Candidate Index Number				

Anglo - Chinese School (Independent)

FINAL EXAMINATIONS 2015 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1

FRIDAY 2nd OCTOBER 2015 1 h 30 min

Additional Material
Graph Paper (1 sheet)

INSTRUCTIONS TO CANDIDATES

- Write your index number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- The maximum mark for this paper is 80.

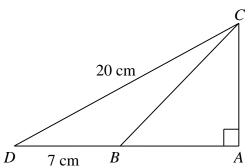
This paper consists of 14 printed pages.

[Turn over

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all the questions in the spaces provided.

1	[Maximum mark: 7]	
	(a) Simplify $\sqrt[5]{-32a^{45}b^{10}}$.	[2 marks]
	(b) Simplify $\left(\frac{q^2}{p^4}\right)^4 \div \left(\frac{p^{-1}}{pq^2}\right)^3$, leaving your answer in positive indices.	
	(c) Express $\frac{5}{2a-b} - \frac{3}{2b-4a}$ as a single fraction in its simplest form.	[3 marks]
		[2 marks]


2 [Maximum mark: 4]

The height, h metres, of the water sprayed from a fountain is given as $h = -x^2 + 4x + 7$, where x metre is the horizontal distance of the water from the fountain. Find the greatest height of the water sprayed and the horizontal distance from the fountain when this occurs.

3 [Maximum mark:6]

In the diagram below, ABD is a straight line. $\angle CAB = 90^{\circ}$, $CD = 20 \,\mathrm{cm}$, $BD = 7 \,\mathrm{cm}$ and the area of $\triangle BCD = 42 \,\mathrm{cm}^2$.

(a) Express $\sin \angle CDB$ as a fraction in its lowest terms.

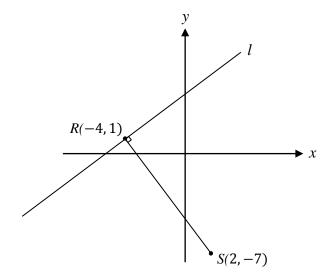
[2 marks]

	(c	:)	Express	$\cos \angle CBD$	as a	a fraction	in i	ts low	est term	ıs
--	----	----	----------------	-------------------	------	------------	------	--------	----------	----

	<i>[</i> 2	marks	1
•	_	muns	1

4	[Maximum	mark:	101
-	111100001111111111	munici.	101

(a) Find the value of x when $\left(\frac{1}{3}\right)^{-2} = 27^{\frac{1}{2}} \div 9^x$.	
	[3 marks]
(b) Find the value of <i>x</i> given that $3^{12} - 3^{10} = \frac{8}{27^x}$.	
	[21


	Find the value of x given that $3 - 3 = \frac{1}{27^x}$.	[3 marks]
(c)	Solve the equation $2^{2x^2} - 2^{x^2} - 12 = 0$, leaving your answers in surds.	[4 marks]
•••		
•••		

(a) Factorize completely $3p(r+s)-r-s$.	2 marks]
(b) Solve $2x = 8 - \frac{3}{x}$ and express your answers in the form $a \pm b\sqrt{10}$, where a are constants.	a and b
	3 marks]

.....

5 [Maximum mark: 5]

6	[Maximum mark: 7]	
	(a) Evaluate $\log_2 3 \times \log_3 4 + \frac{\ln 108 - 2 \ln 2}{\ln 9}$.	[3 marks]
	(b) Solve the equation $\log_{27} \frac{3}{\sqrt{x}} = 1 + \log_3 \sqrt{x}$.	[5 marks]
		[4 marks]
		• • • • • • • • • • • • • • • • • • • •

The coordinates of the points R and S are (-4, 1) and (2, -7) respectively.

(i) Find the length of *RS*.

[2 marks]

(ii) Find the equation of the line, l, passing through R and perpendicular to RS.

[4 marks]

(iii) Given that y = 1 is the line of symmetry of $\triangle QRS$, state the coordinates of Q.

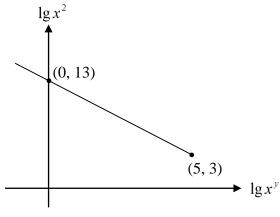
[2 marks]

(iv) Hence, find the perpendicular distance from Q to SR produced.

[3 marks]

 	 		 	 																											•														 	 	
 	 		 • •	 			• •															٠.			٠.							٠.										٠.			 	 	
 	 	• •	 • •	 	• •	• •	• •	• •	• •	• •		•	• •		•	٠.	•	• •	• •		• •	• •			• •		• •	• •		•	• •	• •	• •		•	• •	• •	• •		• •	• •	• •	• •	٠.	 •	 	
 	 	• • •	 • •	 		• •	• •	٠.	• •	٠.	٠.	•	• •	٠.	•	٠.	• •	• •	٠.	٠.	• •	٠.	٠.	•	٠.	٠.	• •	٠.	٠.	•	• •	٠.	٠.	٠.	•	• •	• •	٠.	٠.	• •	• •	٠.	٠.	٠.	 • •	 	

.....


.....

.....

.....

8 [Maximum mark: 4]

The diagram shows part of a straight line graph drawn to represent the equation $2 = \frac{p}{\lg x} + qy$. Calculate the value of p and of q.

9	[Max	[Maximum mark: 9]												
	The r	Poots of the quadratic equation $mx^2 - 4x - 3 = 0$ are α and β . Given that $\alpha + \beta = 2$, find the value of m .												
	(ii)	Hence, state the value of $\alpha\beta$.												
	, ,	[1 mark]												
	(iii)	Find the quadratic equation in x whose roots are $\alpha + \frac{1}{2\beta}$ and $\beta + \frac{1}{2\alpha}$.												
		[6 marks]												
	•••••													
	•••••													
	•••••													
	•••••													
	•••••													
	• • • • • •													

40 (14)

10 [*Maximum mark:* 8]

Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation $y = x + \frac{1}{4x} - 2$. The table below shows some values of x and the corresponding values of y, correct to 1 decimal place.

х	0.1	0.3	0.5	1.0	2.0	2.5	3.0	4.0
у	0.6	-0.9	-1.0	-0.8	0.1	m	1.1	2.1

(a) Calculate the value of m.

[1 mark]

(b) Using a scale of 4 cm to represent 1 unit on both axes, draw the graph of $y = x + \frac{1}{4x} - 2$ for $0.1 \le x \le 4$.

[4 marks]

(c) Use your graph to find the values of x in the range $0 < x \le 4$ for which $x + \frac{1}{4x} = 3$.

[3 marks]

11	[Maximum	mark:	91
----	----------	-------	----

(a) Find the range of values of p for which $\frac{2}{x+1} = \frac{5x}{p-x}$ has no real roots.
[4 mark.
(b) Given that the line $y = mx + c$ is a tangent to the curve $b^2x^2 + y^2 = b^2$, where b,
c and m are constants, show that $b^2 + m^2 = c^2$. [5 marks

******	END	OF PAPEI	₹ 1	******
--------	-----	----------	-----	--------

Answers:

1a)
$$-2a^9b^2$$
1b) $\frac{q^{14}}{p^{10}}$

1b)
$$\frac{q^{14}}{p^{10}}$$

$$1c) \qquad \frac{13}{2(2a-b)}$$

2)
$$-(x-2)^2 + 11$$
Greatest height = 11 m
Occurs when $x = 2$ m

3a)
$$\frac{3}{5}$$

3a)
$$\frac{3}{5}$$

3b) 9
3c) $-\frac{3}{5}$

4a)
$$-\frac{1}{4}$$

$$(4b) -\frac{4}{10}$$

4c)
$$\pm \sqrt{2}$$

5a)
$$(r+s)(3p-1)$$

5b) $2 \pm \frac{1}{2}\sqrt{10}$

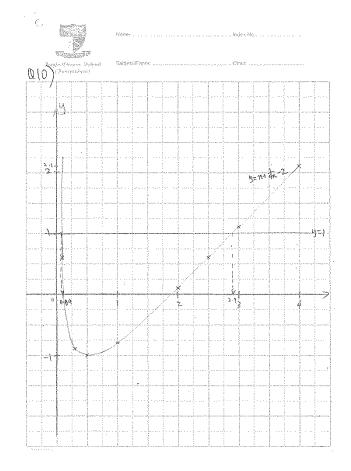
5b)
$$2 \pm \frac{1}{2} \sqrt{10}$$

6a)
$$3\frac{1}{2}$$

6b)
$$\frac{1}{3}$$

7ii)
$$y = \frac{3}{4}x + 4$$

7iii) $(2, 9)$


$$8) -2$$

9ii)
$$-\frac{3}{2}$$

9i) 2
9ii)
$$-\frac{3}{2}$$

9iii) $x^2 - 1\frac{1}{3}x - \frac{2}{3} = 0$

10c)
$$x = 0.09$$
 and $x = 2.9$

11a)
$$p < -\frac{49}{40}$$

