

RIVER VALLEY HIGH SCHOOL JC 2 PRELIMINARY EXAMINATION H2 CHEMISTRY 9729 Paper 4

19 AUGUST 2022

2 HOURS 30 MINUTES

NAME

CLASS

21J ()

INDEX NO.

INSTRUCTIONS TO CANDIDATES

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO.

Read these notes carefully.

Write your name, class and index number in the spaces at the top of this page.

Give details of the practical shift and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use a 2B pencil for any diagram or graph.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions in the spaces provided on the Question Paper.

The use of an approved scientific calculator is expected, where appropriate.

You may lose marks if you do not show your working or if you do not use appropriate units.

Shift	
Laboratory	

	For Examiner's Use		
s.f.			
Units			
Total	55		

Answer **all** the questions in the spaces provided.

1 Investigation of the oxidising ability of substances

- **FA 1** is an aqueous solution of iron(II) sulfate.
- **FA 2** is made by dissolving 0.750 g of KMnO₄ in deionised water and made up to 250 cm³ in a volumetric flask.
- **FA 3** is 0.500 mol dm⁻³ compound **A**.
- **FA 4** is 1 mol dm⁻³ sulfuric acid.

You will perform tests to:

- investigate the oxidising ability of three substances
- carry out a titration to determine the concentration of iron(II) sulfate in **FA 1**.
- (a) (i) Carry out the following tests. Carefully record your observations in Table 1.1. The volumes given below are approximate and should be estimated rather than measured.

In this section, there is only one gas evolved. You only need to carry out the identification test and identify the gas once.

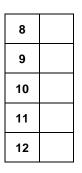
	Test	Observations
1	To a 1 cm depth of FA 1 in a test-tube, add 1 cm depth of FA 4 , then gradually add FA 2 till 1 drop in excess.	Purple FA 2 <u>decolourised</u> . <u>Pale_green/colourless</u> FA 1 turned pale <u>yellow</u> and finally <u>orange/ pink</u> .
2	To a 1 cm depth of FA 3 in a test-tube, add 1 cm depth of FA 2 .	PurpleKMnO₄ decolourised.A brown solution/ppt formed.Effervescence/ bubbles of gas evolved rapidly.Colourless, odourless gas evolved relight a glowing splint.The gas is oxygen.
3	To a 1 cm depth of FA 1 in a test-tube, add about 1 cm depth of FA 4 , followed by 1 cm depth of FA 3 . To a portion of resulting solution, add aqueous sodium hydroxide till excess.	Pale green/colourless FA 1 turned <u>yellow</u> . Red-brown ppt formed is insoluble in excess NaOH(aq). Effervescence/ bubbles of gas evolved (rapidly).

Table 1.1

1

2

3


(ii)	Explain the chemistry involved for all the observations in Test 1.		
		4	
(iii)	Write two equations to show the changes to Fe ²⁺ ions in Test 3.		
		5	
		6	
(iv)	Using the results in Test 3, state the stronger oxidising agent.		
		7	

(b) (i) Titration of FA 1 against FA 2

- 1. Fill a burette with **FA 2**.
- 2. Use the pipette to transfer 25.0 cm³ of **FA 1** into a 250 cm³ conical flask.
- 3. Use a measuring cylinder to add 20.0 cm³ of **FA 4** into the same conical flask.
- 4. Titrate the mixture in the conical flask until the end-point is reached.
- 5. Record your titration results, to an appropriate level of precision, in the space provided below.
- 6. Repeat points 2 to 5 until consistent results are obtained.

Titration results

Titration number	1	2
Final burette reading /cm ³	24.20	24.25
Initial burette reading /cm ³	0.00	1.00
Volume of FA 2 (added) /cm ³	24.20	24.25

(ii) From your titrations, obtain a suitable volume of **FA 2** to be used in your calculations. Show clearly how you obtained this volume.

volume of **FA 2** used =

(c)	(i)	Calculate the amount of MnO ₄ ⁻ used in the titration. [Ar: K, 39.1; Mn, 54.9; O,16.0]	
	(ii)	amount of $MnO_4^- = \dots$ Given that 1 mole of MnO_4^- reacts with 5 moles of Fe ²⁺ , calculate the molar concentration of iron(II) sulfate in FA 1 .	14
(d)	with conc	molar concentration of iron(II) sulfate = udent plans to titrate 25.0 cm ³ of aqueous solution containing iron(II) chloride FA 2 as the titrant. This iron(II) chloride solution has similar molar entration as iron(II) sulfate in FA 1 .	15
	impro	out changing the identity of the chemicals used, suggest a modification to ove the experiment. Explain your answer. are not required to show any calculations.	16

(e) In a series of titrations, a student pipetted 25.0 cm³ of FA 1 into the conical flask and added varying volumes of FA 3 from the burette to form a mixture. This mixture was titrated with FA 2 till end-point was reached. The results are shown below in Table 1.2.

2

1

erip ee	•	_	•	•	· ·	
volume of FA 3 added /cm ³	5.00	10.00	15.00	20.00	25.00	
volume of FA 2 used /cm ³	15.45	10.55	5.70	1.25	3.45	
(i) Explain why 5.00 cm ³ to 2		of FA 2 obta	ined decreas	e as V _{FA3} inc	reases from	
						17
(ii) Considering tin experiment	-		duce whether	the volume o	of FA 2 used	
Explain your						
						18
						19
(iii) Calculate the shown in Tat		entage unce	rtainty in the	volume of F.	A 2 used as	
		perce	entage uncer	tainty =		20
			-			

Table 1.2

3

4

5

experiment

2 Investigation of the kinetics of the reaction between iron(III) ions and iodide ions

In acidic solutions, iron(III) ions are reduced by iodide ions to form iron(II) ions. The iodide ions are oxidised to iodine.

$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(aq)$$

The rate of this reaction can be investigated by using starch indicator, which turns blue-black in the presence of iodine. Sodium thiosulfate is added to the reaction mixture to react with iodine as it is formed. The blue-black colour is seen when all the thiosulfate has reacted.

$$I_2(aq) + 2S_2O_3{}^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6{}^{2-}(aq)$$

You will perform a series of four experiments to investigate how the rate of reaction is affected by changing the concentration of the iodide ions.

For each experiment, you will note the volume of **FA 5** added, $V_{FA 5}$, the volume of water added, V_{H_20} , and the time taken, *t*, for the reaction mixture to turn blue-black.

In this series of experiments, the rate equation for the reaction can be simplified to rate = $k' [I^-]^m$, where **m** is the rate order with respect to I⁻ and k' is $k[Fe^{3+}]$.

The simplified rate equation can be further manipulated to derive the following relationship:

$$lg(\frac{3600}{\text{reaction time}}) = \boldsymbol{m} \times lg(V_{FA5}) + \text{constant}$$

FA 5 is 0.0500 mol dm⁻³ potassium iodide, KI. **FA 6** is 0.0500 mol dm⁻³ iron(III) chloride, FeC l_3 . **FA 7** is 0.0050 mol dm⁻³ sodium thiosulfate, Na₂S₂O₃. **FA 8** is starch indicator.

- (a) In the space provided on page 8, prepare a table in which to record for your experiment:
 - all values of $V_{FA 5}$ and V_{H_2O} to an appropriate level of precision
 - all values of t
 - all calculated values of $Ig(V_{FA 5})$ and Ig(rate) to three significant figures.

Experiment 1

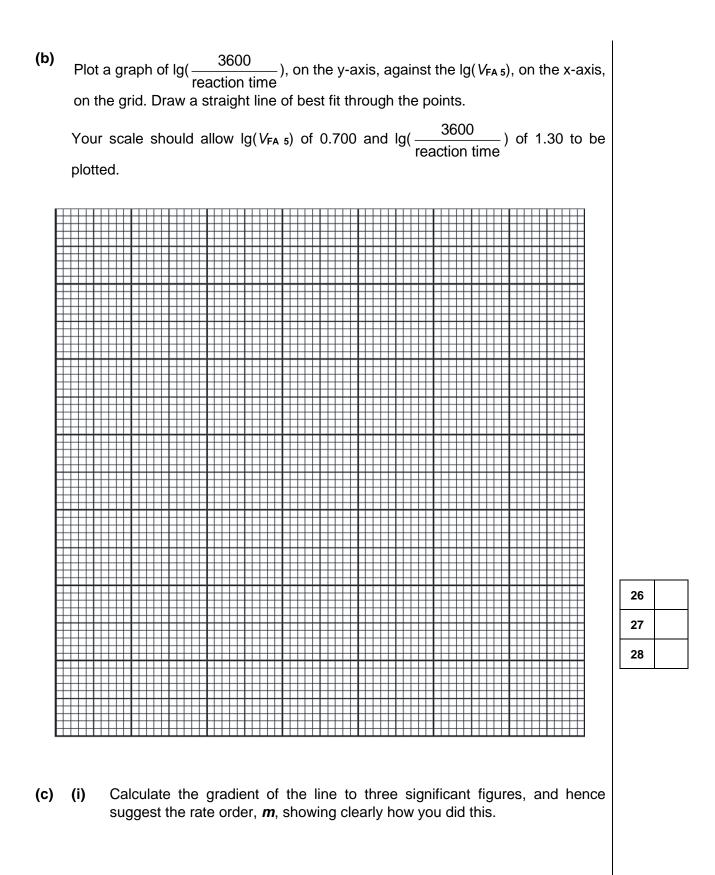
- 1. Use a 25.00 cm³ measuring cylinder to place 20.00 cm³ of **FA 5** in a 100 cm³ beaker.
- 2. Use appropriate measuring cylinders to add the following to the same beaker.
 - 20.0 cm³ of **FA 7**
 - 10.0 cm³ of **FA 8**
- 3. Use an appropriate measuring cylinder to measure 10.0 cm³ of **FA 6**.
- 4. Add this **FA 6** to the same 100 cm³ beaker and start timing immediately.
- 5. Stir the mixture and place the beaker on a white tile.
- 6. Stop timing as soon as the solution turns blue-black.
- 7. Record this reaction time to the nearest 0.1 second.
- 8. Wash the beaker and dry it with a paper towel.

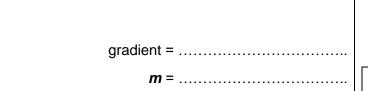
Experiment 2

- 1. Use the same 25.00 cm³ measuring cylinder to measure 10.00 cm³ of **FA 5** and make up the volume to 20.00 cm³ using deionised water.
- 2. Place this solution in a 100 cm³ beaker.
- 3. Use appropriate measuring cylinders to add the following to the same beaker.
 - 20.0 cm³ of **FA 7**
 - 10.0 cm³ of **FA 8**
- 4. Use an appropriate measuring cylinder to measure 10.0 cm^3 of **FA 6**.
- 5. Add this **FA 6** to the same 100 cm³ beaker and start timing immediately.
- 6. Stir the mixture and place the beaker on a white tile.
- 7. Stop timing as soon as the solution turns blue-black.
- 8. Record this reaction time to the nearest 0.1 second.
- 9. Wash the beaker and dry it with a paper towel.

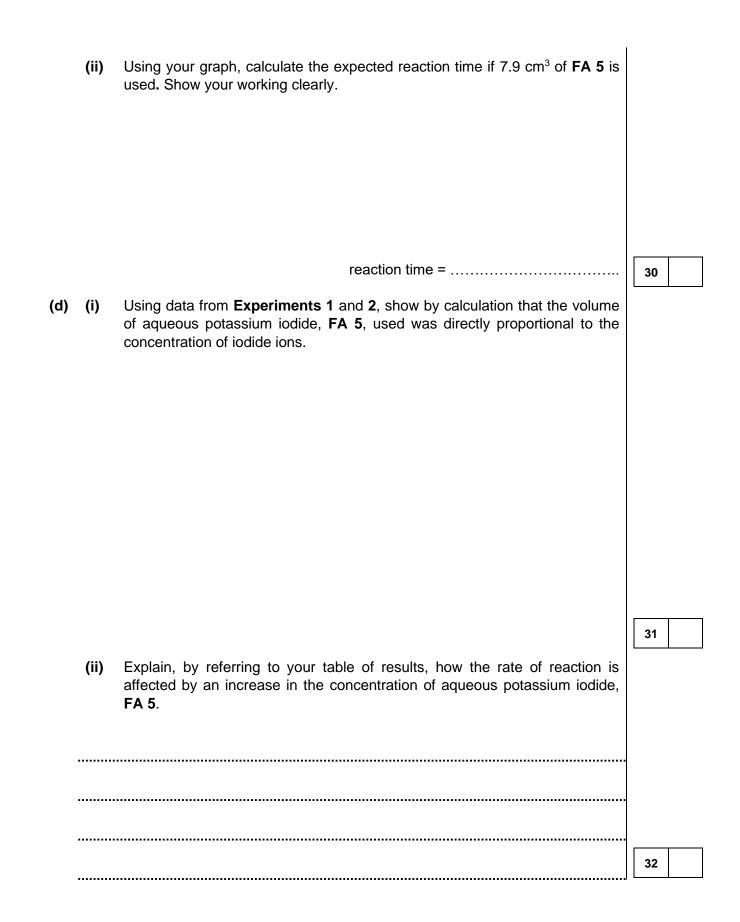
Experiments 3 and 4

Carry out two further experiments to investigate how the reaction time changes with different volumes of aqueous potassium iodide, **FA 5**.


The combined volume of **FA 5** and deionised water must always be 20.00 cm^3 . Do not use a volume of **FA 5** that is less than 6.00 cm^3 .


Results

The rate of the reaction is defined as shown.


Expt	V _{FA 5} / cm ³	$V_{\mathrm{H_2O}}$ /cm ³	Reaction time, t /s	lg(Vfa 5)	lg (rate)
1	20.00	0.00	15.1	1.30	2.38
2	10.00	10.00	56.5	1.00	1.80
3	15.00	5.00	26.9	1.18	2.13
4	6.00	14.00	144.5	0.778	1.40

rate = $\frac{3600}{\text{reaction time}}$

29

(e)		sulfate ions can reduce iron(III) ions and also react with acid to form sulfur, Ir dioxide and water.		
	(i)	Write an ionic equation, with state symbols, for the reaction between thiosulfate ions and hydrogen ions in aqueous solution.		
			33	
	(ii)	A student carried out the same investigation as in (a) but the solutions were mixed in a different order. The student kept the FA 5 and an appropriate volume of deionised water in the measuring cylinder and all the other reactants in the 100 cm ³ beaker. The student then transferred the solution from the measuring cylinder into the 100 cm ³ beaker and started timing.		
		State and explain whether the student's method is		
		 better than that in (a), as good as that in (a), or not as good as that in (a). 		
			34	
			[Tata	

3 Investigation of an inorganic compound

FA 9 is an aqueous solution of an inorganic compound, MY_2 , which contains a cation and an anion (Y⁻), both listed in Qualitative Analysis Notes.

FA 10 is a saturated solution of a sodium salt, NaY.

You will perform tests to:

- investigate the effect of reagents on FA 9
- identify the anion present in FA 9.
- (a) Carry out the following tests. Carefully record your observations in Table 3.1. The volumes given below are approximate and should be estimated rather than measured.

	Test	Observations
1	Place a test-tube containing 2 cm depth of FA 9 in an almost boiling water bath for a few minutes.	<u>Blue/ bluish-green</u> FA 9 turned green.
2	To a 2 cm depth of FA 9 in a test-tube, add gradually add 2 cm depth of FA 10 . Pour half of this mixture into another test-tube and place it in the almost boiling water bath for a few minutes for comparison.	(Blue/ bluish-green) FA 9 turned <u>green</u> upon adding FA 10 . The resultant solution turned <u>yellowish-green/ brighter green</u> after warming.
3	To a 1 cm depth of FA 9 in a boiling-tube, gradually add 3 cm depth of aqueous sodium hydroxide. Filter the resultant mixture and collect the filtrate. Keep the filtrate for Test 4.	Pale blue/ Blue-green/greenish-blue ppt_formed is insoluble in excess NaOH(aq). The residue is dark <u>blue</u> . The filtrate is a <u>colourless</u> solution.
4	To a 1 cm depth of filtrate in a test-tube, add 1 cm depth of nitric acid, followed by AgNO ₃ (aq). To a portion of the resultant mixture, add NH ₃ (aq).	White ppt formed with AgNO ₃ (aq) is soluble in aqueous ammonia to give a colourless solution.

Table 3.1

35

36

37

(b)	(i)	State the identity of the cation in FA 9 .		
	Cati	on	38	
	(ii)	Table 3.1 Test 4 confirms the identity of the anion in FA 9 . Explain why the filtrate from Test 3 was used instead of FA 9 .		
			39	
(c)	com	In solid MY_2 is dissolved in water, the cation could exist either as a blue soluble plex or a yellow soluble complex. The complexes are $[M(H_2O)_6]^{2+}$ and $[MY_4]^{n-}$, they can be converted from one form to the other.		
	Equa	ation 1 $[M(H_2O)_6]^{2+}(aq) + 4Y^{-}(aq) \longleftarrow [MY_4]^{n-}(aq) + 6H_2O(I)$		
	(i)	Consider your observations in Table 3.1 Test 2, identify the yellow complex and explain your answer.		
			40 41	
	(ii)	Considering the information provided and your answer in 3(b)(i) , explain the chemistry involved that account for the change(s) observed in Table 3.1 Test 1.		
			42	
			43	
			[To	tal: 9]

4 Planning

The reaction between an acid and a metal hydroxide is exothermic. It is possible to make use of this fact to determine the equivalence-point of a neutralisation reaction without the use of an indicator. This process is known as thermometric titration, and can be used to calculate the molar concentration of an acid solution.

Portions of acid are progressively added to the hydroxide solution until the equivalence-point is reached and passed. The temperature is monitored throughout the experiment.

The data obtained is plotted and two best-fit graph lines are drawn. One line is drawn using data before the equivalence-point and the second line using the remaining data. These lines are then extrapolated (extended) until they meet.

(a) (i) Aqueous hydrochloric acid is neutralised by the addition of aqueous barium hydroxide. The enthalpy change of neutralisation has the symbol ΔH_{neut} .

Write an ionic equation for the reaction for which the enthalpy change is ΔH_{neut} . You should include state symbols in your equation.

44

(ii) A student carried out a thermometric titration by adding 1.50 mol dm⁻³ hydrochloric acid to 1.00 mol dm⁻³ barium hydroxide, Ba(OH)₂.

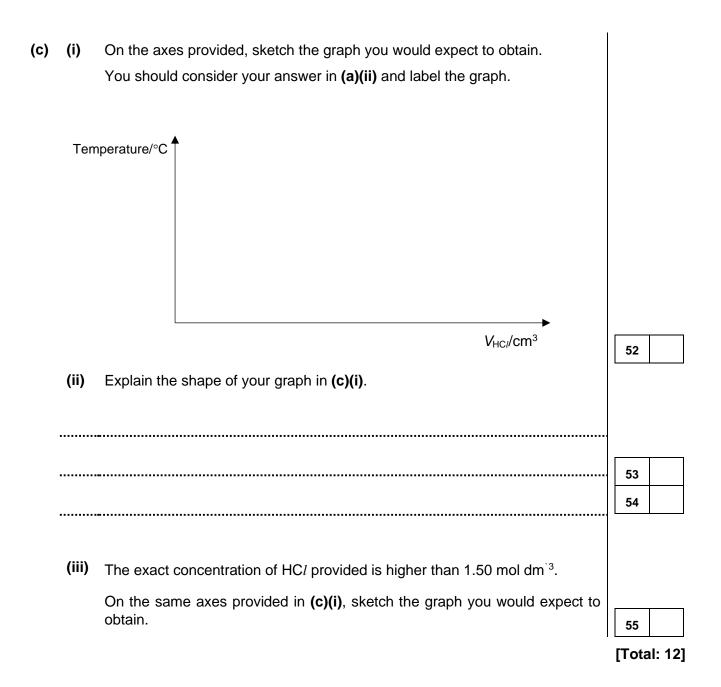
Given that the magnitude of ΔH_{neut} is about 57 kJ mol⁻¹, show that 25.0 cm³ of barium hydroxide used will give a temperature change of 11.7 °C.

You should assume that 4.18 J of heat energy changes the temperature of 1.0 cm³ of solution by 1.0 °C.

45	
46	

(b) Using the information provided, you are required to write a plan for a thermometric titration in which hydrochloric acid is added to aqueous barium hydroxide.

You may assume that you are provided with:


- 1.00 mol dm⁻³ Ba(OH)₂(aq),
- hydrochloric acid of approximate concentration 1.50 mol dm⁻³,
- the equipment normally found in a school or college laboratory.

Your plan should include:

- brief, but specific, details of the apparatus you would use, bearing in mind the levels of precision they offer;
- an outline of how accurate results would be obtained;
- how you would recognise that the equivalence-point had been passed.

River	Valley High School	Pg 15 of 20	JC 2 H2 Chemistry 9729

			47 48
			49
			51
River	Valley High School	Pg 16 of 20	JC 2 H2 Chemistry 9729

2022 H2 Chemistry Preliminary Examination Paper 4

Suggested Answers

- 1 Investigation of the oxidising ability of substances
 - (a) (i) Table 1.1

	Test	Observations
1	To a 1 cm depth of FA 1 in a test-tube, add 1 cm depth of FA 4 , then gradually add FA 2 till 1 drop in excess.	Purple FA 2 <u>decolourised</u> . <u>Pale green/colourless</u> FA 1 turned pale <u>yellow</u> and finally <u>orange/ pink</u> .
2	To a 1 cm depth of FA 3 in a test-tube, add 1 cm depth of FA 2 .	PurpleKMnO₄ decolourised.A brown solution/ppt formed.Effervescence/ bubbles of gas evolved rapidly.Colourless, odourless gas evolved relight a glowing splint.The gas is oxygen.
3	To a 1 cm depth of FA 1 in a test-tube, add about 1 cm depth of FA 4 , followed by 1 cm depth of FA 3 . To a portion of resulting solution, add aqueous sodium hydroxide till excess.	Pale green/colourless FA 1 turned <u>yellow</u> . Red-brown ppt formed is insoluble in excess NaOH(aq). Effervescence/ bubbles of gas evolved (rapidly).

(ii) Purple MnO₄⁻ oxidised (pale green) iron(II) to (yellow) iron(III) ions.

Itself is reduced to colourless Mn²⁺. (reject pale Mn2+)

(iii) $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$

 $Fe^{3+}(aq) + 3OH^{-}(aq) \rightarrow Fe(OH)_{3}(s)$

(iv) Compound A / FA 3

(b) (i) Titration results

Titration number	1	2
Final burette reading /cm ³	24.20	24.25
Initial burette reading /cm ³	0.00	1.00

(ii) average volume of FA 2 (added) /cm³ 24.20 24.25
(ii) average volume of FA 2 used =
$$\frac{24.20 + 24.25}{2}$$

= 24.23 cm³
(c) (i) [KMnO₄] = $\frac{0.750}{39.1 + 54.9 + (4 \times 16.0)} \times \frac{1000}{250} = 0.01899 \text{ mol dm}^{-3}$

amount of MnO₄⁻ =
$$0.01899 \times \frac{V_{FA2}}{1000}$$
 mol

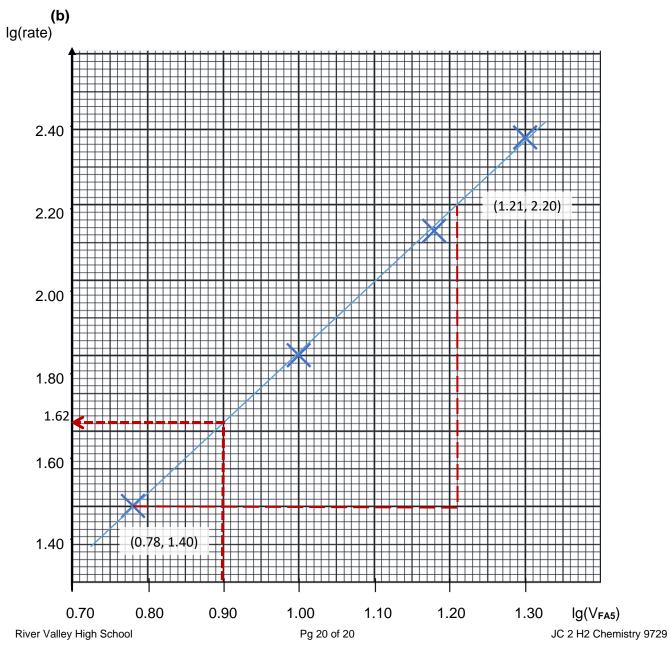
(ii) amount of Fe²⁺ in 25.0 cm³ = (c)(i)
$$\times \frac{5}{1}$$
 mol

$$[Fe^{2+}] = (C)(i) \times \frac{5}{1} \times \frac{1000}{25.0} \text{ mol } dm^{-3}$$
$$= 0.0920 \text{ mol } dm^{-3}$$

(d) Identify the cause: Chloride is oxidised by/ reacts with MnO₄-

And any one of the following modification : M16

- The titration needs to be carried out in the fumehood. Chloride is oxidised by MnO₄⁻ to give toxic chlorine gas.
- Iron(II) chloride needs to be diluted prior to titration. The titre will exceed 50.00 cm³ if iron(II) chloride is not diluted.
- Prepare higher concentration of MnO₄⁻ for used. The titre will exceed 50.00 cm³ if **FA 2** with original concentration is used.
- Using a smaller pipette/ burette, measure a smaller volume of iron(II) chloride for titration, so that the titre will not exceed 50.00 cm³.


 $(5FeCl_2(aq) + 3MnO_4^{-}(aq) + 24H^{+}(aq) \rightarrow 5Fe^{3+}(aq) + 5Cl_2(g) + 3Mn^{2+}(aq) + 12H_2O(I))$

- (e) (i) As V_{FA3} increases, more compound A/FA 3 was added to oxidise Fe^{2+} in FA 1. This leaves less Fe^{2+} to be oxidised by MnO_4^- in FA 2.
 - (ii) Not an anomaly.
 - (Compound A in FA 3 is both an oxidising and reducing agent.)
 - In experiment 5, compound **A** is in <u>excess</u>/ Fe²⁺ is <u>limiting</u>.
 - The (excess) compound **A** is <u>oxidised by MnO₄-</u>.

(iii) percentage uncertainty =
$$\frac{2 \times 0.05}{1.25} \times 100 = 8.0$$
 %

2 Results

Expt	V _{FA 5} / cm ³	$V_{\rm H_2O}$ /cm ³	Reaction time, t /s	lg(V _{FA 5})	lg (rate)
1	20.00	0.00	15.1	1.30	2.38
2	10.00	10.00	56.5	1.00	1.80
3	15.00	5.00	26.9	1.18	2.13
4	6.00	14.00	144.5	0.778	1.40

2022 Preliminary Examination Paper 4

(c) (i) Gradient of line =
$$\frac{1.40 - 2.20}{0.78 - 1.21}$$

= 1.86 (3 s.f.)
m = 2 (nearest integer)
(ii) From graph, when lg(7.9) = 0.898,
lg($\frac{3600}{\text{reaction time}}$) = 1.62

reaction time =
$$\frac{3600}{10^{1.62}}$$
 = 86.4 s

(d) (i) Experiment 1: [KI] =
$$0.0500 \times \frac{20.00}{60.00} = 0.016667 \text{ mol dm}^{-3}$$

Experiment 2: [KI] =
$$0.0500 \times \frac{10.00}{60.00} = 0.008333 \text{ mol dm}^{-3}$$

$$\frac{20.00}{10.00} = \frac{0.016667}{0.008333} = 2$$

(ii) Using results of experiment 1 and 2,

$$\frac{\text{rate in experiment 1}}{\text{rate in experiment 2}} = \frac{\frac{3600}{t_1}}{\frac{3600}{t_2}} = \frac{56.5}{15.1} = 3.74 \approx 4$$

When [KI] doubled, rate of experiment 2 is 4 times that of experiment 1.

(e) (i)
$$S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow S(s) + SO_2(aq/g) + H_2O(l)$$

(ii) Not as good as that in (a). With any of the following reasons:

- There is <u>less thiosulfate left</u> in the reaction mixture <u>to react with</u> <u>iodine formed/ so shorter time recorded</u>. (or words to the effect)
- More time is needed to transfer the content in measuring cylinder/ 20.00 cm³ of solution into the beaker for mixing

Or

As good as that in (a). With any of the following reasons:

- $[S_2O_3^{2-}]$ is very small, so reaction with iron(III) ions/H⁺/acid will be very slow and negligible.
- [S₂O₃²⁻] decrease by similar extent for each experiment, the relative rate of experiments is not affected.

3 (a)

	Test	Observations	
1	Place a test-tube containing 2 cm depth of FA 9 in an almost boiling water bath for a few minutes.	Blue/ bluish-green FA 9 turned green.	
2	To a 2 cm depth of FA 9 in a test-tube, add gradually add 2 cm depth of FA 10 . Pour half of this mixture into another test- tube and place it in the almost boiling water bath for a few minutes for comparison	(Blue/ bluish-green) FA 9 turned <u>green</u> upon adding FA 10 . The resultant solution turned <u>yellowish-green/ brighter green</u> after warming.	
3	To a 1 cm depth of FA 9 in a boiling-tube, gradually add 3 cm depth of aqueous sodium hydroxide. Filter the resultant mixture and collect the filtrate. Keep the filtrate for Test 4.	Pale blue/ Blue-green/greenish-blue ppt_formed is <u>insoluble in excess</u> NaOH(aq). The residue is dark <u>blue</u> . The filtrate is a <u>colourless</u> solution.	
4	To a 1 cm depth of filtrate in a test-tube, add 1 cm depth of nitric acid, followed by AgNO ₃ (aq). To a portion of the resultant mixture, add NH ₃ (aq).	White ppt formed with AgNO ₃ (aq) is soluble in aqueous ammonia to give a colourless solution.	

- (b) (i) Cation Copper(II) ion/Cu²⁺
 - (ii) Either one of the following:
 - Colour of the white ppt cannot be seen clearly in dark-coloured **FA 9** solution.
 - Addition of NH₃(aq) could precipitate/form dark blue complex with Cu²⁺ if present.

(c) (i) $[CuCl_4]^{2-}$

In Test 2, when **FA 10**/ saturated NaY/Y⁻ is added to **FA 9**, a yellow complex is formed.

The solution is green due to presence of both blue and yellow complexes/ The solution turned green due to more yellow complex formed.

(ii) The conversion of blue to yellow complex is an <u>endothermic</u> process.

Upon warming, the <u>formation of yellow complex is favoured</u>/ <u>POE of</u> <u>Equation 1 shift to the right</u> to <u>absorb</u> some of the added <u>heat</u>.

2022 Preliminary Examination Paper 4

4 (a) (i) $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$

(ii)

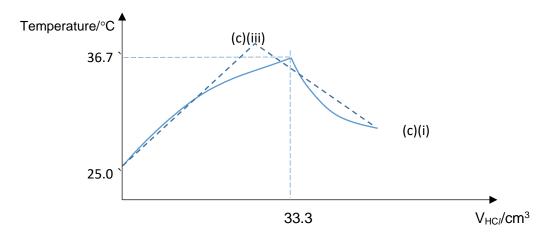
Amount of OH⁻ in 25.0 cm³ = $2 \times 1.00 \times \frac{25.00}{1000}$

= 0.0500 mol

Volume of HC*l* required for complete neutralisation = $\frac{0.0500}{1.50} \times 1000$ = 33.33 cm³

Heat evolved = 57 000 \times 0.0500 = (25.0 + 33.33) \times 4.18 \times ΔT ΔT = 11.7 °C

(b) Procedure


- 1. Fill a 50.00 cm³ burette to 0.00 cm³ mark with 1.50 mol dm⁻³ HC*l*(aq).
- 2. Place a Styrofoam cup in a 250 cm³ beaker to prevent it from toppling.
- 3. Pipette 25.0 cm³ Ba(OH)₂ into the Styrofoam cup.
- 4. Using a thermometer, measure and record the initial temperature of the Ba(OH)₂, **T**_{initial}.
- 5. Place a lid on the Styrofoam cup to minimise heat loss to the surroundings.
- 6. Run 5.00 cm³ of HC*l*(aq) from the burette into the cup though an opening in the lid, stir the solution carefully with the thermometer and record the highest temperature reached, T.
- 7. Immediately run a further 5.00 cm³ of HCl(aq) from the burette into the cup, stir and record the highest temperature reached, T.
- 8. Continue the addition of HC*l*(aq), in 5.00 cm³ portions, until 50.00 cm³ have been run from the burette.

Recognition of Equivalence Point

After equivalence point, highest temperature reached will be lower for each portion of HCl(aq) added.

- M47 Appropriate apparatus for volumes measurement
- M48 Details for measurement of volumes using burette
- M49 Measurement of temperatures
- M50 Ensuring accuracy
- M51 Recognition of equivalence point

(c) (i)

(ii) M53 – Explain T rise due to more reaction occurs.

Initially as V_{HCl} increases, larger amount of Ba(OH)₂ is neutralised to produce more heat. Therefore, T increases.

M54 – Explain T fall

(After equivalence point, Ba(OH)₂ is completely neutralised.)

Either one of the following:

- Same amount of heat is distributed over an increasingly larger total volume of solution, causing T to fall.
- Excess HCl at lower temperature/ room temperature cools down the mixture.