Anderson Serangoon Junior College 2021 H2 Physics Prelim Mark Scheme

Paper 3 (80 marks)

	-	
1a	Taking right as positive, $s = ut$ $4.40 = 5.40 \times t$ t = 0.8148 s	C1
	Taking downwards as positive, $s = ut + \frac{1}{2}at^2$	
	$h = \frac{1}{2} \times 9.81 \times 0.8148^2$	
	= 3.2565 ≈ 3.26 m	A1
1bi	air resistance	B1
	velocity parcel	
	▼ weight	
	downward pointing arrow labelled weight	
	upward pointing arrow labelled air resistance	
	no credit if magnitude of air resistance exceeds that of weight	
1bii	Air resistance increases (as velocity increases)	B1
	Weight (or mass) is constant, so resultant force decreases	B1
	Hence acceleration decreases	B1
1biii	At terminal velocity, air resistance equals weight	B1
	With larger mass, weight is larger. (Greater air resistance), so greater terminal velocity	B1
1biv	gravitational potential energy to kinetic energy and thermal/internal energy	B1
1.		
1biv 2.	gravitational potential energy to thermal/internal energy	B1

	(So, weight of book and contact force by table on book are not a pair of action-reaction	
	lorces.)	
	Credit 1 mark only if student did not mention type of force.	
2aii	Since book is resting on table, there is no net force on the book, so the two forces are equal and opposite.	B1
2b	Suppose two colliding bodies A and B (where A and B is an isolated system), By Newton's third law, force A exert on B, F_{AB} is equal in magnitude and opposite in direction to force B exert on A, F_{BA} . $F_{AB} = -F_{BA}$	B1
	Duration of collision is the same for A and B.	B1
	By Newton's second law, net force on A, F_{BA} is equal to rate of change of momentum of A. Net force on B, F_{AB} is equal to rate of change of momentum of B. Hence, total (rate of) change of momentum is 0.	B1
2c	By Conservation of Linear Momentum Sum of initial momentum = Sum of final momentum $m_t u_t + m_2 u_2 = m_t v_t + m_2 v_2$ (28)(88) + (17)(53) = (28)(67)+ (17)v_2 $v_t = 97.0 \text{ m scl}$	
	$v_2 = 87.6 \text{ m/s}^2$	C1
	Loss in kinetic energy = total initial kinetic energy – total final kinetic energy = $\frac{1}{2}(28)(88)^2 + \frac{1}{2}(17)(53)^2 - (\frac{1}{2}(28)(67)^2 + \frac{1}{2}(17)(87.6)^2)$ = 4200 J	C1 A1
2d	force 0 time	
	Correct shape – smooth curves for both lines. Line for steel objects has larger peak and smaller duration than line for rubber, with approximately equal area under the two lines.	B1 B1

3a	base units: kg m s ⁻² × m = kg m ² s ⁻²	A1
3bi	distance of COG from P (= GP)	C1
	= 17 cos 45° – 4.0 = 8.02 cm (or using Pythagoras Theorem: $\sqrt{144.5} - 4.0 = 8.02$)	
	moment = $0.15 \times 8.02 \times 10^{-2}$	A1

	$= 1.2 \times 10^{-2} \text{ N m}$	
3bii	(line of action of) weight acts through pivot/P or distance between (line of action of) weight and pivot/P is zero	M1
	(so) weight does not have a moment about pivot/P	A1
3ci	upthrust = 6.20 – 5.60 = 0.60 N	C1 A1
3cii	$\Delta p = \Delta F / A$ = 0.60 / 1.2 × 10 ⁻³ = 500 Pa	C1 A1
3ciii	upthrust increases when density increases and since upthrust + force on spring = weight of cylinder	M1
	so extension decreases	A1

4a	The heat input is used to <u>break intermolecular bonds between water molecules</u> / <u>increasing the potential energy of molecules</u> , and <u>do work against the atmosphere</u> as it expands when it changes phase. The <u>average kinetic energy of molecules remains unchanged</u> , and hence <u>no change in</u> <u>temperature</u> .	B1 B1 B1
4b	As light passes two slits instead of one, the <u>total power that passes through the slits is</u> <u>doubled</u> . (Intensity of central bright fringe increases by four times due to constructive interference as waves from both slits arrive in phase.) At dark fringes, <u>destructive interference</u> as waves from both slits arrive with a phase difference of 180°, so the <u>intensity of dark fringes becomes zero</u> . Th <u>e total power / average intensity delivered onto the screen is hence doubled</u> , so that energy is conserved.	B1 B1 B1

5a	weight provides the centripetal force (or acceleration of free fall is centripetal acceleration) $9.81 = 0.130 \times \omega^2$ $\omega = 8.687 = 8.7 \text{ rad s}^{-1}$	B1 M1 A0
5b	force in cord – weight = centripetal force $T - W = mr\omega^2$	
	force constant k = 5.0/0.018	C1
	$(L - 0.013) \times 5.0/0.018 - 5.0 = 5.0/9.81 \times L \times 8.7^{2}$ L = 0.172 m = 17.2 cm	C1 A1

6ai	When light intensity is maximum, resistance of LDR = 1200 Ω	C1

	1	
	Total resistance = $\frac{1}{\left(\frac{1}{1200}\right) + \left(\frac{1}{600}\right)} = 400 \Omega$	A1
6aii	For minimum p.d. across R_2 , $R_1 = 400 \Omega$ total parallel resistance ($R_2 + LDR$) is lower than R_2 (minimum) p.d. across R_2 in Fig. 6.1 is lower than that in Fig. 6.2	M1 M1 A1
6bi	At balance length, no current in E ₁ or <i>r</i> , so E ₁ = <i>V</i> _{XY} (Balance length XY = 100.0 - 37.5 = 62.5 cm) (Using potential divider principle,) $V_{xz} = \left(\frac{R_{xz}}{R_{xz} + R_1}\right) E_{=} \left(\frac{10.0}{10.0 + 15.0}\right)$ (2.0) = 0.80 V $V_{xy} = \frac{L_{xy}}{L_{xz}}$ (V_{xz}) = $\left(\frac{62.5}{100.0}\right)$ (0.80) = 0.50 V Therefore $E_1 = V_{xy} = 0.50$ V	M1 M1 M1 A0
6bii	$V_{xy} = V_{R_2}$ $\frac{10.0}{100.0} \times 2.0 = \frac{R_2}{R_2 + r} E_1$ $= \frac{5.0}{5.0 + r} \times 0.50$ $0.20(5.0 + r) = 2.5$ $r = \frac{2.5}{0.20} - 5.0 = 12.5 - 5.0 = 7.5 \Omega$	C1 C1 A1
7ai	$V_{r.m.s.} = \frac{9.0}{\sqrt{2}} = 6.4 \text{ V}$	A1
7aii	$T = \frac{2\pi}{\omega} = \frac{2\pi}{20}$ $= 0.31s$	A1
7b	the r.m.s. voltages are different, so no same power dissipated. (Explanation: the r.m.s. voltage for Fig 7.1 is $\frac{V_{\circ}}{\sqrt{2}}$ but for Fig. 7.2 it is V_{\circ})	B1
7ci	output power, $P = V_{r.m.s.} \times I_{r.m.s.}$ = 120 × 0.64 = 76.8 W	C1

8ai	By <u>Fleming's Left Hand Rule</u> , the force acting on the wire is <u>out of the plane</u> of paper. By <u>Newton's Third Law</u> , the force on the magnet is <u>into the plane</u> of paper.	B1 B1
8aii	Force <u>decreases</u> by <u>half / to half of its original value.</u> OR from a <u>maximum value at $\theta = 0^{\circ}$ to a half its maximum value at $\theta = 60^{\circ}$.</u>	M1 A1
9hi	Magnotic force - Ray	
oDi	$= 0.45 (1.60 \times 10^{-19})(5.0)$ = 3.6 × 10 ⁻¹⁹ N	M1 A0
8bii	By Fleming's Right Hand Rule, there is <u>rate of cutting of flux</u> which <u>induced current to</u> <u>flow from B to A</u> through the wire.	M1
	OR	
	By Fleming's Left Hand Rule, <u>magnetic force</u> acting on electron <u>is directed towards B</u> . Electrons accumulate at end B leaving <u>excess positive charges at end A</u> .	
	End <u>A</u> has a higher potential.	A1
8biii1	Potential difference across the two ends of wire <u>produces an electric field</u> . Electrons in the wire experience an <u>electric force of equal magnitude but directed</u> <u>oppositely to the magnetic force</u> . Hence, equilibrium is achieved.	B1 B1
8biii2	Electron in equilibrium, $F_B = Bqv = qE$, so $E = F_B / q$ $E = 3.6 \times 10^{-19} / 1.60 \times 10^{-19}$ $= 2.25 = 2.3 \text{ N C}^{-1}$	C1 A1
8biii3	$E = \Delta V/d$ don't accept using e.m.f. = BLv	
•	$\Delta V = 0.45 V$	A1
8ci	The frame experiences <u>an increase in flux linkage</u> . By Faraday's law, an <u>emf is induced</u> across XY.	M1
	By Lenz's Law, a current is induced in the frame and flows clockwise $(X \rightarrow Y \rightarrow Z \rightarrow W)$, resulting in a magnetic force on XY to the left / against its motion.	M1
	To maintain constant speed, there should be <u>no net force</u> . Hence, an external force needs to be applied to the <u>right</u> .	A1
	OR	

	The frame experiences <u>an increase in flux linkage</u> . By Faraday's law, an <u>emf is induced</u> across XY.	M1
	A <u>current is induced</u> in the frame, <u>if no external force</u> is applied, <u>kinetic energy of the</u> <u>frame will be transformed to thermal energy</u>	M1
	To maintain constant speed, work has to be done by an external force so that the kinetic energy is maintained.	A1
8cii	Induced emf = BLv = (1.0)(0.020)(0.010) = 2.0 × 10 ⁻⁴ V	C1
	$F = B/L$ (2.0×10^{-4}) $= (1.0) \left[\frac{8.0 \times 10^{-4}}{10^{-4}} \right] (0.020)$ $= 5.0 \times 10^{-3} \text{ N}$	C1 A1
	OR	
	Induced emf = BLv = (1.0)(0.020)(0.010) = 2.0 × 10 ⁻⁴ V	C1
	Heat dissipated per unit time = $\frac{V^2}{R}$ $\frac{(2.0 \times 10^{-4})^2}{8.0 \times 10^{-4}}$	
	$= 5.0 \times 10^{-5} \text{ J}$ = 5.0 × 10^{-5} J	C1
	$F = \frac{V}{V} = \frac{0.0 \times 10^{-2}}{1.0 \times 10^{-2}}$ = 5.0 × 10 ⁻³ N	A1
8ciii	<i>∓</i> _ _ B	
	0 1 2 3 4 5 6 7 8 9 10	t / s
	B1 – Correct shape for B (magnitude of F around 4.0 times higher than A) B1 – Correct shape for C (magnitude of F same as A)	

-		
	<u>Detailed explanation</u> From $t = 1$ s to $t = 3$ s, only one side of the frame (XY) experiences a force to the left as the induced current in XY is perpendicular to the magnetic field.	
	From $t = 3$ s to $t = 4$ s, the entire frame is inside region A. The frame experiences no change in magnetic flux linkage, so no emf is induced. Hence no induced current and magnetic force experienced.	
	From $t = 4$ s to $t = 6$ s, there is induced emf of equal magnitude but opposite polarity at both WZ and XY. Hence the magnitude of induced emf doubles to 4.0×10^{-4} V. Both WZ and XY experience a force of twice the magnitude to the left. Therefore the magnitude of <i>F</i> increases by 4 times (2.0×10^{-2} N).	
	From $t = 6$ s to $t = 7$ s, the entire frame is inside region B. The frame experiences no change in magnetic flux linkage, so no emf is induced.	
	From <i>t</i> = 7 s to <i>t</i> = 9 s, only one side of the frame (WZ) experiences a force to the left as the induced current in XY is perpendicular to the magnetic field. The magnitude of $\frac{\Delta \Phi}{\Delta \Phi} = \frac{B\Delta A}{B} = \frac{Bl \Delta s}{Blv}$	
	emf induced = t t t , which is the same magnitude of emf induced from $t = 1$ s to $t = 3$ s, since v and magnitude of B are unchanged.	
9ai	 nucleus has positive charge, so repels alpha particle. alpha particle gains momentum at right angles to the initial momentum. 	B1 B1
	 greater deflection of final path (path cannot be parallel to original dir) final path has greater distance of closest approach 	B1 B1
	path for alpha particle with less KE	
	alpha particle gold nucleus	
9aii	 β-particles have a range of energies β-particles deviated by (orbital) electrons / attracted by nucleus β-particle has (very) small mass (any two sensible suggestions, 1 each max 2) 	B1 B1
9bi	 1. as alpha particle approaches nucleus, KE is converted to EPE, at this distance of closest approach, alpha particle must possess a certain amount of EPE bence alpha particle must possess minimum energy to be this close to Li 	B1 B1
	2. $E = 1/4\pi\epsilon_0 Q_1 Q_2 / r$ = 9×10 ⁹ × 3 2×10 ⁻¹⁹ × 4 8×10 ⁻¹⁹ / 4 2×10 ⁻¹⁵	M1 M1
	$= 3.3 \times 10^{-13} \text{ J}$	AO
9bii	1. mass change = $10.0011 + 1.0087 - 7.0144 - 4.0015 = -6.1 \times 10^{-3} u$	M1

	mass loss = 6.1×10 ⁻³ × 1.66×10 ⁻²⁷ = 1.01×10 ⁻²⁹ kg	M1
	2. $E = mc^2$	
	$= 1.0 \times 10^{-29} \times 9 \times 10^{16} = 9.0 \times 10^{-13} \text{ J}$	C1
	Energy of neutron = $9.0 \times 10^{-13} + 3.3 \times 10^{-13}$	C1
	$= 1.2 \times 10^{-12} \text{ J}$	A1
9ci	Refer to summary notes.	B1
9cii		
	U labelled near right-hand end of line	B1
	Ba and Kr in approximate relative positions	B1
9ciii	The binding energy of a particular nucleus = $A \times E_{B}$	B1
	The process is possible because the binding energy of U < the combined binding energy of (Ba + Kr)	B1