2022 H2 Maths JC1 Lecture Test 2 Solution (Student Copy)

Question 1 [6 marks] AP/GP Let a_n be the amount of gold received for logging in on the n^{th} day. Then $a_1 = 100$, $a_2 = 130$, $a_3 = 160$, ... Which forms an arithmetic progression. $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$ $900 \le \frac{n}{2} [2(100) + (n-1)(30)]$ $0 \le 15n^2 + 85n - 900$ $n \ge 5.41$ or $n \le -11.1$ (rej) Therefore, it will take 6 days. Let b_n be the amount of XP received for completing the (b)i. quest on the n^{th} time. Then $b_1 = 1400$, $b_2 = 1400(0.9)$, $b_3 = 1400(0.9)^2$, ... Which forms a geometric progression. Thus $S_n = \frac{a(1-r^n)}{1-r}$ $=\frac{1400\left(1-0.9^{10}\right)}{1-0.9}$ = 9118.501839 Therefore, 9120 XP (3 s.f.) would be earned (b)ii. Maximum XP is the amount earned if played infinitely many times. $S_{\infty} = \frac{a}{1 - r}$ =14000The maximum theoretical amount of XP to be earned is 14 000 XP

Question 2 [8 marks] MOD and Sigma Notation		
(i)	f(n+1)-f(n)	
	$= \ln\left(\frac{1}{n+1}\right) - \ln\left(\frac{1}{n}\right)$ $= \ln\left(\frac{\frac{1}{n+1}}{\frac{1}{n}}\right)$ $= \ln\left(\frac{n}{n+1}\right)$	
(ii)	$\sum_{n=1}^{N} \ln \left(\frac{n}{n+1} \right)$	
	$=\sum_{n=1}^{N}f(n+1)-f(n)$	
	$= \begin{bmatrix} f(2)-f(1) \\ +f(3)-f(2) \\ \dots \\ +f(N)-f(N-1) \\ +f(N+1)-f(N) \end{bmatrix} n = 1 \\ n = 2 \\ \dots \\ n = N-1 \\ n = N$	
	$ \begin{vmatrix} = & \dots & \dots \\ +f(N)-f(N-1) & n=N-1 \end{vmatrix} $	
	$\left[+f(N+1)-f(N) \right] n=N$	
	=-f(1)+f(N+1)	
	$=-\ln\left(1\right)+\ln\left(\frac{1}{N+1}\right)$	
	$=-\ln\left(N+1\right)$	
(iii)	$\sum_{n=1}^{\infty} \ln \frac{n}{n+1} = \lim_{N \to \infty} \sum_{n=1}^{N} \ln \frac{n}{n+1}$	
	$=\lim_{N\to\infty}-\ln\left(N+1\right)$	
	$=-\infty$ Hence, the series diverges	
(iv)	$\sum_{n=5}^{2N} \ln\left(\frac{n}{n+1}\right) = \sum_{n=1}^{2N} \ln\left(\frac{n}{n+1}\right) - \sum_{n=1}^{4} \ln\left(\frac{n}{n+1}\right)$	
	$=-\ln(2N+1)+\ln 5$	
	$=\ln\left(\frac{5}{2N+1}\right)$	

Question 3 [8 marks] Graphing Techniques		
(i)	$y = \frac{ax^2 - 4x + 7}{b - x}$	
	with asymptotes $y = -x + 3$ and $x = -1$	
	By observation, $b=1$, $a=1$	
	$y = \frac{x^2 - 4x + 7}{1 - x} = -x + 3 + \frac{4}{1 - x}$	
	1-x $1-x$	
(ii)	Consider the points of intersection between $y = k$ and	
	$y = \frac{x^2 - 4x + 7}{1 - x} .$	
	1-x	
	$k = \frac{x^2 - 4x + 7}{1 - x}$	
	- "	
	$0 = x^2 + (k-4)x + (7-k)$	
	For no points of intersection,	
	$(k-4)^2-4(1)(7-k)<0$	
	$k^2 - 8k + 16 + 4k - 28 < 0$	
	$k^2 - 4k - 12 < 0$	
	(k-6)(k+2) < 0	
	-2 < k < 6	
	Therefore, there are no y values between –2 and 6.	
(iii)	y	
	y = -x + 3	
	$y = -x + 3$ $y = \frac{x^2 - 4x + 7}{1 - x}$	
	$A \downarrow i$ $1-x$	
	B	
	N. T. C.	
	A(0.7)	
	A(0,7)	
	B(-1,6)	
	C(3,-2)	

$\downarrow \quad \text{Replace } y \text{ with } \frac{y}{3}$

Question 4 [8 marks] Graphing Transformations

Scale parallel to y-axis, with factor 3

$$x^2 + \left(\frac{y}{3}\right)^2 = 1$$

 $x^2 + y^2 = 1$

(a)

Replace y with y + 1

Translate 1 unit in the negative y-direction

$$x^2 + \frac{(y+1)^2}{9} = 1$$

Alternatively: $x^2 + y^2 = 1$

$$x^2 + y^2 = 1$$

Replace y with $y + \frac{1}{3}$

Translate $\frac{1}{3}$ units in the negative y – direction

$$x^2 + \left(y + \frac{1}{3}\right)^2 = 1$$

 $\downarrow \quad \text{Replace } y \text{ with } \frac{y}{3}$

Scale parallel to y-axis, s.f. 3

$$x^2 + \left(\frac{y}{3} + \frac{1}{3}\right)^2$$

$$x^2 + \frac{(y+1)^2}{9} = 1$$

(b)i. y = f(x)

Replace x with x-1

Translate 1 unit in the positive x – direction

$$y = f(x-1)$$

Replace x with $\frac{x}{2}$

Scale parallel to x-axis, with factor 2

$$y = f\left(\frac{x}{2} - 1\right)$$

