:

Chemistry 6092 / 02

Qn	Answer	White	Clariff of the Control	1	
A1(a)(i) A and F OR B and E		The Control of the Co	Marks	Comments
(a)(ii)				1	
(a)(iii)	A and F			1	
(a)(iv)	D			1	
(b)			14.	1	
	Petroleum is separated by different density into different fractions. Alkanes used in diesel fuel have a	true	false		
	lower boiling point than those used in motor cars.				
	The fractions used as feedstock for making plastics is extracted from higher up the fractionating column than the fraction used for kerosene(paraffin).	1			•
	Each fraction contains a mixture of hydrocarbons.	✓		2	
A2(ai)	C ₂ H ₄ + H ₂ O → C ₂ H ₃ OH	1. 1. p. 1.	artigation.	1	45.
AZ(di)				'	
(a)(ii)	To increase the percentage yield of et OR To conserve resources and cut down reactants		of starting	1	
(a)(iii)	Oxygen will oxidise ethanol to ethanol formed may undergoes combustion	oic acid	/ Ethanol	1	
	hence reducing the yield of ethanol.				
(b)(i)	200°C, 80 atm			1	
<u>C</u>	Optimum temperature is higher so the between steam and ethene is faster.	at the r	eaction	1	
	ptimum pressure is lower because special quipment would be required to maintain the higher		1		
	pressure which is not cost efficient.				
-				1 7 6 6	

	Answer	Marks	Com	marte
A3(a)	Graphite is made up of <u>many layers</u> of carbon atoms covalently bonded <u>in a hexagonal lattice structure</u> .	1	Con	ments
	The <u>layers of carbon atoms</u> are <u>held loosely</u> by <u>weak</u> <u>intermolecular forces of attraction</u> hence the layers can be easily separated using a sticky tape.	1		
(b)	Each carbon atom in graphene has one outer electron that is not used to form covalent bonds.	1		
	These <u>electrons</u> can move freely and <u>carry electric</u> <u>charges</u> hence graphene has high electrical conductivity.	1		
	Each carbon atom is covalently bonded to three other carbon atoms.	1		
	A lot of energy is needed to break these strong covalent bonds hence graphene is strong.	1		
(c)	Graphene is transparent as it is made up of only a single layer of atoms which is very thin.	1	+	
974 V - 8	THE SECTION AS YOUR SECTION AS A SECTION AS	100	2 7-52	
A4(a)(i)	A strong acid <u>completely ionized/ dissociates</u> in aqueous solution/ when dissolved in water while a weak acid <u>partially ionized/ dissociates</u> in aqueous solution/ when dissolved in water.	i		2.2(1)
(a)(ii)	Tartaric acid is the weaker acid. <u>Universal indicator turns orange</u> in tartaric acid and re in sulfuric acid showing that tartaric acid has a higher ph pH of 4-6 while sulfuric acid has a lower pH/ pH of 1-3.			
	Volume of gas collected 10s after reacting with Magnesium is lower with tartaric acid indicating that the speed of reaction is slower.			
	Both tests show that the <u>concentration of hydrogen to</u> is lower in tartaric acid as compared to sulfuric acid.	<u>ns</u> 1		
(b)	no. of mol of NaOH produced = $\frac{22}{1000} \times 0.100 = 0.0022 \text{ m}$	iol	1	
	by mol ratio, H ₂ T : NaOH = 1 : 2 0.011: 0.0022		1	
	0.011. 0.0022	1	1	

	Inswer	Marks	Comments
A polymer is a macromole of many small molecules	cule formed through the latelan	1	Communa
H		1	
H H O I I I H - N - C - C - O - H		1	
H-N-C-C-O-H		1	
The component amino acid: value using chromatograp locating agent.	s can be identified from its Rehy with a suitable solvent and	2	
Manufacture of proteins monomers join together via condensation polymerisation with the elimination of small molecules Monomers must have 2 different functional groups	Manufacture of poly(ethene) monomers join together via additon polymerisation without loss of any small molecules. Monomers must have C = C bonds	2	
	H H O H H O H N C C C O O H H N O C C C O O H H N O C C C O O H H N O C C C O O H H N O C C C O O H H N O C C C O O H H N O C C O O H H N O C C O O H H N O C C O O H H N O C C O O H H N O C C O O H H N O C C O O H H N O C C O O H H N O C C O O H H N O C C O O H H N O C C O O H H N O C C O O H H N O C C O O H H N O C C O O H H N O C C O O O H H N O C C O O O H H N O C C O O O O H N O O O O O O O O H N O O O O O O O O H N O O O O O O O H N O O O O O O O H N O O O O O O O O H N O O O O O O O H N O O O O O O O H N O O O O O O O H N O O O O O O O H N O O O O O O O H N O O O O O O O O H N O O O O O O O O H N O O O O O O O O H N O O O O O O O O H N O O O O O O O O H N O O O O O O O O H N O O O O O O O O H N O O O O O O O O H N O O O O O O O O H N O O O O O O O O O H N O O O O O O O O H N O O O O O O O O H N O O O O O O O O O H N O O O O O O O O H N O O O O O O O O O H N O O O O O O O O O H N O O O O O O O O O H N O O O O O O O O H N O O O O O O O O O H N O O O O O O O O O H N O O O O O O O O H N O O O O O O O O O O H N O O O O O O O O O O H N O O O O O O O O O O O H N O O O O O O O O O O O H N O O O O O O O O O O O O H N O O O O O O O O O O O O O H N O O O O O O O O O O O O O O O H N O O O O O O O O O O O O O O O O O O	H H O H H O H N C C C O O H H N O H N C C C O O H H N O H N	H O I I I I I I I I I I I I I I I I I I

Qn	Answer	Marks	Comment
A6(a)(i)	CI * F C F * CI *	2	
(a)(ii)	It is described as substitution reaction because the hydrogen atoms in methane is replaced by halogen atoms. It is photochemical because it requires <u>ultraviolet light</u> to initiate the reaction.	1	
(b)	H CI I I H-C=C-CI	1	
	The OCI particle produced in step 1 reacts with an oxygen atom in step 2 to produce another CI atom. This CI atom is then able to start step 1 again. This is a chain reaction.	1	
	Ozone <u>filters out excessive ultraviolet radiation</u> that could lead to <u>increased incidence of skin cancer</u>		
	CO is poisonous/toxic as it combines with haemoglobin in red blood cells to form carboxyhaemoglobin which reduces the transport of oxygen to other parts of the body, leading to headaches / dizziness / breathing difficulties / suffocation / death SO2 Irritates the eyes and lungs and cause breathing difficulties OR	2	

Qn			
	react with water to form acid rain which corrodes buildings/ harms aquatic life and plants CO2 is a greenhouse gas that absorbs radiation and leads to global warming	Marks	Comments
(b)	The oxidation state of Zn, O, C remains unchanged as +2, =2 and +4 respectively.		-
	Both oxidation and reduction has not occurred hence the reaction is not a redox reaction.	1	
(c)(i)	The mixture is heated and vapourises. Cadmium vapour with the lowest boiling point exits the condenser and distilled over first at 766°C. After cadmium is collected. Zinc with the second lowest boiling distilled over at 907°C. Lead and iron with much higher boiling point remains in the distillation flask/ distilled out last. OR The mixture is heated and vapourises. Vapours rises up into the fractionating column and begins to cool and condense. Fractions with a lower boiling points are collected at the top of the fractionating column and fractions with a higher boiling points are collected at the lower sections of the fractionating column. Zinc is collected at the second lowest section.		
	Zinc is more reactive than iron hence	1	
	rovides sacrificial protection by corroding in place of on.	1	
O. Zir	R nc is used in galvanization of iron where	1	
	acts as a protective barrier for iron against water and ygen.	1	

	Answer	Marks	Comments
B8(a)	The greater the number of bonds between two atoms, the smaller the bond length.	2	
	The bond length decreases from 154pm to 120pm when the number of bonds increase from C-C to C≡C.		
	As the bond energy decreases, the bond length increases.		
	As bond energy decreases from 431kJ/mol to 299kJ/mol from H–Cl to H–I, bond length increases from 127pm to 161pm.		
(b)	As the number of bonds between two atoms increases, the number of shared electrons increases and the forces of attraction between the shared electrons and nuclei of atoms increases.		
	OR		
	The larger the bond energy, the <u>stronger the covaler bond is</u> and the <u>stronger the forces of attraction between the shared electrons and nuclei of atoms.</u>	<u>s</u>	
	Hence, the atoms are pulled closer together causing shorter bond length.	a 1	
(c)(i)	ΔH = Energy absorbed during bond breaking – Energy		
	released during bond forming		
	= (435 + 193) - 2 x 366 = - 104 kJ	1	
(c)(ii)	↑	2	
	Energy Hz + Brz		
	2HBs V		
	Progress of reaction		
	Reaction of iodine with hydrogen is slower than the		1 arking
(d)	reaction of hydrogen with chlorine because chlorine is		

.

Qn	A	-	
	Reaction of iodine with hydrogen is exothermic and the reaction of hydrogen with chlorine is endothermic	Marks 1 marking pl	Comments
	because the energy absorbed for bond breaking is less than the energy released from bond forming when chlorine reacts with hydrogen/ the energy absorbed for bond breaking is more than the energy released from bond forming when iodine reacts with hydrogen	f marking pt	
	Reaction of iodine with hydrogen is <u>reversible</u> and the reaction of hydrogen with chlorine is not/ Reaction of iodine with hydrogen produced a halide which decomposes at high temperature while reaction of chlorine produced a halide that does not decompose at high temperature.	1 marking pt	
	because <u>hydrogen iodide is thermally less stable</u> as compared to hydrogen chloride hence it breaks down easily to form hydrogen and iodine.	1 marking pt	
(e)	91 pm (accept 87 to 107pm)	1	Talk
200-1			STEP STORY
B9(a)	Any three: In the 'plum pudding' model, there are no neutral charge particles/ neutrons but present idea of the atom has. In 'plum pudding' model, electrons are spread out randomly in the sphere but electrons are arranged in electron shells in the present idea of the atom. In 'plum pudding' model, there is no nucleus in the centre of the atom but present idea of the atom has. In 'plum pudding' model, the positive charges /protons are not contained in the centre of the atom /in the nucleus but present idea of the atom is. (Accept any other plausible answers)	3	
(b)	 x is negatively charged as it is altracted to the positive plate. z is positively charged as it is attracted to the negative plate. y is electrically neutral (no charge) as it move straight/ is not attracted to any of the plates. 	2	
	 x is much lighter than z as x deflects more to the positive plate than z to the negative plate. 	1	

*) v

	Amount in the province and	Marks	Comments
Qn	Answer		
(c)	For the atom with a proton number 11 to form an ion, it has to lose 1 electron to achieve an electronic configuration of a noble gas.	1	
	However, the model drawn show a loss of 1 proton instead of electron.	1	
os Aliento	was per complete to the control of t		
Either B10(a)	The experiment involving zinc and sulfuric acid only acts as a control and comparison between the time taken can be used to determine the effectiveness of the catalyst.	1	
(b)	Temperature affects the rate of reaction.		
	Increased temperature causes particles to gain more kinetic energy and collide more frequently.	1	
	When particles gained energy, the <u>number of particles</u> with energy equal or higher than the activation energy also increase.	1	
	hence causing the <u>frequency of effective collisions to</u> <u>increase</u> and <u>rate of reaction to increase</u> .	1	
(c)	Similarities: Both experiments showed that the <u>use of copper as catalyst increase the speed of reaction.</u> This is becau copper provides the reaction with an alternative pathway where the activation energy required is low / Copper is less reactive than zinc hence rate of zincorrosion due to acid increased.	se ye yer nc	
	A <u>brown solid remained at the end of the reaction</u> both experiments. This is because <u>copper</u> , as a catal <u>remains</u> chemically unchanged in a chemical react <u>I Copper</u> being <u>unreactive</u> does not react with acid.	yst, tion	1
	Difference: The use of copper powder in experiment 4 increases rate more than when copper is used as lump experiment 5.	s the os in	1
	This is because as powder has a <u>higher contact area</u> lumps <u>with the reactants</u> .	than	1
(d	Zinc is more reactive than copper hence zinc displaced copper from copper(II) sulfate.		1
		1	1

. .

Qn	Ana		
	to form copper which is a brown solid and zinc sulfate which is a colourless solution	Marks	Comments
7.00	September 1997 And September 199	TARRAS.	5.51.40.40.3 TO 1
Or B10(a)	Cu(s) → Cu ²⁺ (aq) + 2e	1	
(p)	As the <u>current double from 2.0A to 4.0 A</u> , the <u>mass of copper formed</u> also <u>double from 0.12g to 0.24g</u> .	1.	
	As the time taken for electrolysis double from 180s to 360s, the mass of copper formed also double from 0.12g to 0.24g.	1	
	As more current passes through and more time allowed for electrolysis to occur, there are more electrons flowing through the circuit hence more copper (II) ions will gain electrons/ discharged / reduced.	1	
(c)	Mass of copper deposited at cathode = 1.44 - 1.20 = 0.24g No. of mols of copper deposited = No. of mols of copper		
	that was oxidized at anode Hence, mass of copper deposited at cathode = mass of copper oxidized at anode	1	
	Mass of anode after electrolysis = 1.45 - 0.24g = 1.21g	1	
(d)	At the anode: When carbon electrodes are used, there will be no decrease in mass in the anode as carbon is an inert electrode and does not participate in electrolysis.	1	
	When copper electrodes are used, copper anode decreased in mass due to copper being oxidized to form copper ions.	1	
	Electrolyte: When carbon electrode are used, <u>blue aqueous</u> copper(II) sulfate will turn colourless because copper ions are discharged at the cathode causing <u>a decrease in</u> concentration of copper ions.	1	
	When copper electrodes are used, <u>blue aqueous</u> <u>copper(II) sulfate remains colourless</u> . There is no change in concentration of copper ions because <u>copper</u> <u>ions discharged/ reduced at the cathode is</u> <u>replenished by the oxidation of copper at the anode</u>	1	