SEC 4 EXPRESS – CHEMISTRY 6092 PRELIM EXAM 2023 – ANSWERS

<u> Paper 1 – MCQ</u>

1	В	11	Α	21	В	31	С
2	С	12	С	22	С	32	D
3	В	13	В	23	В	33	Α
4	В	14	Α	24	С	34	В
5	В	15	С	25	D	35	В
6	С	16	С	26	D	36	С
7	В	17	Α	27	С	37	С
8	С	18	D	28	Α	38	В
9	Α	19	В	29	В	39	Α
10	D	20	С	30	D	40	В

No	Suggested Answers	Marks		
A1(a)	(i) D	[3]		
	(ii) B	F 1		
	(iii) A			
	<u>/</u>			
	In general, part (i) and (iii) are not done well. Most students did not relate			
	metal with low melting point as group I element.			
A1(b)	E has approved stable noble and configuration / full valence shall of	[4]		
	electrons [1/2]	ניז		
	Hence F does not have to gain lose or share electrons [1/2]			
	nonce, 2 <u>doco not navo to gam, tobo or <mark>onaro</mark> otocitono</u> . [<i>n2</i>]			
	Most students find it challenging to relate why atom reacts as "gain/lose or			
	share" electrons.			
A2(a)	Carbon dioxide has a simple molecular structure [1/2] where discrete	[3]		
	molecules are held together by weak intermolecular forces of			
	attraction [1/2]. Little amount of energy is required to overcome these			
	<u>forces</u> [1/2].			
	Silicon dioxide has a giant molecular structure [1/2] where atoms are			
	held together by strong covalent bonds [1/2]. Large amount of energy			
	is required to break these bonds [1/2].			
	Honce, carbon dioxide has a lower molting point than silicon dioxide			
	Hence, <u>carbon dioxide has a lower meiting point than silicon dioxide</u> .			
A2(b)	(i)	[4]		
	Na J C J Electron from sodium			
	Electron from oxygen			
	Correct number of charges for each ion – [1]			
	Correct valence electrons drawn for each ion – [1]			
	(ii) Na ₂ O contains ionic bonds / involves transfer of electrons			
	from Na to O [1/2] where oppositely charged ions are held			
	together by strong electrostatic forces of attraction [1/2].			
	Common error: atoms instead of ions are mentioned for Na ₂ O.			
	Cl ₂ O involves sharing of valence electrons [1/2] where atoms			
	are held together by strong covalent bonds [1/2].			
	Accept: contains covalent bonds (alternative for marking point on			
	"sharing of valence", if students did not mention "atoms are held			
	together by strong covalent bonds"			

	Most students compare differences in structure which is not	
	required in the question.	
A3(a)	(i)T: iron(II) chloride(ii)U: carbon dioxide(iii)V: iron(II) hydroxide(iv)W: silver chloride	[4]
	Also accept chemical formulae	
A3(b)	Mixture S likely contains <u>iron(II)</u> , <u>carbonate</u> and <u>nitrate</u> ions. All three ions must be correct. Also accept formulae of ions: Fe^{2+} , CO_3^{2-} , NO_3^{-} Reject: chloride (could have come from hydrochloric acid)	[1]
A3(c)	$\begin{array}{l} \text{CO}_2 + \text{Ca}(\text{OH})_2 \longrightarrow \text{Ca}\text{CO}_3 + \text{H}_2\text{O} \\ \text{Fe}^{2+}(\text{aq}) + 2\text{OH}^-(\text{aq}) \longrightarrow \text{Fe}(\text{OH})_2(\text{s}) \\ \text{Ag}^+(\text{aq}) + \text{C}l^-(\text{aq}) \longrightarrow \text{Ag}\text{C}l(\text{s}) \\ \text{CO}_3^{2-}(\text{aq}) + 2\text{H}^+(\text{aq}) \longrightarrow \text{CO}_2(\text{g}) + \text{H}_2\text{O}(l) \\ \end{array}$ $\begin{array}{l} \text{Accept any of the above or any other possible reactions.} \\ \text{Common error: incorrect formulae of silver chloride, iron(II) nitrate etc} \end{array}$	[1]
A4(a)	Repeat the experiment with known titre value without adding indicator [1/2] Also accept answer if students wrote the procedures with values indicated (e.g. 25.0 cm³ of LiOH added to) Heat the mixture until a saturated solution is formed. [1/2] Cool the solution for crystals to form. [1/2] Filter the mixture to obtain the crystals. Dry the crystals between sheets of filter paper. [1/2]	[2]
A4(b)	Magnesium hydroxide is <u>sparingly soluble / insoluble in water</u> . / It is <u>difficult to determine the end-point of the neutralisation</u> (when magnesium hydroxide exists as a solid). OR <u>Mixture that is formed may contain excess acid</u> . [1] Reject: reaction between magnesium hydroxide and acid is reactive/unsafe.	[1]
A4(c)	Moles of hydrochloric acid = $2.70 \times (22.50/1000)$ = 0.06075 mol [1] Since hydrochloric acid and lithium hydroxide reacts in 1:1 ratio, moles of lithium hydroxide = 0.06075 mol Concentration of lithium hydroxide = $0.06075 \div (25/1000)$ = 2.43 mol/dm^3 [1]	[2]

A5(a)	Both melting points and boiling points of elements increase [1/2] down Group VII.	[2]
	Down Group VII, the <u>intermolecular forces of attraction increases</u> [1/2] as the <u>molecular size of halogen increases</u> [1/2]. Hence, a <u>larger</u> <u>amount of energy</u> is required to <u>overcome</u> these forces of attraction. [1/2]	
	misconception: students relate the increase in mp/bp to within the atom itself, where a larger amount of energy is required to overcome electrostatic forces of attraction between nucleus and valence electron (down the group)	
A5(b)	 (i) <u>Fluorine / chlorine</u> [1], as <u>they are more reactive than bromine</u> [1/2], and <u>can displace</u> <u>bromine</u> from its aqueous solution [1/2]. 	[3]
	(ii) <u>F₂(aq) + 2Br⁼(aq) → Br₂(aq) + 2F⁼(aq)</u> OR	
	<u>C/₂(aq) + 2Br=(aq) → Br₂(aq) + 2C/=(aq)</u> [1]	
	not penalised for missing /incorrect state symbols in this exam	
A6(a)	 transition elements exhibit <u>variable oxidation states in their</u> <u>compounds / form compounds that have variable oxidation</u> states [1] 	[2]
	 transition elements can <u>form coloured compounds</u> [1] 	
A6(b)	(i) <u>CuO gained electrons and reduced to form Cu₂O</u> OR <u>Cu²⁺ in CuO</u> gained electrons and reduced to form Cu [±] in Cu ₂ O. [1]	[2]
	 (ii) The <u>oxidation state of oxygen in CuO increases from -2 in</u> <u>CuO to 0 in O₂</u>. [1] 	
A6(c)	(i) Blue solution turned green / pale green [1/2]	[4]
()	(not colourless)	•••
	Reddish-brown / pink deposits can be observed. [1/2]	
	Iron is more reactive than copper, [1/2] hence iron will	
	displace copper from its aqueous solutions. [1/2]	
	<u>Fe + CuSO₄ → FeSO₄ + Cu</u> [1]	
	(ii) <u>Electrolysis / using electricity</u> . [1]	

A7(a)	An <u>electrolytic cell</u> converts <u>electrical energy to chemical energy</u> , [1/2] while a <u>simple chemical cell</u> converts <u>chemical energy to</u> <u>electrical energy</u> . [1/2] An <u>electrolytic cell requires batteries / electric cells</u> , [1/2] while a <u>simple chemical cell requires a continuous supply of reactants</u> . [1/2] Reject: simple cell does not require batteries	[2]
A7(b)	(i)cathode: $\underline{Cu}^{2+}(\underline{aq}) + \underline{2e}^{-} \rightarrow \underline{Cu}(\underline{s})$ [1] no state symbol minus $\frac{1}{2}$	[2]
	(ii) anode: $\underline{4OH^{=}(aq)} \rightarrow \underline{2H_{2}O(l) + O_{2}(g) + 4e^{-}}$ [1]no state symbol minus $\frac{1}{2}$	
A7(c)	 Accept any two observations below [1/2 mark each]: <u>Effervescence</u> could be observed at the <u>anode</u> <u>Reddish-brown/pink deposits</u> could be observed at the <u>cathode / cathode increases in size</u> <u>Blue electrolyte turns colourless</u> 	[2]
	Accept any two matching explanation [1/2 mark each]: - <u>hydroxide ions are discharged at the anode to form oxygen</u> gas - copper(II) ions are discharged at the cathode to form copper	
	<u>metal</u> <u>- concentration of copper(II) ions decreases</u>	
	Common error: students did not EXPLAIN the observations as stated in the question	
A7(d)	Zinc could have reacted with water in the aqueous copper(II) nitrate to form hydrogen gas.	[1]
	This question is poorly attempted. Candidates are not sensitise to the occurrence of side reaction (e.g. between metal and water to produce hydrogen gas as one of the products)	
	 Common error: zinc is above hydrogen and hence hydrogen is preferentially discharged. note that this is not possible when zinc is the ANODE, which will be oxidised. hydroxide ions are discharged at anode (not possible as anode is ZINC/reactive electrode) 	

A8(b)	Total energy required for bond breaking = (2 x 2 x 364) + (3 x 498)	[3]
	= <u>2950 kJ</u> [1]	
	Total energy released during bond forming = $(2 \times 2 \times 464) + (2 \times 2 \times X)$	
	= <u>(1856 + 4X) kJ</u> [1]	
	Enthalpy change of the reaction = –1034 kJ +2950 – 1856 – 4 X = –1034 kJ	
	+1094 – 4 X = -1034 kJ X = 532 kJ [1]	
	Also accept X = 532 kJ/mol	
	Allow e.c.f. for total energy calculated for bond breaking and bond forming.	
	Some candidates find it challenging to count the number of bonds to break/form, and should have made reference to the balanced chemical equation given. Some students mixed up the signs (+/-) required during calculation for enthalpy change for bond breaking (+) and enthalpy change for bond forming (-).	

r	

Paper 2 – Section B

No	Sugge	ested Answers	Marks
B9(a)	(i)	Biofuel is carbon neutral as there is <u>no net gain/loss in the</u> <u>amount of carbon</u> released to the environment [1]	[3]
		Biofuel <u>contains carbon that comes from biomass of</u> <u>animals/ the uptake of carbon dioxide by plants</u> [½] during photosynthesis, and <u>releases carbon in the form of carbon</u> <u>dioxide during the combustion of biofuel</u> . [½]	
	Most o relates gain/lo	candidates have no concept of the carbon cycle. A large number s 'neutral' to 'neither acidic nor alkaline' instead of 'no net oss in carbon'	
	(ii)	Process 1 should include processes to <u>remove any acid</u> impurities before transesterification process. [1]	
B9(b)	(i)	Transesterification is the <u>reaction between fats/ oils/ esters</u> (NOT carboxylic acid) <u>and alcohols</u> [1/2] <u>to form esters/</u> <u>biodiesel and glycerol/alcohol</u> , [1/2] in the presence of catalyst. (<i>not insisted</i>)	[4]
		reject: when students copy directly from the question info	
	(ii)	Vegetable oils are called tri-esters as there are <u>three ester</u> <u>linkages (accept: 3 ester 'functional groups')</u> [1/2] present <u>per</u> <u>molecule</u> . [1/2]	
		Also accept: three fatty acids linked to one glycerol per molecule	
		reject: one molecule of vegetable oil can form 3 ester molecules	
	(iii)	Structure of one molecule of biodiesel:	
		О Н₃С—О—С Ш	
		Also accept if full displayed structural formula is shown Correctly drawn one ester linkage – [1] All other atoms – [1]	
B9(c)	Preser cataly	nce of acid in the waste vegetable oil will <u>inactivate / make the</u> st ineffective / neutralise / remove KOH. [1]	[2]

	This slows down / reduces the speed of reaction . [1] Therefore, longer time is required for its conversion.				
	Also accept: acid reacts with the alcohol (i.e. methanol), hence there is less methanol presence to react with vegetable oils to form biodiesel.				
B9(d)	Fermentation is a slow process , [1] requiring specific conditions (i.e. yeast, glucose solution, temperature of 37°C, absence of oxygen)	[1]			
B9(e)	Yes, biofuel is a better source of fuel than fossil fuel. (no mark is awarded without justification)	[2]			
	This is because biofuel is biodegradable [1/2] when released into the environment (e.g. oil spill) and produces less air pollutants [1/2] as it is less likely to be involved in incomplete combustion compared to fossil fuel. <i>Also accept: renewable compared to fossil fuel [max 1/2]</i>				
	However, biofuel produces less amount of energy per mass of fuel [1/2] compared to fossil fuel and requires crops to be grown for fuel implying that more energy is involved in the production process . [1/2]				
	To also justify on why biofuel is not a better source of fuel than fossil fuel				
	To reject: "more crops to be grown for fuel" as <mark>students should unpack the implication.</mark>				
	To reject: "take a shorter time to form"; time factor does not make a fuel				
B10(a)	(i) - <u>differ from the next member by a –CH₂ group</u>	[4]			
B10(a)	 (i) - <u>differ from the next member by a -CH₂ group</u> contain the <u>same functional group</u> show <u>trend in physical properties</u> (down the series) (reject: different physical properties) <u>similar chemical properties</u> (within the series) (accept any two) - [2] 	[4]			
B10(a)	 (i) - <u>differ from the next member by a -CH₂ group</u> contain the <u>same functional group</u> show <u>trend in physical properties</u> (down the series) (reject: different physical properties) <u>similar chemical properties</u> (within the series) (accept any two) - [2] (ii) Test: To a portion of the sample, <u>add aqueous bromine /</u> <u>bromine water</u>. [1] (minus ½ if aqueous is not stated) note: students need to describe the test (reject: bromination) 	[4]			
B10(a)	 (i) - <u>differ from the next member by a -CH₂ group</u> - contain the <u>same functional group</u> - show <u>trend in physical properties</u> (down the series) (reject: different physical properties) - <u>similar chemical properties</u> (within the series) (accept any two) - [2] (ii) Test: To a portion of the sample, <u>add aqueous bromine /</u> <u>bromine water</u>. [1] (minus ½ if aqueous is not stated) note: students need to describe the test (reject: bromination) Result: <u>Reddish-brown</u> aqueous bromine/ bromine water [1/2] 	[4]			
B10(a) B10(b)	 (i) - <u>differ from the next member by a -CH₂ group</u> - contain the <u>same functional group</u> - show <u>trend in physical properties</u> (down the series) (reject: different physical properties) - <u>similar chemical properties</u> (within the series) (accept any two) - [2] (ii) Test: To a portion of the sample, <u>add aqueous bromine /</u> <u>bromine water</u>. [1] (minus ½ if aqueous is not stated) note: students need to describe the test (reject: bromination) Result: <u>Reddish-brown</u> aqueous bromine/ bromine water [1/2] <u>decolourises/turns colourless</u> [1/2] Both methyne and methene contains carbon-carbon triple bond and carbon-carbon double bond respectively. 	[4]			
B10(a) B10(b)	 (i) - differ from the next member by a -CH₂ group contain the same functional group show trend in physical properties (down the series) (reject: different physical properties) similar chemical properties (within the series) (accept any two) - [2] (ii) Test: To a portion of the sample, add aqueous bromine / bromine water. [1] (minus ½ if aqueous is not stated) note: students need to describe the test (reject: bromination) Result: Reddish-brown aqueous bromine/ bromine water [1/2] decolourises/turns colourless [1/2] Both methyne and methene contains carbon-carbon triple bond and carbon-carbon double bond respectively. 	[4]			

	(ii) <u>oxidation</u> is involved. [1]	
	acidified potassium manganate(VII) / acidified potassium dichromate [1] (minus ¹ / ₂ if acidified is not stated)	
	reject: oxygen gas from the atmosphere	
F '4		
Eitner B11(a)	Atom economy	[2]
	$= (3 \times 2) \div (28 + 6) \times 100\%$	[~]
	= 17.647	
	= <u>17.6 % (3 sig.fig)</u> [1]	
	Correct M _r of useful product determined – [1/2]	
	Correct M_r of products determined – [1/2]	
B11(b)	Increasing the pressure <u>will not increase the equilibrium yield of</u> hydrogen [1/2] but increase the rate of formation of hydrogen [1/2]	[3]
	··· ··································	
	Only the number of particles per unit volume will increase , [1/2]	
	effective collisions. [1/2]	
	The total number of particles present in the reaction remains the	
	same. [1] (Many missed this point)	
D44()		101
B11(C)	(i) $63728 = 2.25$ times greater [1] (Many days an integer value)	[3]
	(ii) A lower temperature implies that the <u>rate of reaction will be</u>	
	slower, [1] and a higher pressure is more costly/ more	
	difficult to maintain [1].	
B11(d)	I he demand for ammonia has increased as more fertilisers are required for agriculture [1] and for various industrial applications	[2]
	like making of plastics, explosives, and synthetic fibres. [1]	
	(at least two reasons)	
	(rej: lab requires aqueous ammonia)	

0		
Or B11(a)		[4]
БП(а)	$\underline{2}H_2O_2(\underline{\mathbf{aq}}) \longrightarrow \underline{2}H_2O(l) + \underline{1}O_2(\mathbf{g})$	ניז
	Also accept if coefficient for oxygen gas is left empty	
B11(b)	Use a fixed mass of catalyst at each time (e.g. 1 g) – [1]	[2]
	Place the conical flask in a water bath to maintain at constant temperature. – [1] Note that temperature will affect rate of reaction Also accept any other reasonable answer	
B11(c)	(i) The <u>rate of reaction will decrease</u> [1].	[7]
	Coarse manganese(V) oxide power has a <u>smaller surface</u> <u>area</u> [1] compared to fine manganese(V) oxide power for particles to react with. Hence, particles will have a <u>lower frequency of collisions [½]</u> , <u>leading to a lower frequency of effective collisions</u> . [½] (ii) Expected curve should end after 9 min:	

