Yishun Junior College H1 Chemistry Preliminary Examinations 2016

Paper 1 Answers

1	С	7	С	13	В	19	В	25	С
2	С	8	В	14	D	20	D	26	Α
3	В	9	В	15	Α	21	С	27	D
4	В	10	D	16	С	22	В	28	D
5	D	11	В	17	D	23	Α	29	В
6	С	12	Α	18	Α	24	D	30	С

Paper 2 Answers

(ii)

1 (a) (i)
$$C_7H_{16} + 11O_2 \rightarrow 7CO_2 + 8H_2O$$

Bonds **Bonds** kJ mol⁻¹ kJ mol⁻¹ broken formed 14 x C=O 6(+350) 6 x C-C 14(-740) 16(+410) 16 x C-H 16 x O-H 16(-460)11 x O=O 11(+496) Total +14116 [1] Total -17720 **[1]**

1

- (ii) Geometric isomerism arises due to the <u>restricted rotation of the</u> <u>C=C double bond</u> and the presence of <u>2 different groups attached</u> to each of the carbon atoms in the C=C double bond.
 [1]
- (c) F and B are <u>structural isomers</u> (OR have the same molecular formula).
 F is <u>more branched</u> than B and so, it has a <u>smaller surface area</u> of contact. [1]

Hence, <u>less energy</u> is needed to overcome the <u>weaker intermolecular</u> <u>instantaneous dipole-induced dipole</u> interactions for **F**. **[1]**

 (d) Reagent and conditions: KMnO₄, H₂SO₄(aq), heat [1] Observations: Purple KMnO₄ is decolourised and the gas formed gives white precipitate with limewater. [1]
 [2]

[1]

[3]

[1]

[2]

	н	I	
conditions	(a) CCl ₄ solvent OR room temperature	anhydrous FeBr₃ OR Fe catalyst	
	OR		
	(b) UV light		
type of reaction	(a) addition	substitution	
	OR		
	(b) substitution		

any 2 correct – [1] all 4 correct – [2]

(i)

(ii)

(e)

 $K_c = \frac{[HI]^2}{[H_2] [I_2]}$

 H_2 2HI I_2 Initial amt / 8.00 x 10⁻³ 4.00 x 10⁻³ 0 mol Change in amt +6.8 x 10⁻³ -3.4 x 10⁻³ -3.4 x 10⁻³ / mol [1] 4.6 x 10⁻³ Eqm amt / mol 6.0 x 10⁻⁴ 6.8 x 10⁻³ [1] Eqn conc / mol 3.0 x 10⁻⁴ 2.3 x 10⁻³ 3.4 x 10⁻³

$$K_c = \frac{(3.4 \times 10^{-3})^2}{(3.0 \times 10^{-4})(2.3 \times 10^{-3})} = 16.8$$
[1]

(b) (i) By Le Chatelier's principle, the position of equilibrium shifts to the <u>left</u>, favouring the <u>backward endothermic reaction</u>, so as to <u>absorb the heat added</u>.[1]

Hence, [HI] decreases while [I₂] and [H₂] increases, leading to the value of K_c to decrease. [1]

(ii) As the <u>amount of gaseous reactants and products are equal</u>, the <u>position of equilibrium will not shift</u>. Hence, <u>the amount of HI</u> will remain the <u>same</u> at the new equilibrium.
 [1] Total:7

3 (a) (i) $1^{st} t_{1/2}$ (when $[C_6H_5N_2C_l]$ falls from 0.2 to 0.1 mol dm⁻³) = 63 min $2^{nd} t_{1/2}$ (when $[C_6H_5N_2C_l]$ falls from 0.1 to 0.05 mol dm⁻³) = 63 min (+ show both $t_{1/2}$ on graph) [1] Since $t_{1/2}$ is constant, order of reaction wrt $C_6H_5N_2C_l = 1$ [1] [2] (ii) rate equation: rate = k[$C_6H_5N_2C_l$] [1] units for k: min⁻¹ or s⁻¹ [1] [2]

[2]

[1]

[2]

Total: 12

(iii) Since excess water was used in the experiment, the <u>concentration of water is almost constant</u> throughout the experiment. Hence, the reaction rate will not be affected by the concentration of water. [1] (b) Number of molecules T_1 T_2 $T_1 < T_2$

Diagram – [1]

At the higher temperature, the <u>average energy</u> of the reacting particles is <u>increased</u>. Hence the <u>proportion of particles with energy equal to or</u> <u>greater than the activation energy increases</u> significantly as seen in the <u>shaded area in the diagram</u>. **[1]**

In addition, when the temperature of the reactants is increased, their <u>average speeds increase</u> and therefore the frequency of collisions between reacting particles increases. This <u>increases the frequency of effective collisions</u> and consequently the <u>rate constant increases</u> and <u>rate of reaction increases</u>. [1]

[3] Total: 8

[2]

[2]

1	(a)	(i)	$M_r = 385$ [1]

$$\eta_{cholesterol} = \frac{300 \times 10^{-3}}{385} = 7.79 \times 10^{-4} \ mol \ [1]$$
[2]

(ii)
$$\eta_{H_2} = \frac{1}{2} \times 7.792 \times 10^{-4} = 3.896 \times 10^{-4} mol$$
 [1]

$$V_{H_2} = 3.896 \times 10^{-4} \times 24 = 0.00935 \, dm^3 = 9.35 \, cm^3$$
 [1]

(b) Due to the <u>large non-polar hydrocarbon</u> chain, the predominant interactions between cholesterol molecules is <u>intermolecular</u> instantaneous dipole-induced dipole (id-id) interactions. [1]

Hence, the <u>hydrogen bonds formed between cholesterol and water</u> <u>molecules do not give off enough energy</u> to <u>overcome the stronger</u> <u>intermolecular id-id interactions</u> in cholesterol and <u>intermolecular</u> <u>hydrogen bonds</u> in water. **[1]**

- 6 (a) Primary alcohol and carboxylic acid
 - (b) Test: Add 2,4-DNPH to each compound separately. Observation: For ethanedial, orange ppt of hydrazone is observed. For glycolic acid, no orange ppt is observed.

Test: Add Fehling's solution to each compound separately and warm. Observation: For ethanedial, brick-red ppt of Cu_2O is observed. For glycolic acid, no brick red ppt is observed.

CHOCHO + 4 Cu²⁺ + 10 OH⁻
$$\rightarrow$$
 (CO₂⁻)₂ + 2 Cu₂O + 6 H₂O

Test: Add Tollens' reagent to each compound separately and warm. Observation: For ethanedial, silver mirror is observed. For glycolic acid, no silver mirror is observed.

CHOCHO + 4 $[Ag(NH_3)_2]^+$ + 6 OH⁻ \rightarrow (CO₂⁻)₂ + 4 Ag + 8 NH₃ + 4 H₂O or CHOCHO + 4 Ag⁺ + 6 OH⁻ \rightarrow (CO₂⁻)₂ + 4 Ag + 4 H₂O

For each test, correct reagent [1]; correct observations [1]; and correct equation [1] [3m x 2 sets = 6m]

(c) (i) A weak Bronsted acid is one which dissociates partially in solution to donate protons, H⁺.

[1]

[1]

[6]

(ii)

$$K_{a} = \frac{[HOCH_{2}CO_{2}^{-}][H^{+}]}{[HOCH_{2}CO_{2}H]}$$

(iii) Since
$$[CH_2(OH)COO^-] = [H^+]$$
,
 $K_a = \frac{[H^+]^2}{[HOCH_2CO_2H]}$
1.48 x 10⁻⁴ = $\frac{[H^+]^2}{0.20}$
 $[H^+] = 5.44 \times 10^{-3} \text{ mol dm}^{-3}$ [1]
 $pH = -lg (5.44 \times 10^{-3}) = 2.26$ [1] [2]

[1]

(iv) A buffer solution is one which is capable of maintaining a fairly constant pH (by resisting pH change) when small amounts of acid or base is added to it. [1] When small amount of H⁺ is added, $CH_2(OH)COO^- + H^+ \rightarrow CH_2(OH)COOH$ [1m] When small amount of OH⁻ is added, $CH_2(OH)COOH + OH^- \rightarrow CH_2(OH)COO^- + H_2O$ [1m] [3] (d) [1] (i) (e) II -OH ЮH HO [1] Step I: LiA/H₄ in dry ether, r.t.p. [1] Step II: K₂Cr₂O₇(aq), H₂SO₄(aq), heat under distillation [1] [3] (ii) The intermolecular forces of attraction between ethanedioic acid molecules is stronger hydrogen bond [1] while permanent dipole-permanent dipole interaction exists between ethanedial molecules.[1] Hence more energy is needed to overcome the stronger hydrogen bonds between ethanedioic molecules. [2] Total:20 (a) (i) Amount of $H_2SO_4 = 60/1000 \times 1.2 = 0.0720 \text{ mol}$ Amout of $A_{2}O_{3} = 3/102 = 0.0294$ mol H_2SO_4 is the limiting reagent. [1] Amount of $H_2O = 0.0720$ mol $Q' = mc\Delta T = 60 \times 4.2 \times 11.5$ = 2898 J Q = 100/75 x 2898 = 3864 J[1] $\Delta H_n^{\theta} = - \underline{Q}$ $n_{H_{\gamma O}}$ = -3864 / 0.07200= - 53666 J mol⁻¹ [3] = <u>- 53.7 kJ mol⁻¹</u> [1] (ii) Agreed, NaOH may be used as Al_2O_3 is an <u>amphoteric oxide</u>. [1] $Al_2O_3 + 2NaOH + 3H_2O \rightarrow 2Na[Al(OH)_4]$ [1] [2]

7

	(iii)	Since ethanoic acid is a <u>weak acid,</u> some <u>ene</u> <u>dissociate</u> the acid. [1]	rgy is absorbed to				
		The enthalpy change of neutralisation would be that in (ii) / less exothermic.[1]	less negative than	[2]			
(b)	(i)	Shape: trigonal planar [1] Bond angle: 120º [1]		[2]			
	(ii)	AlCl ₄ ⁻ is electron deficient [1].					
		The lone pair of electrons from C <i>l</i> ⁻ is donated in orbital of A <i>l</i> , forming a dative bond.[1]	nto the <u>empty p</u>	[2]			
(c)	(i)	The relative atomic mass of a certain element is defined as the average mass of one atom compared to 1/12 the mass of a ¹² C atom, and is given by:					
	$A_{r} = \frac{\text{average mass of an atom}}{\frac{1}{12} \times \text{mass of an atom of }^{12}C}$						
	(ii)	 Relative atomic mass of aluminium sample = 27(99.9) + 26(0.1) / 100 = 26.999 = 27.0 					
	(iii) (iv)	For the ${}^{27}Al$ atomprotonsneutrons13 [1]14 [1]For its most stable ion, ${}^{27}Al^{3+}$ protonsneutrons1314Al : $1s^22s^22p^63s^23p^1$ Variation of ionisation energy with number of	electrons 13 [1] electrons 10 [1]	[4]			
 Labelled axes [1] No. of ionisation = 13 and generally increasing IE [1] 2 "big jump" : between ionisation number 2 and 3 and ionisation number 11 and 12 [1] 							