| Candidate Index Number | | | | | |------------------------|--|--|--|--| | | | | | | | | | | | | | | | | | | # Anglo - Chinese School (Independent) ## FINAL EXAMINATIONS 2015 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1 FRIDAY 2nd OCTOBER 2015 1 h 30 min Additional Material Graph Paper (1 sheet) #### **INSTRUCTIONS TO CANDIDATES** - Write your index number in the boxes above. - Do not open this examination paper until instructed to do so. - You are not permitted access to any calculator for this paper. - Answer all questions in the spaces provided. - Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures. - The maximum mark for this paper is 80. This paper consists of 14 printed pages. [Turn over Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Answer all the questions in the spaces provided. | 1 | [Maximum mark: 7] | | |---|--|-----------| | | (a) Simplify $\sqrt[5]{-32a^{45}b^{10}}$. | [2 marks] | | | (b) Simplify $\left(\frac{q^2}{p^4}\right)^4 \div \left(\frac{p^{-1}}{pq^2}\right)^3$, leaving your answer in positive indices. | | | | (c) Express $\frac{5}{2a-b} - \frac{3}{2b-4a}$ as a single fraction in its simplest form. | [3 marks] | | | | [2 marks] | #### 2 [Maximum mark: 4] The height, h metres, of the water sprayed from a fountain is given as $h = -x^2 + 4x + 7$, where x metre is the horizontal distance of the water from the fountain. Find the greatest height of the water sprayed and the horizontal distance from the fountain when this occurs. ### 3 [Maximum mark:6] In the diagram below, ABD is a straight line. $\angle CAB = 90^{\circ}$, $CD = 20 \,\mathrm{cm}$, $BD = 7 \,\mathrm{cm}$ and the area of $\triangle BCD = 42 \,\mathrm{cm}^2$. (a) Express $\sin \angle CDB$ as a fraction in its lowest terms. [2 marks] | | (c | :) | Express | $\cos \angle CBD$ | as a | a fraction | in i | ts low | est term | ıs | |--|----|----|----------------|-------------------|------|------------|------|--------|----------|----| |--|----|----|----------------|-------------------|------|------------|------|--------|----------|----| | | <i>[</i> 2 | marks | 1 | |---|------------|-------|---| | • | _ | muns | 1 | |
 |
 | |------|------| |
 |
 | 4 | [Maximum | mark: | 101 | |---|--------------------|---------|-----| | - | 111100001111111111 | munici. | 101 | | (a) Find the value of x when $\left(\frac{1}{3}\right)^{-2} = 27^{\frac{1}{2}} \div 9^x$. | | |--|-----------| | | [3 marks] | | (b) Find the value of <i>x</i> given that $3^{12} - 3^{10} = \frac{8}{27^x}$. | | | | [21 | | | Find the value of x given that $3 - 3 = \frac{1}{27^x}$. | [3 marks] | |-----|---|-----------| | (c) | Solve the equation $2^{2x^2} - 2^{x^2} - 12 = 0$, leaving your answers in surds. | [4 marks] | | | | | | ••• | | | | ••• | (a) Factorize completely $3p(r+s)-r-s$. | 2 marks] | |---|----------| | (b) Solve $2x = 8 - \frac{3}{x}$ and express your answers in the form $a \pm b\sqrt{10}$, where a are constants. | a and b | | | 3 marks] | 5 [Maximum mark: 5] | 6 | [Maximum mark: 7] | | |---|---|---| | | (a) Evaluate $\log_2 3 \times \log_3 4 + \frac{\ln 108 - 2 \ln 2}{\ln 9}$. | [3 marks] | | | (b) Solve the equation $\log_{27} \frac{3}{\sqrt{x}} = 1 + \log_3 \sqrt{x}$. | [5 marks] | | | | [4 marks] | • | The coordinates of the points R and S are (-4, 1) and (2, -7) respectively. (i) Find the length of *RS*. [2 marks] (ii) Find the equation of the line, l, passing through R and perpendicular to RS. [4 marks] (iii) Given that y = 1 is the line of symmetry of $\triangle QRS$, state the coordinates of Q. [2 marks] (iv) Hence, find the perpendicular distance from Q to SR produced. [3 marks] |
 |
 | |
 |
 | • | | | | | | | | | | | | | |
 |
 | | |------|------|-------|---------|------|-----|-----|-----|-----|-----|-----|----|---|-----|----|---|----|-----|-----|-----|----|-----|-----|----|---|-----|----|-----|-----|----|---|-----|-----|-----|----|---|-----|-----|-----|----|-----|-----|-----|-----|----|---------|------|--|
 |
 | |
• • |
 | | | • • | | | | | | | | | | | | | | | ٠. | | | ٠. | | | | | | | ٠. | | | | | | | | | | ٠. | | |
 |
 |
 |
 | • • |
• • |
 | • • | • • | • • | • • | • • | • • | | • | • • | | • | ٠. | • | • • | • • | | • • | • • | | | • • | | • • | • • | | • | • • | • • | • • | | • | • • | • • | • • | | • • | • • | • • | • • | ٠. |
• |
 |
 |
 | • • • |
• • |
 | | • • | • • | ٠. | • • | ٠. | ٠. | • | • • | ٠. | • | ٠. | • • | • • | ٠. | ٠. | • • | ٠. | ٠. | • | ٠. | ٠. | • • | ٠. | ٠. | • | • • | ٠. | ٠. | ٠. | • | • • | • • | ٠. | ٠. | • • | • • | ٠. | ٠. | ٠. |
• • |
 | ## 8 [Maximum mark: 4] The diagram shows part of a straight line graph drawn to represent the equation $2 = \frac{p}{\lg x} + qy$. Calculate the value of p and of q. |
 |
 | |------|------| |
 |
 | | | | 9 | [Max | [Maximum mark: 9] | | | | | | | | | | | | | |---|-------------|---|--|--|--|--|--|--|--|--|--|--|--|--| | | The r | Poots of the quadratic equation $mx^2 - 4x - 3 = 0$ are α and β .
Given that $\alpha + \beta = 2$, find the value of m . | | | | | | | | | | | | | | | (ii) | Hence, state the value of $\alpha\beta$. | | | | | | | | | | | | | | | , , | [1 mark] | | | | | | | | | | | | | | | (iii) | Find the quadratic equation in x whose roots are $\alpha + \frac{1}{2\beta}$ and $\beta + \frac{1}{2\alpha}$. | | | | | | | | | | | | | | | | [6 marks] | ••••• | ••••• | ••••• | ••••• | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | • • • • • • | | | | | | | | | | | | | | 40 (14) **10** [*Maximum mark:* 8] Answer the whole of this question on a sheet of graph paper. The variables x and y are connected by the equation $y = x + \frac{1}{4x} - 2$. The table below shows some values of x and the corresponding values of y, correct to 1 decimal place. | х | 0.1 | 0.3 | 0.5 | 1.0 | 2.0 | 2.5 | 3.0 | 4.0 | |---|-----|------|------|------|-----|-----|-----|-----| | у | 0.6 | -0.9 | -1.0 | -0.8 | 0.1 | m | 1.1 | 2.1 | (a) Calculate the value of m. [1 mark] (b) Using a scale of 4 cm to represent 1 unit on both axes, draw the graph of $y = x + \frac{1}{4x} - 2$ for $0.1 \le x \le 4$. [4 marks] (c) Use your graph to find the values of x in the range $0 < x \le 4$ for which $x + \frac{1}{4x} = 3$. [3 marks] | 11 | [Maximum | mark: | 91 | |----|----------|-------|----| |----|----------|-------|----| | (a) Find the range of values of p for which $\frac{2}{x+1} = \frac{5x}{p-x}$ has no real roots. | |---| | [4 mark. | | (b) Given that the line $y = mx + c$ is a tangent to the curve $b^2x^2 + y^2 = b^2$, where b, | | c and m are constants, show that $b^2 + m^2 = c^2$. [5 marks | ****** | END | OF PAPEI | ₹ 1 | ****** | |--------|-----|----------|-----|--------| |--------|-----|----------|-----|--------| |
 | |------| |
 | #### Answers: 1a) $$-2a^9b^2$$ 1b) $\frac{q^{14}}{p^{10}}$ 1b) $$\frac{q^{14}}{p^{10}}$$ $$1c) \qquad \frac{13}{2(2a-b)}$$ 2) $$-(x-2)^2 + 11$$ Greatest height = 11 m Occurs when $x = 2$ m 3a) $$\frac{3}{5}$$ 3a) $$\frac{3}{5}$$ 3b) 9 3c) $-\frac{3}{5}$ 4a) $$-\frac{1}{4}$$ $$(4b) -\frac{4}{10}$$ 4c) $$\pm \sqrt{2}$$ 5a) $$(r+s)(3p-1)$$ 5b) $2 \pm \frac{1}{2}\sqrt{10}$ 5b) $$2 \pm \frac{1}{2} \sqrt{10}$$ 6a) $$3\frac{1}{2}$$ 6b) $$\frac{1}{3}$$ 7ii) $$y = \frac{3}{4}x + 4$$ 7iii) $(2, 9)$ $$8) -2$$ 9ii) $$-\frac{3}{2}$$ 9i) 2 9ii) $$-\frac{3}{2}$$ 9iii) $x^2 - 1\frac{1}{3}x - \frac{2}{3} = 0$ 10c) $$x = 0.09$$ and $x = 2.9$ 11a) $$p < -\frac{49}{40}$$