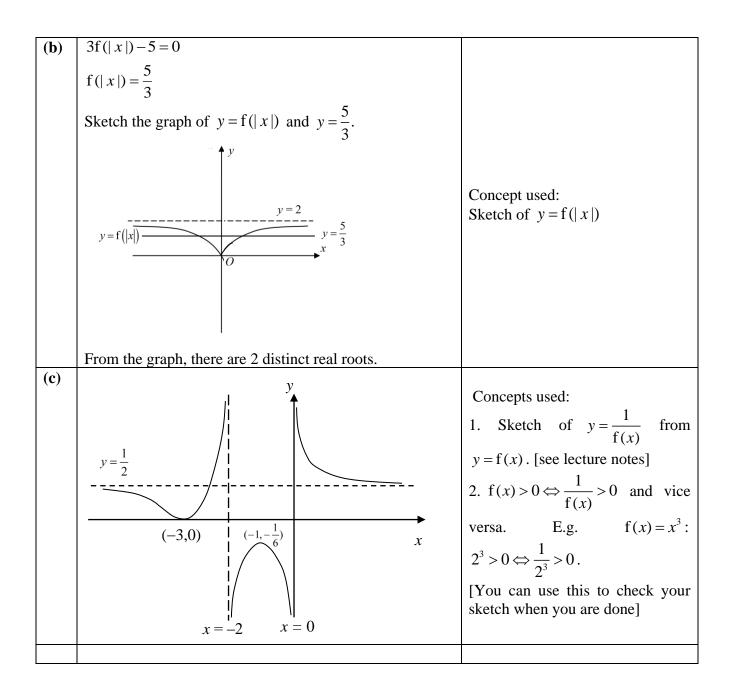
Qn	Suggested Solution	Comments
1	Curve $B: y^2 = 2y + 8xy - 17$	
	Differentiate with respect to <i>x</i> ,	
	$2y\frac{dy}{dx} = 2\frac{dy}{dx} + 8x\frac{dy}{dx} + 8y$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4y}{y - 1 - 4x}$	
	dx y = 1 - 4x	
	$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right _{x=2,y=1} = \frac{4(1)}{1-1-4(2)} = -\frac{1}{2}$	
	To find (<i>a</i> , <i>b</i>), let $\frac{dy}{dx} = \frac{4b}{b-1-4a} = -\frac{1}{2}$	
	$\Rightarrow b - 1 - 4a = -8b$	
	$\therefore a = \frac{9b-1}{4} \Rightarrow$ subst into eqn of curve	As there's only one " <i>a</i> " term in the curve eqn, it's
	$\therefore a = \frac{9b-1}{4} \Rightarrow \text{ subst into eqn of curve}$ $b^{2} = 2b + 8b \left(\frac{9b-1}{4}\right) - 17$ $b^{2} = 2b + 2b \left(9b-1\right) - 17$	easier to subst $a = \frac{9b-1}{4}$
		instead of $b = \frac{4a+1}{9}$.
	$17b^2 = 17$	
	b = -1 (:: $y = 1$ is given earlier)	As (2,1) is already provided in the question,
	$a = \frac{9(-1) - 1}{4} = -2.5$	students should reject a = 2, b = 1 & accept
		a = -2.5, b = -1 as the
		final answer.

2024 Y5 H2 Math Holiday Assignment 1 Solutions

Qn	Suggested Solution	Comments
2(a)	Since $f(-2) = 0$,	Problem solving:
	f(1-3x) = 0	Do not rush in to solve the
	1 - 3x = -2	question. The question did not ask for the sketch of $y = f(1-3x)$.
	x = 1	Thus, you may want to think of a
	Since $f(0) = 0$, f(1-3x) = 0	simpler approach to solve the question. Solving this question can be done by observing the values
	1 - 3x = 0	that gives you the roots on the
	$x = \frac{1}{3}$	y = f(x) .
	\therefore The roots of the eqn are $\frac{1}{3}$ and 1.	Concept used: If $f(a) = 0$, then <i>a</i> is a root.



Qn	Suggested Solution	Comments
<u>3(a)</u>	Suggested bold of y y (6,12) y (6,12) y (2,-4) Since $x = t + t^2 = \left(t + \frac{1}{2}\right)^2 - \frac{1}{4}$ and $-2 \le t \le 2$, the smallest value of x is $-\frac{1}{4}$. Thus there will be no curve when $x < -\frac{1}{4}$.	- End points should be clearly labelled and graph should pass through the origin - Explain clearly why there will be no curve when $x < -\frac{1}{4}$, by explaining why there are no <i>t</i> -values that give $x < -\frac{1}{4}$ (using discriminant or completing the square, etc) or why smallest value of <i>x</i> is $-\frac{1}{4}$ (by completing the square or
(b)	$\frac{dx}{dt} = 1 + 2t, \frac{dy}{dt} = 2t + 3t^2$ $\frac{dy}{dx} = \frac{2t + 3t^2}{1 + 2t}$ $\frac{dy}{dx}\Big _{t=p} = \frac{2p + 3p^2}{1 + 2p}$	drawing a graph, etc) - We should not sub $t = p$ from the start and differentiate w.r.t p because p is taken to be an unknown constant
(c)	At $A, x = 2$ $t^2 + t = 2$ $t^2 + t - 2 = 0$ (t+2)(t-1) = 0 t = -2 or 1 At $t = -2, y = (-2)^3 + (-2)^2 \neq 2$ At $t = 1, y = (1)^3 + (1)^2 = 2$ (shown) $\therefore t = 1$ at A (shown) Alternatively, At $A, x = 2$ and $y = 2$ $t^2 + t = 2$ $t^2 + t = 2$ $t^2 + t - 2 = 0$ (t+2)(t-1) = 0 $\Rightarrow t = -2 \text{ or } 1$ $\Rightarrow t = 1$ (no real roots for $t^2 + 2t + 2 = 0$) $\therefore t = 1$ at A (shown)	- There were many methods to "show" this and apart from the alternative method, when trying to solve for possible <i>t</i> -values, all possible solutions for <i>t</i> should be stated and checked/analysed – i.e. it should be clearly shown with justification why the other <i>t</i> -values should be rejected and why $t = 1$ will correspond to point <i>A</i> . - It should not be assumed that $t = 1$ is the solution without arriving at it and checking.

Gradient of tangent at $A = \frac{2+3}{1+2} = \frac{5}{3}$	
Gradient of tangent at $P = -\frac{3}{5}$	- Final answers should be simplified as far as possible or given to 3s.f. for non-exact answers.
$\frac{2p+3p^2}{1+2p} = -\frac{3}{5}$ $15p^2 + 16p + 3 = 0$ $p = -0.243 \text{ or } -0.824$	- Students should think of using the GC for this part since non-exact answers were not required; some students tried to solve algebraically and made careless errors

Qn	Suggested Solution
4	$y = e^x - 7x \xrightarrow{\text{Step 1}} y = e^{2x} - 14x$
	$y = e^{x} - 7x \xrightarrow{\text{Step 1}} y = e^{2x} - 14x$ $y = e^{2x} - 14x \xrightarrow{\text{Step 2}} y = 14x - e^{2x}$
	Replace x by $2x$
	2x > 2
	$\therefore x > 1$
	$g(x) = 14x - e^{2x}$, the domain of g is $(1, \infty)$.

	Comments
Suggested Solutions $\frac{1}{3}\pi r^{2}h = 48\pi$ $r^{2}h = 144 (1)$ Let S be the curved surface area of the cone cup. $S = \pi r l = \pi r \sqrt{r^{2} + h^{2}}$ Using (1), $S = \pi r \sqrt{r^{2} + \left(\frac{144}{r^{2}}\right)^{2}} = \pi \sqrt{r^{4} + \frac{144^{2}}{r^{2}}}$ Simplify the expression before differentiating. $\frac{dS}{dr} = \pi \left[\frac{1}{2}\left(r^{4} + \frac{144^{2}}{r^{2}}\right)^{-\frac{1}{2}}\left(4r^{3} - \frac{2(144^{2})}{r^{3}}\right)\right]$	Concepts used: 1. <i>r</i> , <i>h</i> and <i>l</i> are dependent on each other. As one varies, it will affect the other variables. 2. To minimise curved surface area, you will need it to be expressed in terms of 1 variable.
When $\frac{dS}{dr} = 0$, $4r^3 - \frac{2(144^2)}{r^3} = 0$ $4r^6 = 2(144^2)$ $r = \sqrt[6]{10368} \text{ or } 4.67 \text{ (3sf)}$	have to consider this term.
	$r^{3} r^{2}h = 144(1)$ Let <i>S</i> be the curved surface area of the cone cup. $S = \pi r l = \pi r \sqrt{r^{2} + h^{2}}$ Using (1), $S = \pi r \sqrt{r^{2} + \left(\frac{144}{r^{2}}\right)^{2}} = \pi \sqrt{r^{4} + \frac{144^{2}}{r^{2}}}$ Simplify the expression before differentiating. $\frac{dS}{dr} = \pi \left[\frac{1}{2}\left(r^{4} + \frac{144^{2}}{r^{2}}\right)^{-\frac{1}{2}}\left(4r^{3} - \frac{2(144^{2})}{r^{3}}\right)\right]$ When $\frac{dS}{dr} = 0$, $4r^{3} - \frac{2(144^{2})}{r^{3}} = 0$ $\left(r^{4} + \frac{144^{2}}{r^{2}}\right)^{-\frac{1}{2}} > 0$, you don't area of the cone cup.