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1  Forx=5kkeZ, x*+x +x—-1=0+0+0-1= l(modS)
For x=5k+LkeZ, x"+x’ +x—-1=1"+1 +1-1=2(mod5)
For x=5k+2,ke€Z, x'+x +x-1=2"4+2"+2-1=164+8+2—-1=0(mod5)
For x=5k+3.keZ, x"+x +x—-1=3"+3"+3 1:81+27+3—150(m0d5)
Forx=5k+4,keZ, x'+x +x—-1=4"+4+4-1=256+64+4—1=3(mod5)
Therefore the solution set 1s {Sk +2.5k+3,k e Z}

X' +x +x—1= (x—2)(x—3)(.:>4r2 +bx+c)(m0d5)
X'+ x +Jr:—IE(.:s:2 —Sx+ 6)(.:{2 +bx+c)(m0d5)
X’ +1)(:rc:2 +bx + c)(mad 5)

(xz +x—1)(m0d5)

(
(" +1)
X' x4+ x— E(Iz +1)(Jn¢2 —4x+4)(m0d5)
(¥ +1)
(

X+ +x-1

2

X +x+x=1=(x*+1

XX +x—=1=(x"+1 (x—2)2(m0d5)

x=2) (x—3)(mod5)

X +x +x—1

2 Lett=m7—x.Then gz—l,Whenx:O,r:fr.Whenx:;r,r:O.

dz
J‘I x-g(smx)dx = Jm (r—1)-g(sm(zr—1))(—1)ds
= J‘ﬂ g(sint)ds — J‘Hr -g(sint)dt

— 2J. x-g(smx)dx = :frJ. g(sin x)dx
0 0

— I x-g(simnx)dx = %I g(sm x)dx (shown)
0 0

(a)f XSin x dy — f SIn X
\/8+sm X \/8+SIH x

—sin x
:-— dx

0 \/Q—CDS X

7| . (cosx)|
= ——| sin
2] ( 3 )_




3(1)

(i)

(111)

(b)j le+sinxdx:£j \/1+sinx-\/1_s%nxdx
0 2 Jo J1—sinx

_EJ.E \/CDSZJC dx

2], J1—sin x

_EJ'E cos x| i
2 ), Jl-sinx

T 2 COS X
=—x2 :
2 0 \/l—smx

T

:—Zfr[«/l—sinxf
:—2;*.7(0—\/1_): 27

dx

First put 1 object into each box, leaving behind (n— k) objects. Then distribute the
remaining (n—k) objects into k& boxes, with (k —1) partitions.

n—k+k—1
k—1

(i

First put 2 objects into each box, leaving behind (n —2k) objects. Then group the

. . . . . n—-2k . L
remaining (n—2k) objects into pairs, this gives > pairs. Lastly, distribute the

n—2%k

Total number of ways = {

pairs into k£ boxes, with (k —1) partitions.

(n—2k )
+k—1
Total number of ways =| 2
. k=1
4 3\
L
=2
k=1

First put 1 object into each box, leaving behind (n — k) objects. Then group the
n—k

remaining (n— k) objects into pairs, this gives pairs. Lastly, distribute the

-k . . . .
HT pairs into k£ boxes, with (k —1) partitions.



(iv)

Total number of ways =| 2 vkl
\ k-1 /

(1 A

_ E(n+k—2)

N N

Let A4 be the set depicting all possible distributions of » 1dentical objects into &

distinct boxes such that every box 1s filled and that there are at least i box(es) with
more than m objects, where i =1,2,3,---. k

To find |Aj. , let’s suppose that the j boxes each containing more than m objects,

with the possibility that there may (or may not) be other boxes having more than m
objects. First, put k& objects into each of the k& boxes, we are left with (n—k) objects.

Then we put an additional m objects into each of the j boxes, we are left with
(n—k — jm) objects. Now, we shall distribute these remaining (n—k — jm) objects

n
into the k& boxes, with (k —1) partitions. It 1s important to take note that there 1s [ J
J

ways to choose the j boxes to be overfilled.

n\(n—k— jm+k—1
1.

L)

Using principle of inclusion and exclusion,

L .
(n\(n—jm-1 _ —k
the total number of ways = E (—1){ J( kj | J’Where L—mln{k:, n—r J
J — - m

So, the number of ways = [

J=0

(i) a+b>c, b+c>a, c+a>b
3 21 12
(%/E+3/E) a+b+3[a3b3+a3b3]>6+0
— %/E — {/E > Q/E . Similarly for the other two cases.

(i) Let p=+Ja, q=3b, r=4c.

WLOG, suppose p=2g=r.
Then consider: |p—g|+|g—r|=p—-q+g—-r=|p-r|.

Two of the lengths sum to the third. So these three lengths cannot form the sides of a
triangle.



(iii) (a” +2bc)+(b” +2ca)=(a—b)’ +2(ab+bc +ca)

>0+2c(a+b)+2ab>2c>+2ab>c” +2ab
Similarly for the other two cases. It 1s always possible to form such a triangle.

(iv) WLOG, let a* +b° =¢”.
We prove by contradiction. Suppose the triangle 1n (i) 1s right-angled, then

2 2 2 2 2 2 2 2 2
a’*+b>=c’ or b’°+c’=a’or c’+a’=b’.
2 2 2 4 2 2 4

2 2 2
a’*+b’=c>=>a +b"+3| a’b’+a’b’® |=c

4 2 2 4
= a*b’ +a’b? =0, a contradiction, since a,b>0.

2 2 2 4 2 2 4
b3 +c3=a3 =>b +c”+3| b33 +b3¢3 |=a°

4 2 2 4
— b’ +(a2 +b2)+3(b3c3 +b3c3]=a2

4 2 2

4
— 2b* + 3[15363 +b3¢c? J = (0, which also leads to a contradiction.

Similarly for the last case. Therefore, 1t is not possible for triangle in (i) to be right-
angled.

(i) ‘f(x)—l|i\q||x|+\csz‘2+...+ x|
i) |f(r)-1|< kr
1—|r]
k|r|=1-|r| (since f(r)=0)
|r EL
k+1

Coupled with the fact that M <1<k +1, we obtain the required inequality.

(iii) If ris aroot, 1+cr+c,r’ +...+¢c_r"" +r"=0

1 ¢ C c
:>r”(—+ L+ — 4. +2L+41]|=0

n n-1 n-2 T

r r r r

(Hre(3) rsli) -0
l+¢ | —|+c,,|—| +...4¢|—| +|—-| =0
r r r r

: 1 . . . .
Since 7 > 1, then |—| <1. Also, since the coefficients still satisfy

3
in part (ii) still holds.

c,| <k, the inequality

When r =1, it s clear that ﬁ <r<k+1 since k 1s positive.
_I_



2020 2019 2018, 2017

X — X — X —
2021+ 2n 2021+ 2n 20214 2n 20214 2n
Notice that all coefficients <1. Set k=1.

x+1=0

(iv) x° —

Then all possible integer roots in the interval | —, 2 | are £2,+1.

—2. 2 are not possible, since numerator on LHS will be odd.
When x =—-1, LHS=-2# RHS for all n. So —1 1s not a root of the equation.

When x=1, 4n—-4032=0=n=1008.
The only possible value of n 1s 1008, and the corresponding root 1s 1.

Let a=2s+1 where s eZ*U{0}
Let P be the statement “ a* =1 (mod 2”*2) ”for ne’Z”.

Forn=1.
For s =0, LHS =1* =151(mod23)
For s 21,

LHS = (2s+1) =45 +4s+1=4s(s+1)+1
Since there 1s a factor 2 in s(s+1),
therefore LHS =8g+1= l(mod 23) where g € 7,

" B 1s true.

Assume that P, is true for some k € Z*
ie a® =1 (mod 2“2) =’ —1=2"?¢ where €7
Forn=k+1,
LHS =a*"
_ az*"_z

(«*)
= (22 1+1)
=27 4+ 2"+ 1
=2 2 4 2 41
=1(mod2"*’)
;B 1s true

Hence by Mathematical Induction, P, is true for ne€Z".

2k+1

Soa+ldividesa™ +1



Suppose 7 1s not a power of 2, 1€ n= 2’"_(2k+1) where k 1s positive integer and r 1s
a non-negative integer.

2, .
Let @=2 in the previous result .

2" 41 =(23" +1)(aM ~a* a7~ +1)

Therefore (22,-+1)|(2”+1) and since k 1s a positive integer

So proof by contrapositive , if 2" +1 1s a prime then n 1s a power of 2.

Let (n,n+r)=d and (n,r)=e
Then d|n and d |n+r=>d|n+r—-n=d|r..d<e
eln and e|lr=>e|ln+r=>ed

Therefore d =e 1e (n,n+r)=(n,r)

Ifn1s odd and r 1s odd,
= 2n1s even and n +r1s even

=2|(2n,n+r)
Since n 1s odd, there 1s no even factor in n
1€ (2}1, n+ r) = 2(n,n+r) since we need only bother about odd factorsinn +r

=2(n,r)

If n1s odd and r 1s even,
Then 2n 1s even and n + r 1s odd

=2/ (211, n+ r)
= (2n,n+r) = (n,n+ r) =(n,r)
since we need only bother with odd factors innand n+r

Let k=1,2,...2n, and r=1,2,....n.

(1) Ifnisodd,

For even k, (2n,k) #1 1e 2n and k are not coprime
So need only consider odd k.

For odd r, (2}15 r) = (nj r)
Forevenr, (2n,n+r)=(n,r) from above result.

So there 1s a one-one matching for (2n,k) = (H,P‘) =1

ie ¢(2n)=g¢(n).



(1) Ifniseven,
For even k, (211, k) #1 1e 2n and k are not coprime
So need only consider odd k.

For oddr, (2n,r)=(n,r)
Foroddr, (2n,n+r)=(n,r) from above result.
So for every odd r value such that (n,7)=1, then (2n,r)=1 and (2n,n+r)=1

ie ¢(2n)=2¢(n).

(111) '?5(2” ) = -;35(2,2”'1 ) = 24;35(2”" ) = = 2*1-'¢5,(2”-(”-1)) — 2}1—1¢(2) _ -]

Since ¢(2) =1 since 1 is the only number coprime with 2.

£4n+2 1(1—(—I2)2ﬂ+1) 42
1+ 1-(-%) | +¢°

1_+_ dn+2
_ ! = (shown)

1+ 141

() 1-2 4+t ="+, .+ -

I4”+2 1

dn+2

< f4”+2
l+¢*

T I4H+2 Y
I —dt iI ("2 dt
0o 1+1¢ 0

(ii) Since 1+#° >1,

4dn+3
X

4n+3
0<P(x)< l (since 0<x<1)
4n+3

As n — o, 1 >0 . By Squeeze Theorem, P (x)—0.

dn+3

X 1 X
Therefore, j 5 dx:j -+t = +...dt+0
o 1+x 0

0<P(x)=<

3 5 7 - n

. b A S —1 -

= tantx=x— X oS ED e
3 5 7 2n+1

r=>0

(iii)) [im = lim
H—»00 a% JP+IJCZI£4_3)‘11

By ratio test, the series converges for —1 < x <1 and diverges for |x| > 1. Coupled with

the fact that the series converges for x ==+1, we conclude that the expansion 1s valid
for -1<x<1.



(iv) Referring to the triangle, tan@ =¢ and tana = ! .
[

Since 9+a:£jwe obtain tan_lHtan‘ll:E.
2 t 2
o
[
| v
|
~1 T 1 |
tan 202]1=——tan ——
2 2021
1 1
L |~1.57030
2 12021 2021°(3)
7T -1
% —=tan |
(V) 2
:t.'f:m‘ll+‘[a:r1‘ll
2 3

1 1 1 1 1 1
= st ——. || o ——...
{2 3(2°) 5(2) ] [3 3(3°) 53 j
Multiplying throughout by 4 yields the required result.

9i) B,=2 and B, =5
(11) Consider the set {1, 2,33---,jj---,n,n+1}. The object j can either be alone 1n a box or be

in a box containing k£ other objects.
If j 1s alone, then we would need to distribute the remaining n objects into boxes. This

gives B ways.
If / 1s 1n a box containing k other objects, then we need to choose k& objects from the set

n
of n objects to be together with object j. There are {k] ways to do so. Thereafter, we
need to distribute the remaining (n—4k) objects into boxes, which gives us B, _, ways.

C oy . : n
By Multiplicative Principle, there 1s a total of {kJB” ways.

By Addition Principle,

n 7 n n n
B, = B, + B, + B, ,+..+ Bﬂ—{n—l) + B,
0 | 2 n—1 n
n n n n n n n
= B + B, + B _,+..+ B, + B, =
n n—I1 n—2 | 0 r n—r



(vi1)

Given that ¢ and b are both alone each in their own boxes, all we need to do 1s just to
distribute the remaining n objects into boxes, which gives us B ways.

Given that ¢ and b are both in the same box, we first leave b out and consider distributing
the objects in the set {1,2,3,---,n,a} into boxes. This gives B

n+1

ways. Now, all we need
to do 1s to just put b into the box that a 1s in, giving us only 1 way to do so. Thus, the
answer 1s B

n+l -
Now, a and b are 1n different boxes and that both @ and b are not alone 1n their respective
boxes. Let us now leave a and b out and start to distribute the objects in the set

{1,2,3,---,n}into boxes. We know from (iii) that there number of ways is
B,=S,,+5,,+S,;+...+8, . Consider the case S, , where we are distributing » objects
in the set {l, 2.3, n} Into £ boxes. Now, we want to distribute ¢ and b into these &k boxes

which have already been filled up by items from {1,2,3,---,n}. This gives kx(k—1)

ways. Multiplying up, we get k(k — DS, .- Then we sum up, we will get Zk(k -3, ,

(viin) Take note that the cases in (v), (vi) and (vi1) do not make up the number of ways to

distribute objects from {1,2,3,---,n,a,b} into boxes. We are missing one last case where

a and b are in different boxes and only one of them is alone in a box. We shall distribute
n objects in the set {1,2,3,---,n} into boxes like what happened in (vii). First, we consider

the case §,, where we are distributing n objects in the set {1, 2, 3,---,n} into k& boxes.
Then, we will put a alone into a new box and try to put b into one of the & boxes. This

gives us kS, , ways and upon summing up, we get ZkSﬂﬁ . Upon permutation of @ and
k=1

b, we get ZZkS

So, B,,=B,,+B,+ Zk(k S, , + 2st

It 1s obvious that ZZkS + 1s even. In addition, Zk(k 1)§, , 1s also even because the

product of 2 consecutive numbers must be even.

So, 2> kS, + Y k(k-1)S,, =0 (mod2).
2502

10



This implies that B, = B, + B, + » k(k-1)S,, +2) &S,
k=1 k=1

=B

n+l

+B, (mod2)

11



