2023 H2 Chemistry Preliminary Exams Paper 4 – Suggested Solutions

Qn 1 (a)

Expt	Volume of FA 1 / cm ³	Volume of deionised water / cm ³	t/s	part (c) rate / mol dm ⁻³ s ⁻¹
1	5.0	25.0	29.0	2.46 x 10 ⁻⁵
2	8.0	22.0	16.2	4.41 x 10 ⁻⁵
3	11.0	19.0	12.2	5.85 x 10 ⁻⁵
4	15.0	15.0	9.4	7.60 x 10 ⁻⁵

$$\begin{array}{ll} \text{(b)} & \text{Amount of $S_2O_3^{2^-}$ added} = 0.00500 \times \frac{20}{1000} = 1.000 \times 10^{-4} \text{ mol} \\ & \text{Amount of I_2 reacted with $S_2O_3^{2^-}$ added} = \frac{1}{2} \, x \, 1.000 \times 10^{-4} \\ & = \frac{5.00 \times 10^{-5}}{2} \, \text{mol} \\ & = \text{Amount of I_2 produced just before the} \\ & \text{first appearance of blue-black colour} \\ & \text{Concentration of I_2 in reaction mixture} = 5.00 \times 10^{-5} \div \frac{70}{1000} \\ & = \frac{7.14 \times 10^{-4}}{2} \, \text{mol dm}^{-3} \\ \end{array}$$

(c) See table in part (a).

(d)(i)

rate / 10⁻⁵ mol dm⁻³ s⁻¹

- (d)(ii) Since total volume of reaction mixture is kept constant, volume of **FA 1** is directly proportional to [Fe³⁺] in the mixture. Since the graph is <u>a straight line with a positive gradient, rate is directly proportional to [Fe³⁺], the reaction is first order with respect to Fe³⁺.</u>
 - (e) <u>Agree</u> with student. The <u>reaction time would be longer</u> since more time is required to produce <u>more iodine</u> to react with the <u>larger amount of thiosulfate ions present</u>, and so the percentage error is reduced.
- **(f)(i)** rate = $k[Fe^{3+}][I^{-}]^{2}$
- (f)(ii) From the slow step, the rate equation is: rate = $k'[[FeI]^{2+}][I^-] = k[Fe^{3+}][I^-]^2$. This matches the rate equation for the reaction. Hence the proposed mechanism is consistent with the observed kinetics data.

Qn 2 (a)(i)

Table 2.1

	test	observations
1	Test solution FA 4 with Universal Indicator paper.	UI paper turned orange, pH is 3
2	To 1 cm depth of FA 4 in a clean test- tube, add 1 cm depth of aqueous sodium carbonate.	White ppt formed. Effervescence observed. CO ₂ gas evolved gave a white ppt in limewater.
3	Add 1 cm depth of FA 4 into a clean test-tube. Add aqueous sodium hydroxide, slowly with shaking, until no further change is seen.	White ppt. formed, soluble in excess NaOH(aq) to give a colourless solution.

(a)(ii) Cation: Al^{3+}

Evidence:

In test 2, **FA 4** reacted with Na_2CO_3 to form a white ppt of $Al(OH)_3$ together with the effervescence of CO_2 gas.

 $\cap R$

From test 1 / test 2, **FA 4** contained an acidic ion. Additionally, in test 3, **FA 4** reacted with NaOH to form a white ppt of $Al(OH)_3$ which was soluble in excess NaOH to form the colourless complex ion, $[Al(OH)_4]^-$.

(a)(iii)

	test	observations
ii)	To 1 cm depth of FA 4 , add a few drops of AgNO ₃ .	No ppt / No observable change
	To 1 cm depth of FA 4 in a boiling tube, add 1 cm depth of aqueous NaOH and a piece of A <i>l</i> foil. Heat cautiously.	White ppt formed, soluble in excess NaOH to form a colourless solution. Effervescence of H ₂ was observed.
		Upon heating, pungent NH₃ evolved turned damp red litmus paper blue.

(a)(iv) Anion: NO₃

(b)(i)

Table 2.2

	test	observations
1	To 1 cm depth of neutral iron(III) chloride, add 10 drops of FA 5 and shake the test-tube.	Solution turned violet.
	This solution is FA 6 . Proceed to test 2 using this solution.	

2	To the solution of FA 6 , add aqueous						
	sodium hydroxide dropwise,					W	ith
	shaking,	until	no	further	chang	ge	is
	seen.						

Violet solution decolourised.

Red-brown ppt formed, insoluble in excess NaOH(aq).

(b)(iv)
$$[Fe(H_2O)_6]^{3+} + L^{2-} \rightleftharpoons [Fe(H_2O)_4L]^+ + 2H_2O$$

(b)(v) When NaOH was added, the red-brown ppt of $Fe(OH)_3$ was formed. Thus, the concentration of $[Fe(H_2O)_6]^{3+}$ decreases and the position of equilibrium of the equation in (iv) shifted to the left, decreasing the concentration of $[Fe(H_2O)_4L]^+$ and causing the violet solution to decolourise.

Qn 3

(a)(i)

Dilution of FA 7

Final burette reading / cm ³	30.50
Initial burette reading / cm ³	0.00
Volume of FA 7 used / cm ³	30.50

Titration results

Titration number	1	2
Final burette reading / cm ³	24.20	24.20
Initial burette reading / cm ³	0.00	0.00
Volume of FA 8 used / cm ³	24.20	24.20
Values used (✓)	✓	✓

(a)(ii) Average volume of **FA 8** used =
$$\frac{24.20 + 24.20}{2}$$
 = $\frac{24.20 \text{ cm}^3}{2}$ (2 d.p.)

(b)(i) Amount of MnO₄⁻ ions =
$$\frac{24.20}{1000}$$
 x 0.00500 = $\underline{1.21 \times 10^{-4} \text{ mol}}$ (3 s.f.)

(b)(ii) Amount of Fe²⁺ ions in 250 cm³ of **FA 10**
= 1.21 x 10⁻⁴ x 5 x
$$\frac{250}{25.0}$$

= 6.05 x 10⁻³ mol (3 s.f.)

(b)(iii) Amount of Fe²⁺ ions in 250 cm³ of **FA 7** = 6.05 x
$$10^{-3}$$
 x $\frac{250}{30.50}$ = 0.04959 mol = 0.0496 mol (3 s.f.)

(b)(iv) $\begin{array}{|c|c|c|c|c|} \hline Either \\ Amount of FeO in magnetite \\ = 0.04959 \text{ mol} \\ Mass of FeO \\ = 0.04959 \text{ x } (55.8 + 16.0) = 3.5606 \text{ g} \\ Amount of Fe_2O_3 in magnetite \\ = 0.04959 \text{ mol} \\ \hline \end{array}$

Mass of Fe₂O₃
=
$$0.04959 \times (2(55.8) + 3(16.0))$$

= 7.9146 g
Mass of magnetite in sample **A**
= $3.5606 + 7.9146 = 11.4752 \text{ g}$

Percentage by mass of magnetite in sample A

$$= \frac{11.4752}{15.0} \times 100$$
$$= \frac{76.5\%}{100} (3 \text{ s.f.})$$

- E^{\odot}_{cell} = +1.33 (0.77) = +0.56 V (c)(i) Since E^{Θ}_{cell} is > 0, reaction is feasible.
- The titration result may be inaccurately determined as the end-point colour change is (c)(ii) not distinct. It is difficult to detect one drop of excess orange K₂Cr₂O₇ solution in a vellow-green solution (containing Fe³⁺ & Cr³⁺).
- Percentage error = $\frac{6.03-5.95}{6.03}$ x 100 = 1.33% (d)(i)
- The student performed the experiment well as the calculated percentage error is less (d)(ii) than the maximum percentage error of the whole experimental procedure.

Qn 4

Let V cm³ be the volume of solution **B** (containing Al^{3+}) and (60.0 – V) cm³ be the volume (a) of solution **Z** (containing Na⁺) used at which stoichiometric amount of Al³⁺ and Na⁺ react.

Amount of Al3+ in V cm3 of solution B = Amount of Na⁺ in (60.0 - V) cm³ of solution Z

$$\frac{V}{1000}$$
 x 0.120 = $\frac{60 - V}{1000}$ x 0.075
0.120V = 4.5 - 0.075V
V = 23.1 cm³

Approximate equivalence volume of solution $\mathbf{B} = 23.1 \text{ cm}^3$

(b)	Experiment	volur solution / c		initial temperature of solution	highest temperature of resultant	Δ <i>T</i> / °C
		Z	В	Z/°C	solution /°C	
	1	50.0	10.0			
	2	45.0	15.0			
	3	42.0	18.0			
	4	40.0	20.0			
	5	38.0	22.0			
	6	36.0	24.0			
	7	34.0	26.0			
	8	30.0	30.0			
	9	25.0	35.0			_
	10	20.0	40.0			_

Procedure

- 1. Using a 50 cm³ measuring cylinder, measure 50.0 cm³ of solution **Z** into a clean and dry Styrofoam cup supported in a 250 cm³ beaker.
- 2. Use a thermometer to measure and record the steady initial temperature of solution **Z**.
- 3. Using another 50 cm³ measuring cylinder, measure 10.0 cm³ of solution **B**.
- 4. Add solution **B** from the measuring cylinder to solution **Z** in the cup, use the thermometer to stir the mixture gently. Measure and record the highest temperature of the resultant solution.
- 5. Empty, wash and carefully dry the cup.
- 6. Repeat steps 1 to 5 using volumes of solution **Z** and solution **B** in the table above so that the total volume of the mixture is 60.0 cm³.
- 7. Record the temperature increase, ΔT , for each experiment by taking highest temperature initial temperature.

(d) Stoichiometric amount of Al3+ to react with Na+

$$=\frac{V_{eq}}{1000} \times 0.120 \text{ mol}$$

= Amount of Na+

$$\begin{split} \left[\text{Na}^{+}\right] &= \frac{\frac{V_{\text{eq}}}{1000} \times 0.120}{\frac{60.0 - V_{\text{eq}}}{1000}} \\ &= \frac{0.120 \, V_{\text{eq}}}{(60.0 - V_{\text{eq}})} \, \, \text{mol dm}^{-3} \end{split}$$

$$q = \frac{60.0 \times 4.18 \times \Delta T_{eq}}{1000} \text{ kJ}$$

$$\Delta H_{\text{reaction}} = -\frac{\frac{60.0 \times 4.18 \times \Delta T_{\text{eq}}}{1000}}{\frac{V_{\text{eq}}}{1000} \times 0.120}$$
$$= -\frac{\frac{2090 \Delta T_{\text{eq}}}{V_{\text{eq}}} \text{ kJ mol}^{-1}$$