Innova Junior College 2011 Prelims 2 H1 Physics Paper 1 solutions

Question	Answer	Question	Answer	Question	Answer
1	D	11	В	21	D
2	С	12	С	22	В
3	Α	13	С	23	С
4	В	14	D	24	В
5	В	15	D	25	D
6	В	16	В	26	А
7	С	17	В	27	В
8	В	18	D	28	С
9	Α	19	В	29	В
10	D	20	С	30	С

Qn	Solution	Qn	Solution
1	M M 4M	11	Torque of couple = F x d
	$\rho = \frac{1}{V} = \frac{1}{(D)^2} = \frac{1}{\pi D^2 L}$		= 8.0 x (0.60 sin60°)
	$\pi\left(\frac{D}{2}\right)L$		= 4.2 N m
	$\Delta \rho = \Delta M + 2 \Delta D + \Delta L$		
	$\frac{1}{\rho} = \frac{1}{M} + 2 \frac{1}{D} + \frac{1}{L}$		
	$\Delta \rho = \frac{1}{2} + 2\frac{0.1}{2} + \frac{0.1}{2}$		
	814.89 20 2.5 5.0		
	$\Delta \rho = 122.2335 \approx 100$ (to 1 S.F.)		
	Hence, density = 800 ± 100		
	(round off 814.89 to the same digit placing as 100)		
2	$GPE = mgh = (70) \times (9.81) \times (4 \times 100)$	12	By definition, power = rate of work done.
	3.5) = 96138 J		Instantaneous power = Force x velocity
	Approximately 100 kJ		
3	For a uniformly increasing speed,	13	Minimum Work Done = increase in GPE
	the acceleration is constant.		= 50 x 9.81 x 1.6
			- 780 5
4	Horizontal distance traveled = 12 m	14	Δx
	Vertical distance traveled = 2.0 m		$\Delta \phi = \frac{\Delta v}{\lambda} \times 2\pi$
	(taking downwards as positive)		3.0
	Time taken, $t = (12 / v)$		$\Delta \phi = \frac{310}{50} \times 2\pi = 3.8$ rad
	Using s = ut + $\frac{1}{2}$ a t ² ,		0.0
	$2.0 = (0) + \frac{1}{2} (9.81) (12 / v)^2$		
	v = 19 m s ⁻¹		
5	Draw a tangent to the curve at t =	15	Infra-red: low f, large λ
	3s, then estimate the gradient of		X-rays: high f, small λ
	this tangent.		Speed of all EM radiation in vacuum is the
	Acceleration = gradient = 1.0 m s^{-2}	10	
6	For elastic collision, the total	16	
	momentum of the system (2 masses m) and kinetic energy of		
	the system is conserved		
	Total KE before collision = $\frac{1}{2} m\sqrt{2}$ +		
	$\frac{1}{2}mv^2 = mv^2$.		
			a 1 1 1/
			// ₽ /
			wave is moving from left (Q) to right (P).
			downwards but moving upwards
			Q has to be in this quarter as it is 1.25λ away
			from P.
			Given its position, it is displaced upwards and
7	Net force vertically = 10000 0000	17	For X:
	= 1000 N (upwards)		A guarter wave is formed in the tube such that:
			λ = 4L and hence fundamental frequency for X,

	Net force horizontally = 500 N (right wards) Resultant force = $\sqrt{1000^2 + 500^2}$ = 1100 N		$f_x = \frac{v}{4L}$ For Y: Half a wave is formed in the tube such that $\lambda = 2L$ and hence fundamental frequency for Y, $f_y = \frac{v}{2L}$ Hence, the ratio will be 1:2
8	Ave F = $\Delta P / \Delta t$ = (P ₁ - P ₂) / (t ₂ - t ₁)	18	Since the waves came from the same source at O (started in phase) and constructive interference occurred at X, this means that the path difference must be equal to integer times of the wavelength. Wavelength = 28 mm Path OX = 400 mm Path OY must be equal to 400 + n(28) Only possible answer is 456 mm (D)
9	Taking moments about the pivot, W $(1.0) = 50 \text{ N} (0.5)$ W = 25 N	19	Amplitude of vibration is minimum at nodes (destructive interference always). Amplitude of vibration is maximum at anti-nodes (constructive interference always).
10	The spring constant k of each spring is $W/3 = kx$ k = W / 3x Now that 2W is hung with 2 springs, then each spring will carry a load of W. Let the new extension be y. For each spring, W = (W / 3x) y y = 3x	20	Charge flows = area under the graph = ½ (100 mA + 20 mA) (8) = 480 mC

Qn	Solution	Qn	Solution
21	Definition of Ohm's Law		
22	The minimum resistance of variable resistor is		
	zero. Hence the p.d. across it is zero.		
	The maximum resistance of variable resistor is		
	50 k Ω . Hence p.d. is		
	V = 9.0 V x 50 kΩ / (50 kΩ + 10 kΩ)		
	= 7.5 V		
23	At 4.0 V, the resistances of P is 4.0 / 1.0 = 4.0 Ω .		
	At 4.0 V, the resistances of Q is 4.0 / 0.5 = 8.0 Ω .		
	The effective resistance of P and Q is (1/4 +		
	$1/8)^{-1} = 2.67 \ \Omega$		
24	Using right hand grip rule for currents in A and C, both		
	magnetic fields at O are pointing towards B (tangent		
	to circular field pattern). So the resultant field will also		
0.5	point in that same direction.		
25	B field due to P is also circular in pattern, which will		
	conficide with current in Q. Since current in Q is		
	applies on Q, there is no force induced.		
26	Distance is halved means that the field strength		
	experienced by each wire is doubled.		
	Both currents are further doubled means that the		
	force experienced by each wire will be 4 times.		
	In total, the force will be 8 times.		
27	Force =		
	$\Delta P = N$ (change in momentum of each photon)		
	$\frac{1}{\Delta t} = \frac{1}{t} \times (\text{change in momentum of each photon})$		
	N(h)		
	$=\frac{\pi}{4} \times \left 2\frac{\pi}{2} \right $		
	$t (\lambda)$		
	Hence rate of photon arrival N		
	Thence have of photon arrival $\frac{1}{t}$		
	(663×10^{-34})		
	$= 2.50 \times 10^{-20} \div 2 \times \frac{0.00 \times 10^{-9}}{580 \times 10^{-9}} =$		
	(500×10)		
	1.1 x 10' s ⁻¹		
28	$ht = eV_s + \Phi$		
	$ev_s = 111 - \Phi$ V = (b/e)f - Φ/e		
	Hence, gradient = h/e		
	h = gradient x e		
	$= eV_1 / (f_1 - f_0)$		
29	$\Phi = hf - eV_s$		
	$= (6.63 \times 10^{-1})(3 \times 10^{\circ})/(150 \times 10^{\circ}) - (1.6 \times 10^{-19}) \times (1.0)$		
	$(1.0 \times 10^{-1}) \times (1.9)$ = 1.022 × 10 ⁻¹⁸ I		
	$= 1.022 \times 10^{-5}$		
	0.7.07		
30	$(h)^2$		
	$1 \qquad n^2 \qquad \left(\frac{n}{2}\right)$		
	$eV = \frac{1}{2}mv^2 = \frac{V}{2m} = \frac{\sqrt{N}}{2m}$		
1			

This means that $V \propto \frac{1}{\lambda^2}$ and hence $\lambda \propto \frac{1}{\sqrt{\lambda}}$	