1i
$$\frac{\text{Method } 1:}{\text{Let } y = ax^2 + bx + c}$$
 be the required quadratic equation.

$$\frac{dy}{dx} = 2ax + b$$
Since the quadratic curve have a minimum point at $(1, -2)$,
 $0 = 2a + b - --- (1)$
 $-2 = a(1)^2 + b(1) + c$
 $a + b + c = -2 - ---- (2)$
When $x = 2, \frac{dy}{dx} = 5$.
 $5 = 2a(2) + b$
 $4a + b = 5 - ---- (3)$
Solving (1), (2) and (3) via GC,
 $a = \frac{5}{2}, b = -5, c = \frac{1}{2}$.
Hence,
 $y = \frac{5}{2}x^2 - 5x + \frac{1}{2}$.
Method 2:
Since the quadratic curve have a minimum point at $(1, -2)$, it is has the
equation of the form $y = k(x-1)^2 - 2$.
 $\frac{dy}{dx} = 2k(x-1)$.
When $x = 2, \frac{dy}{dx} = 5$.
 $5 = 2k(2-1)$
 $k = \frac{5}{2}$
Hence,
 $y = \frac{5}{2}(x-1)^2 - 2$
 $y = \frac{5}{2}x^2 - 5x + \frac{1}{2}$.

2bi	$v_3 = a + 2b - 7$
	$v_4 = b + 2(a + 2b - 7) - 7 = 2a + 5b - 21$
	Hence,
	$v_4 = 2v_3$
	2a + 5b - 21 = 2(a + 2b - 7)
	b = -14 + 21
	b = 7.
2hii	
2011	$v_3 = a + 2(7) - 7 = a + 7$
	$v_4 = 2a + 14$
	$v_5 = (a+7) + 2(2a+14) - 7 = 5a + 28.$
2ci	Let the sequence be $x_1, x_2, x_3,$ and $S_n = x_1 + x_2 + + x_n$.
	$x_n = S_n - S_{n-1}$
	$= n^{3} - 11n^{2} + 4n - \left(\left(n-1\right)^{3} - 11\left(n-1\right)^{2} + 4\left(n-1\right)\right)$
	$=3n^{2}-3n+1-11(2n-1)+4$
	$=3n^2-25n+16$
2011	
2011	$m^{3}-11m^{2}+4m=3^{3}-11(3^{2})+4(3)$
	$m^3 - 11m^2 + 4m + 60 = 0$
	By GC,
	m = -2, 3, 10
	m = 10 (as $m > 3$.)

3(i)	$\frac{dy}{dt} = 6 \text{ and } \frac{dx}{dt} = 6t.$ $\frac{dy}{dx} = \frac{6}{6t} = \frac{1}{t}.$
	At $(14,11) \Longrightarrow 11 = 6t - 1 \Longrightarrow t = 2$.
	Hence the gradient of the tangent is $\frac{dy}{dx} = \frac{1}{2}$.
	Therefore, the gradient of the normal is $\frac{-1}{1/2} = -2$.
	Equation of the normal: y-11 = -2(x-14) 2x + y = 39.
3(ii)	When $x = \frac{25}{12}$, $t = \frac{1}{1}$ and when $x = 14$, $t = 2$
	Required area
	$= \int_{\frac{25}{12}}^{14} y dx + \frac{1}{2} (11) \left(\frac{39}{2} - 14\right)$ $= \int_{-\infty}^{\infty} (6t - 1) (6t) dt + \frac{121}{2}$
	$\int_{\frac{1}{6}}^{1} (3t^{-2})(3t^{-2}) dt^{-2} d$
	$= \left(12\left(2^{3}\right) - 3\left(2^{2}\right) - 12\left(\frac{1}{6^{3}}\right) + 3\left(\frac{1}{6^{2}}\right)\right) + \frac{121}{4}$
	$=\frac{2057}{18}$ units ² .
3(iiia)	Required area = $\frac{2057}{18} \times \frac{2}{\text{Scale by factor of 2 parallel to x-axis}} \times \frac{3}{\text{Scale by factor of 3 parallel to y-axis}}$
	$=\frac{2057}{3}$ units ² .

3(iiib) Scale by a factor of 2 parallel to x-axis: Replace x with $\frac{x}{2}$. Scale by a factor of 3 parallel to y-axis: Replace y with $\frac{y}{3}$. Curve D; $\begin{cases} \frac{x}{2} = 3t^2 + 2\\ \frac{y}{3} = 6t - 1 \end{cases} \Longrightarrow \begin{cases} x = 6t^2 + 4\\ y = 18t - 3 \end{cases}$ Method 1: Considering x, $t = \sqrt{\frac{x-4}{6}}$ (reject – ve as $t \ge \frac{1}{6}$.) Hence, $y = 18\sqrt{\frac{x-4}{6}} - 3$. Method 2: Considering y, $t = \frac{y+3}{18}$ Hence, $x = 6\left(\frac{y+3}{18}\right)^2 + 4$ $x = \frac{y^2 + 6y + 9}{54} + 4$ 54x = y² + 6y + 225.

4(i)	Let O be the centre of the square, M be a midpoint of one of the sides of the square and P be the top vertex of the pyramid.
	We have $OM = \frac{a}{2}$, $PM = h$, $OP = H$, $\angle MOP = 90^{\circ}$.
	Also, $30 = a + 2h \Longrightarrow h = 15 - \frac{a}{2}$.
	By Pythagoras theorem,
	$h^2 = \left(\frac{a}{2}\right)^2 + H^2$
	$H^{2} = \left(h - \frac{a}{2}\right)\left(h + \frac{a}{2}\right)$
	$=(15-a)(15)$ (sub $h=15-\frac{a}{2}$)
	= 225 - 15a (Shown)
4(ii)	Let V denote the volume of the pyramid.
	$V = \frac{1}{3} \left(a^2 \right) \sqrt{225 - 15a}$
	$V^{2} = \frac{1}{9}a^{4} \left(225 - 15a\right) = 25a^{4} - \frac{5}{3}a^{5}$
	$2V\frac{\mathrm{d}V}{\mathrm{d}a} = 100a^3 - \frac{25}{3}a^4.$
	At max V, $\frac{\mathrm{d}V}{\mathrm{d}a} = 0$;
	$100a^3 - \frac{25}{3}a^4 = 0$
	$a^3\left(100 - \frac{25}{3}a\right) = 0$
	a = 0 or $a = 12$
	Clearly, $a = 0, V = 0$, which is not the maximum.
	If $a = 12, V = \frac{1}{3} (12)^2 \sqrt{225 - 15(12)} = 144\sqrt{5} \text{ cm}^3$. This is the maximum
	volume.
4(iiia)	Let <i>A</i> be the required area of the 4 triangular faces.

	$A = 4\left(\frac{ah}{2}\right)$
	$=2a\left(15-\frac{a}{2}\right)$
	$=30a-a^{2}$
	$=225-(a-15)^{2}$
	$\leq 225 - 0$ (as $(a - 15)^2 \geq 0$ for all <i>a</i> .)
	$= 225 \text{ cm}^2.$
	The largest area is 225 cm ² when $a-15=0 \Rightarrow a=15$.
4(iiib)	When $a = 15, H^2 = 225 - 15(15) = 0 \Longrightarrow H = 0$.
	As the pyramid's height is 0 cm, this implies the pyramid is flat (2-dimensional).

Her possible points are 0, 4, 10 and 25.
Let X denote Tina's score.
E(X) = (0)P(X = 0) + 4P(X = 4) + 10P(X = 10) + 25P(X = 25)
-0 + 4(2r)(2r-1) + 10(2(r)(2r)) + 25r(r-1)
$= 0 + \frac{1}{(3r+1)(3r)} + \frac{1}{(3r+1)(3r)} + \frac{1}{(3r+1)(3r)} + \frac{1}{(3r+1)(3r)}$
16r - 8 + 40r + 25r - 25
= $3(3r+1)$
_ 81 <i>r</i> - 33
$-\frac{1}{3(3r+1)}$
27r - 11
$-\frac{3r+1}{3r+1}$.
$E(X^{2}) = (0)P(X = 0) + 4^{2}P(X = 4) + 10^{2}P(X = 10) + 25^{2}P(X = 25)$
16(2r)(2r-1) $100(2(r)(2r))$ $625r(r-1)$
$= 0 + \frac{(3r+1)(3r)}{(3r+1)(3r)} + \frac{(3r+1)(3r)}{(3r+1)(3r)} + \frac{(3r+1)(3r)}{(3r+1)(3r)}$
64r - 32 + 400r + 625r - 625
$= \frac{3(3r+1)}{3(3r+1)}$
1089r - 657
$=\overline{3(3r+1)}$
_ 363 <i>r</i> – 219
$=\frac{3r+1}{3r+1}$.
Hence,
$\operatorname{Var}(X) = \operatorname{E}(X^{2}) - \left(\operatorname{E}(X)\right)^{2}$
$363r - 219 (27r - 11)^2$
$=$ $\frac{3r+1}{3r+1} - \left(\frac{3r+1}{3r+1}\right)$
$(3r+1)(363r-219) - (729r^2 - 594r + 121)$
$=\frac{(3r+1)^2}{(3r+1)^2}$
$\frac{(2 + 2)}{1089r^2 - 294r - 219 - 729r^2 + 594r - 121}$
$=\frac{10077 - 2777 - 217 - 7277 + 3747 - 121}{(3r+1)^2}$
$360r^2 + 300r - 340$
$=\frac{3007+3007-340}{(3r+1)^2}$.

_

5(iii) $\frac{360r^2 + 300r - 340}{(3r+1)^2} = 38$ $360r^2 + 300r - 340 = 342r^2 + 228r + 38$ $18r^2 + 72r - 378 = 0$ $r^2 + 4r - 21 = 0$ $r = 3 \quad (r = -7 \text{ is rejected as } r > 1.)$

7(iv)

$$T = \frac{5}{9}(t-32)$$

$$t = \frac{9}{5}T + 32$$
Hence,

$$d = -145.12547 + 9456.40257u$$

$$d = -145.12547 + 9456.40257\left(\frac{1}{t}\right)$$

$$d = -145.12547 + \frac{9456.40257}{\frac{9}{5}T + 32}$$

$$d = -145 + \frac{47300}{9T + 160} (3 \text{ s.f.})$$

8(i)	$P(R=1) = \frac{\binom{17}{1} \times \binom{11}{11}}{\binom{28}{12}} = \frac{1}{1789515} = 5.59 \times 10^{-7} (3 \text{ s.f.})$
	$P(R=2) = \frac{\binom{27}{2} \times \binom{11}{10}}{\binom{28}{12}} = \frac{88}{1789515} = 4.92 \times 10^{-5} (3 \text{ s.f.})$
	Therefore, $P(R=1) < P(R=2)$. (Shown)
8(ii)	$\mathbf{P}(R=4) = 15 \times \mathbf{P}(R=3)$
	$\frac{\binom{17+r}{4} \times \binom{11}{8}}{\binom{28+r}{12}} = \frac{15 \times \binom{17+r}{3} \times \binom{11}{9}}{\binom{28+r}{12}}$
	$\binom{17+r}{4} \times \binom{11}{8} = 15 \times \binom{17+r}{3} \times \binom{11}{9}$
	$\frac{\text{Method 1}}{\binom{17+r}{4}} \times \binom{11}{8} = 15 \times \binom{17+r}{3} \times \binom{11}{9}$
	$\frac{(17+r)!}{4!(13+r)!} \times \frac{11!}{3!8!} = 15 \times \frac{(17+r)!}{3!(14+r)!} \times \frac{11!}{2!9!}$
	$\frac{1}{4 \times 3} = \frac{15}{9(14+r)}$
	14 + r = 20 $r = 6$
	$\frac{\text{Method } 2}{\binom{17+r}{4}} \times \binom{11}{8} = 15 \times \binom{17+r}{3} \times \binom{11}{9}$
	$\binom{17+r}{4} = 5\binom{17+r}{3}$ By GC,

9(i)	Each pen has an <u>equal chance of being sampled</u> and that pens are <u>chosen for</u> <u>the sample independently</u> .
9(ii)	Let X be the number of faulty pens out of a sample of 10 pens. $X \sim B(10, 0.06)$ $P(X \le 2) = 0.9811622$
	= 0.981 (3 s.f.)
9(iii)	More than 5% is rejected is equivalent to less than or equal to 95% accepted in this scenario. Let <i>Y</i> be the number of accepted boxes out of 75 boxes. $Y \sim B(75, 0.9811622)$
	$P(Y \le 75 \times 0.95) = P(Y \le 71.25)$
	$= P(Y \le 71)$
	= 0.05345256
	= 0.0535 (3 s.f.)
9(iv)	Let <i>W</i> the number of faulty pens in a sample of 5. $W \sim B(5, 0.06)$
	Denote W_1 the number in the first sample and W_2 is the number in the second sample. P(box accepted)
	$= P(W_1 = 0) + P(W_1 = 1)P(W_2 \le 1) + P(W_1 = 2)P(W_2 = 0)$
	= 0.733904 + (0.234225)(0.968129) + (0.0299010)(0.733904)
	= 0.98261
	= 0.983 (3 s.f.)
9(v)	The manager would prefer to use the alternative method as on average, <u>less</u> <u>testing would need to be done</u> as compared to the first test. This meant less resources, such as time and money would be spent on testing.

10(i)	Let X be the percentage of carbon, by weigh, in a round steel bar. Let μ be the percentage mean of the proportion of carbon, by weight, in a round steel bar.
	Test $H_0: \mu = 1.5$ Against $H_1: \mu \neq 1.5$ At 5% level of significance.
	Under H ₀ , we have $\overline{X} \sim N\left(1.5, \frac{0.09^2}{15}\right)$. $Z = \frac{\overline{X} - 1.5}{\overline{X} - 1.5} \sim N(0.1).$
	$0.09/\sqrt{15}$ For H ₀ to be rejected,
	$z_{\rm cal} < z_{\rm crit_1}$ or $z_{\rm crit_2} < z_{\rm cal}$
	$\frac{\overline{x-1.5}}{0.09} < -1.95996$ or $1.95996 < \frac{\overline{x-1.5}}{0.09}$
	$\sqrt{15}$ $\sqrt{15}$
	x - 1.5 < -0.045545 or $0.045545 < x - 1.5$
	$\bar{x} < 1.45445$ or $1.545545 < \bar{x}$
	Taking into account of the context that \overline{x} is a percentage, we must also have
	$0 \le x \le 100.$
	Therefore, $0 \le x < 1.45$ or $1.55 < x \le 100$ (3 s.f.).
10(ii)	Unlike previously, the manager does not know that the distribution of the
10(m)	amount of carbon in the flat bars is normal. So, he takes a <u>sufficiently larger</u>
	<u>sample (40 \ge 30) that allows the Central Limit Theorem to apply</u> .
10(;;;)	
10(III)	Unbiased estimate of population mean = $\frac{\sum x}{40} = \frac{10.16}{40} = 0.254.$
	Unbiased estimate of population variance
	$=\frac{1}{39}\left(\sum x^2 - \frac{\left(\sum x\right)^2}{40}\right)$
	$=\frac{1}{39}\left(2.586342 - \frac{\left(10.16\right)^2}{40}\right)$
	$=1.46205 \times 10^{-4}$
	$=1.46 \times 10^{-4}$ (3 s.f.).

Let *X* be the percentage of carbon, by weigh, in a flat steel bar. **10(iv)** Let μ be the percentage mean of the proportion of carbon, by weight, in a flat steel bar. Test H₀: $\mu = 0.25$ H₁: $\mu > 0.25$ Against At 2.5% level of significance. Under H₀, as $n = 40 \ge 30$ is large, by CLT, we have; $\overline{X} \sim N\left(0.25, \frac{s^2}{40}\right)$ approximately. $Z = \frac{\overline{X} - 0.25}{s / \sqrt{40}} \sim N(0, 1)$ approximately. With $\overline{x} = 0.254$, $s^2 = 1.46205 \times 10^{-4}$. By GC, p-value = 0.0182 (3.s.f) < 0.025. We reject H₀. There is sufficient evidence at 2.5% level of significance that the mean amount of carbon in the flat bars is more than 0.25%.