

Section A: Pure Mathematics

	Cheese/kg	Chocolate/kg	Candy/kg
Price/SGD	4	6	6
Price/SGD	8	10	4
Price/SGD	8	5	7
Let x, y, z be t England and R 4x + 8y + 8z	the number of cussia respecti = 84	three kg packs b vely.	ought from I

y = f(x) $\downarrow I: \text{ scaling parallel to } x \text{-axis by a scale factor of } \frac{1}{2}$ y = f(2x) $\downarrow II: \text{ translation of } \frac{1}{2} \text{ units in the negative } x \text{-direction}$ $y = f\left[2\left(x + \frac{1}{2}\right)\right]$ $\downarrow III: \text{ translation of } 3 \text{ units in the negative } y \text{-direction}$ y = f(2x+1) - 3

3			
	Solution		
(i) $ a = \left \frac{1+i}{1-i}\right = \frac{ 1+i }{ 1-i } = \frac{\sqrt{2}}{\sqrt{2}} = 1 b = \left \frac{\sqrt{2}}{1-i}\right = \frac{\sqrt{2}}{ 1-i } = \frac{\sqrt{2}}{\sqrt{2}} = 1$			
	$\arg(a) = \arg\left(\frac{1+i}{1-i}\right)$		
	$= \arg(1+i) - \arg(1-i)$		
	$=\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)$		
	$=\frac{\pi}{2}$		
	$\arg(b) = \arg\left(\frac{\sqrt{2}}{1-i}\right)$		
	$= \arg(\sqrt{2}) - \arg(1-i)$		
	$=0-\left(-\frac{\pi}{4}\right)$		
	$=\frac{\pi}{4}$		

(a) $|z-i| = 2 \Rightarrow |z-(0+i)| = 2$ (iii) Locus is a circle, centre (0, 1) and radius 2 **(b)** $\arg(z-b) = \frac{\pi}{2} \Longrightarrow \arg\left(z - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right) = \frac{\pi}{2}$ Locus is a half-line from the point $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ (excluding the angle itself) making an angle of $\frac{\pi}{2}$ to the positive Re-axis direction. Im 2 > Re0 Equation of circle: $x^2 + (y-1)^2 = 2^2$ When $x = \frac{\sqrt{2}}{2}$, $\left(\frac{\sqrt{2}}{2}\right)^2 + \left(y-1\right)^2 = 2^2$ $\frac{1}{2} + (y-1)^2 = 4$ $\left(y-1\right)^2 = \frac{7}{2}$ $y - 1 = \pm \sqrt{\frac{7}{2}}$ $y = 1 + \sqrt{\frac{7}{2}}$ or $1 - \sqrt{\frac{7}{2}}$ (rej. \because y is positive) $\therefore z = \frac{\sqrt{2}}{2} + \left(1 + \sqrt{\frac{7}{2}}\right)i$ <u>Alternative for finding v</u> From diagram, using Pythagoras' theorem, $y = 1 + \sqrt{2^2 - \left(\frac{\sqrt{2}}{2}\right)^2} = 1 + \sqrt{\frac{7}{2}}$

Page 8 of 25

 $\ln |\ln 10 - \ln P| = -0.4t + C$ $\ln 10 - \ln P = \pm e^{-0.4t + C}$ $\ln 10 - \ln P = Ae^{-0.4t}, \text{ where } A = \pm e^{C}$ $\ln P = \ln 10 - Ae^{-0.4t}$ $P = 10e^{-Ae^{-0.4t}}$

Section B: Statistics

Solu	tion
(i)	Simple random sampling method.
	Possible answers for disadvantages:
	not representative of the gender make-up of the class.
(ii)	Method O:
	P(3 females and 2 males are selected)
	= P(female,female,male,male) $\times \frac{5!}{3!2!}$
	$=\frac{15}{25} \times \frac{14}{24} \times \frac{13}{23} \times \frac{10}{22} \times \frac{9}{21} \times \frac{5!}{3!2!}$
	195
	$=\frac{1}{506}$
	$\approx 0.385(3 \text{ s.f})$
	Method @:
	$\mathbf{n}(S) = {}^{25}\mathbf{C}_5$
	To select 3 females and 2 males
	Stage 1: Select 3 females out of 15, no, of ways $= {}^{15}C_3$
	Stage 2: Select 2 males out of 10, no. of ways $= {}^{10}C_2$
	Total number of ways = ${}^{15}C_3 \times {}^{10}C_2$
	P(3 females and 2 males are selected)
	$=\frac{{}^{15}\mathrm{C}_{3}^{10}\mathrm{C}_{2}}{{}^{25}\mathrm{C}_{5}}$
	_ 195
	506
	$\approx 0.385(3 \text{ s.f})$

(iii) Method **①**: P(Amy and Bertrand are selected)= P(Amy,Bertrand,any student,any student,any student) $\times \frac{5!}{3!}$ $=\frac{1}{25} \times \frac{1}{24} \times \frac{23}{23} \times \frac{22}{22} \times \frac{21}{21} \times \frac{5!}{3!}$ $=\frac{1}{30}$ $\approx 0.0333(3 \text{ s.f})$ Method @: To select Amy, Bertrand and 3 other students Stage 1: Select Amy =1 Stage 2: Select Bertrand =1Stage 3: Select any 3 students $= {}^{23}C_3$ Total number of ways = ${}^{23}C_3$ P(Amy and Bertrand are selected) $=\frac{{}^{23}C_3}{{}^{25}C_5}$ $=\frac{1}{30}$ $\approx 0.0333(3 \text{ s.f})$

Method @:
P(Amy and Bertrand are selected 3 females and 2 males are selected)
$P(\text{Amy and Bertrand are selected} \cap 3 \text{ females and 2 males are selected})$
P(3 females and 2 males are selected)
$1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1$
$\frac{1}{2^{5}C_{5}}$
= <u>195</u>
506
39
$=\frac{2530}{105}$
<u>195</u> <u>506</u>
1
$=\frac{1}{25}$ or 0.04
25
<u>Note:</u> $1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1$ is select Amy, Select Bertrand, Select 2 females out of 14 and select 1 male out of 9
<u>Note:</u> $1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1$ is select Amy, Select Bertrand, Select 2 females out of 14 and select 1 male out of 9 Method ③: Reduced sample space
<u>Note:</u> $1 \times 1 \times {}^{14}C_2 \times {}^9C_1$ is select Amy, Select Bertrand, Select 2 females out of 14 and select 1 male out of 9 <u>Method ③:</u> Reduced sample space $n(S') = {}^{15}C_3 \times {}^{10}C_2 = 20475$
<u>Note:</u> $1 \times 1 \times {}^{14}C_2 \times {}^9C_1$ is select Amy, Select Bertrand, Select 2 females out of 14 and select 1 male out of 9 <u>Method ③:</u> Reduced sample space $n(S') = {}^{15}C_3 \times {}^{10}C_2 = 20475$ Number of ways Amy, Bertrand, 2 females and 1 male are selected
<u>Note:</u> $1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1$ is select Amy, Select Bertrand, Select 2 females out of 14 and select 1 male out of 9 <u>Method ③: Reduced sample space</u> $n(S') = {}^{15}C_3 \times {}^{10}C_2 = 20475$ Number of ways Amy, Bertrand, 2 females and 1 male are selected $= 1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1 = 819$
Note: $1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1$ is select Amy, Select Bertrand, Select 2 females out of 14 and select 1 male out of 9 Method ③: Reduced sample space $n(S') = {}^{15}C_3 \times {}^{10}C_2 = 20475$ Number of ways Amy, Bertrand, 2 females and 1 male are selected $= 1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1 = 819$ P(Amy and Bertrand are selected 3 females and 2 males are selected)
<u>Note:</u> $1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1$ is select Amy, Select Bertrand, Select 2 females out of 14 and select 1 male out of 9 <u>Method ③:</u> Reduced sample space $n(S') = {}^{15}C_3 \times {}^{10}C_2 = 20475$ Number of ways Amy, Bertrand, 2 females and 1 male are selected $=1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1 = 819$ P(Amy and Bertrand are selected 3 females and 2 males are selected) P(Amy and Bertrand are selected \cap 3 females and 2 males are selected)
Note: $1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1$ is select Amy, Select Bertrand, Select 2 females out of 14 and select 1 male out of 9 Method ③: Reduced sample space $n(S') = {}^{15}C_3 \times {}^{10}C_2 = 20475$ Number of ways Amy, Bertrand, 2 females and 1 male are selected $=1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1 = 819$ P(Amy and Bertrand are selected 3 females and 2 males are selected) $= \frac{P(\text{Amy and Bertrand are selected} \cap 3 \text{ females and 2 males are selected})}{P(3 \text{ females and 2 males are selected})}$
Note: $1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1$ is select Amy, Select Bertrand, Select 2 females out of 14 and select 1 male out of 9 Method ③: Reduced sample space $n(S') = {}^{15}C_3 \times {}^{10}C_2 = 20475$ Number of ways Amy, Bertrand, 2 females and 1 male are selected $=1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1 = 819$ P(Amy and Bertrand are selected 3 females and 2 males are selected) $= \frac{P(Amy and Bertrand are selected \cap 3 females and 2 males are selected)}{P(3 females and 2 males are selected)}$
<u>Note:</u> 1×1× ¹⁴ C ₂ × ⁹ C ₁ is select Amy, Select Bertrand, Select 2 females out of 14 and select 1 male out of 9 <u>Method ③: Reduced sample space</u> $n(S') = {}^{15}C_3 \times {}^{10}C_2 = 20475$ Number of ways Amy, Bertrand, 2 females and 1 male are selected $=1\times1^{14}C_2^{9}C_1 = 819$ P(Amy and Bertrand are selected 3 females and 2 males are selected) $=\frac{P(Amy and Bertrand are selected ∩ 3 females and 2 males are selected)}{P(3 females and 2 males are selected)}$ $=\frac{819}{20475}$
Note: $1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1$ is select Amy, Select Bertrand, Select 2 females out of 14 and select 1 male out of 9 Method ③: Reduced sample space $n(S') = {}^{15}C_3 \times {}^{10}C_2 = 20475$ Number of ways Amy, Bertrand, 2 females and 1 male are selected $= 1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1 = 819$ P(Amy and Bertrand are selected 3 females and 2 males are selected) $= \frac{P(\text{Amy and Bertrand are selected} \cap 3 \text{ females and 2 males are selected})}{P(3 \text{ females and 2 males are selected})}$ $= \frac{819}{20475}$ $= \frac{1}{0} \text{ or } 0.04$
Note: $1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1$ is select Amy, Select Bertrand, Select 2 females out of 14 and select 1 male out of 9 Method ③: Reduced sample space $n(S') = {}^{15}C_3 \times {}^{10}C_2 = 20475$ Number of ways Amy, Bertrand, 2 females and 1 male are selected $= 1 \times 1 \times {}^{14}C_2 \times {}^{9}C_1 = 819$ P(Amy and Bertrand are selected 3 females and 2 males are selected) $= \frac{P(\text{Amy and Bertrand are selected} \cap 3 \text{ females and 2 males are selected})}{P(3 \text{ females and 2 males are selected})}$ $= \frac{819}{20475}$ $= \frac{1}{25} \text{ or } 0.04$

(v)	The teacher can write each student's name (all the students' names are
	distinct) on a small piece paper of the same size, folded it into half. He
	can then place all the females' students name into a large bowl. He then
	shook the bowl and took out 3 pieces of paper one by one without
	replacement. Next, he placed all the male students' name into a large
	bowl. He then shook the bowl and took out 2 pieces of paper one by one
	without replacement.
	<u>Method ①:</u>
	$\frac{1}{25}$ or 0.04 same answers in (iv)
	<u>Method @:</u>
	P(Amy and Bertrand are selected)
	$=\frac{1\times1\times^{14}C_{2}\times^{9}C_{1}}{^{15}C_{3}\times^{10}C_{2}}$
	$=\frac{1}{25}$ or 0.04

Solutio	on
(i)	Assume that the event of obtaining a rotten cherry is
	independent of another.
	Assume that the probability of obtaining a rotten cherry
(is constant.
(ii)	Let X be the random variable denoting the number of
	rotten cherries out of 26.
	$X \sim B(26, 0.08)$
	X = P(X = x)
	1 0 25868
	$\frac{1}{2}$ 0.28117
	3 0 19560
	5 0.17500
	The most likely number of rotten cherries is 2.
(iii)	Let <i>Y</i> be the random variable denoting the number of
	rotten cherries out of <i>n</i> .
	$Y \sim B(n.0.08)$
	(-))
	P(Y=0) + P(Y=1) < 0.1
	$\mathbf{I} \left(\mathbf{I} - \mathbf{O} \right) + \mathbf{I} \left(\mathbf{I} - \mathbf{I} \right) < \mathbf{O} \cdot \mathbf{I}$
	${}^{n}C_{0}(0.08)^{\circ}(1-0.08)^{n} + {}^{n}C_{1}(0.08)^{\circ}(1-0.08)^{n-1} < 0.1$
	$(0.92)^{n} + n(0.08)(0.92)^{n-1} < 0.1$
	Method ①:
	NORMAL FLOAT AUTO REAL RADIAN MP
	Plot1 Plot2 Plot3
	■NY280_1
	NY3=
	■NY4=
	INY5=
	NORMAL FLOAT AUTO REAL RADIAN MP
	Xmin=0
	Xmax=60
	Xscl=1
	Ymin=3
	Yscl=1
	Xres=1
	V 00707070707070
	∆X=.22/2/2/2/2/3

6

(v)	Let <i>C</i> be the random variable denoting the number of boxes of cherries thrown away in a year. $C \sim Po(12)$
	Since $\lambda = 12 > 10$, λ is large.
	$C \sim N(12,12)$ approximately
	$\mathbf{P}(2 \le C \le 5) \xrightarrow{c.c.} \mathbf{P}(1.5 < C < 5.5)$
	P(1.5 < C < 5.5) = 0.0291 (to 3 s.f.)

/	
	Solution
	(i) Let <i>C</i> and <i>O</i> be the random variable denoting the masses of a randomly selected carrot and onion, in grams, respectively.
	$2C \sim N(c,5^2)$ and $O \sim N(75,3^2)$
	$2C - (O_1 + O_2 + O_3 + O_4 + O_5)$
	$\sim N(2c-5(75),4(5)+5(3))$ 2C (0+0+0+0) N(2c 275145)
	$P(2C > O_1 + O_2 + O_3 + O_4 + O_5) > N(2C - 373, 143)$ $P(2C > O_1 + O_2 + O_3 + O_4 + O_5) > 0.9$
	$P(2C - (O_1 + O_2 + O_3 + O_4 + O_5) > 0) > 0.9$
	$P\left(Z > \frac{0 - 2c + 375}{\sqrt{145}}\right) > 0.9$
	$P\left(Z < \frac{-2c + 375}{\sqrt{145}}\right) < 0.1$
	$\frac{-2c+375}{\sqrt{145}} < -1.281551567$
	c > 195 (to 3 s.f.)
	The distributions of the masses of all carrots and onions are independent of one another.

(ii)

$$\frac{C_{1}+C_{2}+O_{1}+O_{2}+O_{3}}{5} \sim N(125, 3.08)$$

$$P\left(\frac{C_{1}+C_{2}+O_{1}+O_{2}+O_{3}}{5} > 130\right)$$

$$= 0.00219 (3 s.f.)$$
(ii)

$$0.0018(C_{1}+C_{2}+C_{3}) - 0.0015(O_{1}+O_{2}+O_{3}+O_{4})$$

$$\sim N\left(\frac{(0.0018 \times 3 \times 200) - (0.0015 \times 4 \times 75)}{,(0.0018^{2} \times 3 \times 5^{2}) + (0.0015^{2} \times 4 \times 3^{2})}\right)$$

$$0.0018(C_{1}+C_{2}+C_{3}) - 0.0015(O_{1}+O_{2}+O_{3}+O_{4})$$

$$\sim N(0.63,0.000324)$$

$$P\left(\begin{vmatrix} 0.0018(C_{1}+C_{2}+C_{3}) \\ -0.0015(O_{1}+O_{2}+O_{3}+O_{4}) \end{vmatrix} < 0.6\right)$$

$$= P\left(\frac{-0.6 < 0.0018(C_{1}+C_{2}+C_{3})}{-0.0015(O_{1}+O_{2}+O_{3}+O_{4}) < 0.6\right)$$

$$= 0.0478 (to 3 s.f.)$$

Soluti	ion
(i)	Let X be the random variable denoting the mass of peanut
	butter in a random jar
	outter in a random jar.
	Sample mean $-\frac{\Sigma x}{2} - \frac{2695}{2} - 2695$ (exact)
	Sample mean $= \frac{10}{n} = 10^{-200.0}$ (exact)
	$(\Sigma x)^2 = 1$ (2695) ²
	$s^{2} = \frac{1}{n-1} \left[\sum x^{2} - \frac{(2n)^{2}}{n} \right] = \frac{1}{9} \left[726313 - \frac{(2n)^{2}}{10} \right]$
	n-1 $n-3$ 10
	$=\frac{7}{2}=1.166666667$
	-6-1.10000007
	$H_0 \cdot \mu = 270$
	$10. \mu = 270$
	$\Pi_1: \mu < 2/0$
	At 10% level of significance, reject H_0 if $p < 0.10$
	Since $n = 10$ is small and population variance is unknown,
	assume X is normally distributed and use t-test.
	Under H ₀ test-statistic
	$T \sim t(0)$
	$\Gamma \sim I(j)$
	From GC, $t = -1.403850109$
	p = 0.0886338513 < 0.10
	Hence reject H_0 and conclude at 10% level of significance
	there is sufficient evidence that the manufacturer has
	overstated the mean mass of peanut butter in each jar
	Overstated the mean mass of peanut butter in each jar.
	Since <i>n</i> is too small for CL1 to be used, we need to assume
	that X is normally distributed and then t-test can be used.
	To dia and
	in this case,
	$H_0: \mu = 270$
	$H_1: \mu \neq 270$
	So <i>n</i> -value -2×0.0886338513
	$50 p^{-1}$ value = 2 × 0.0000350515
	= 0.1/20/020 > 0.10
	So the conclusion would change to do not reject H_0 and that
	there is insufficient evidence at 10% level that the mean mass
	differs from 270 g.
(ii)	In this case.
()	H_{a} : $\mu = \mu$
	$110 \cdot \mu - \mu_0$
	$H_1: \mu \neq \mu_0$
	Under H_0 , since X is normally distributed and population
	1.1^2
	variance is given, ~ $N(\mu_0, \frac{10}{10})$
	* v
	Since H_0 is not rejected at 5% level of significance,
	$1.050062096 \times \frac{269.5 - \mu_0}{2} \times 1.050062096$
	-1.939803980 <
	<u></u>
	$\sqrt{10}$
	$1050052005 \frac{1.1}{10}$, 250.5 , $1050052005 \frac{1.1}{10}$
	$-1.959963986 \sqrt{10} < 269.5 - \mu_0 < 1.959963986 \sqrt{10}$
	$-2695-1959963986\frac{1.1}{5} < -11 < -2695+1959963986\frac{1.1}{5}$
	$\sqrt{10} \sim \mu_0 \sim 200.07100000 \sqrt{10}$
	- 270 1817745 < - 11. < - 268 8182255
	$-270.1017775 \times -\mu_0 \times -200.0102233$
	$268.8182255 < \mu_0 < 2/0.181//45$

	268.8 <	$\mu_o < 270.2$ (to 1 d.p.)
or	$268.9 \leq$	$\mu_{\rm o} \leq 270.1$ (to 1 d.p.)

