1	Solution [4] I	nequali	ties
	For $(1-k)x^2$	$-\sqrt{24}x$	$k-k\leq 0$,
			Discriminant < 0
	1 - k < 0	&	$\left(-\sqrt{24}\right)^2 - 4\left(1-k\right)\left(-k\right) < 0$
	<i>k</i> > 1	&	$24 + 4k - 4k^2 < 0$
	<i>k</i> > 1	&	$k^2 - k - 6 > 0$
	<i>k</i> > 1	&	(k-3)(k+2) > 0
	k > 1 taking interse	& ection,	k < -2 or k > 3
	<i>k</i> > 3		

2	Solution [7] Differentiation & Integration Techniques	
(i)	Let $y = (1 - 2x)^{\frac{3}{2}}$	
	$\frac{dy}{dx} = \frac{3}{2}(-2)(1-2x)^{\frac{1}{2}} = -3(1-2x)^{\frac{1}{2}}$	
(ii)	$\int \frac{1}{\sqrt{1-2x}} \mathrm{d}x = \int (1-2x)^{-\frac{1}{2}} \mathrm{d}x$	
	$=\frac{(1-2x)^{\frac{1}{2}}}{\frac{1}{2}(-2)}+c$	
	$=-\sqrt{1-2x}+c$	
(iii)	6x - 5 = -3(1 - 2x) - 2	
	$\int \frac{6x-5}{\sqrt{1-2x}} dx = \int \frac{-3(1-2x)-2}{\sqrt{1-2x}} dx$	
	$= \int -3\sqrt{1-2x} - \frac{2}{\sqrt{1-2x}} \mathrm{d}x$	
	$= \int -3\sqrt{1-2x} \mathrm{d}x - 2\int \frac{1}{\sqrt{1-2x}} \mathrm{d}x$	
	$= (1 - 2x)^{\frac{3}{2}} - 2(-\sqrt{1 - 2x}) + c$	
	$= (1 - 2x)^{\frac{3}{2}} + 2\sqrt{1 - 2x} + c$	

3	Solution [8] Solving Equations using GC	
3 (i)	Solution [8] Solving Equations using GC $y = \frac{x}{4} - e^{\frac{x}{2}} + 8 \implies \frac{dy}{dx} = \frac{1}{4} - \frac{1}{2}e^{\frac{x}{2}}$ for stationary points, let $\frac{dy}{dx} = 0$ $\frac{1}{4} - \frac{1}{2}e^{\frac{x}{2}} = 0$ $e^{\frac{x}{2}} = \frac{1}{2}$	
	$\frac{x}{2} = \ln(\frac{1}{2})$	
	$x = \ln\left(\frac{-}{4}\right)$ or $-\ln 4$	
(ii)	$y = 8 - \frac{9}{(-32,0)}$ $y = 8 - \frac{9}{(-32,0)}$ $y = \frac{1}{(-32,0)}$ $y = \frac{1}{(-32,0)}$ $y = \frac{1}{(-32,0)}$ $y = \frac{1}{(-32,0)}$	
(iii)	$\frac{x}{4} - e^{\frac{x}{2}} = -\ln(-x)$ $\frac{x}{4} - e^{\frac{x}{2}} + 8 = 8 - \ln(-x)$ Sketch y = 8 - ln(-x) from GC,	
	x = -8.51 or -2.48	

(ii)	$y = 3 + 2e^{1-2x}$	
	$\frac{dy}{dx} = 2(-2)e^{1-2x} = -4e^{1-2x}$	
	When $x = 2$,	
	$y = 3 + 2e^{1-2(2)} = 3 + 2e^{-3}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -4\mathrm{e}^{1-2(2)} = -4\mathrm{e}^{-3}$	
	Equation of tangent at $x = 2$:	
	$y - (3 + 2e^{-3}) = -4e^{-3}(x - 2)$	
	$y = -4e^{-3}x + 8e^{-3} + 3 + 2e^{-3}$	
	$=-4e^{-3}x+(3+10e^{-3})$	
(iii)	Required area	
	$= \int_0^2 \left(3 + 2e^{1-2x}\right) - \left(-4e^{-3}x + 3 + 10e^{-3}\right) dx$	
	= 2.07105	
	$\approx 2.07 \text{ units}^2$	

5
 Solution [13] Graphing + Application of Differentiation

 (i)

$$x = 30m^3 - 585m^2 + 1980m + 12000$$
 $\frac{dx}{dm} = 90m^2 - 1170m + 1980$

 At stationary point,

 $\frac{dx}{dm} = 0$
 $90m^2 - 1170m + 1980 = 0$
 $m = \frac{1170 \pm \sqrt{(1170)^2 - 4(90)(1980)}}{2(90)}$
 $= \frac{1170 \pm 810}{2(90)}$
 $= 2$ or 11

 When $m = 2$, $x = 13860$

 When $m = 11$, $x = 2925$
 $\frac{dx}{dm} = 90m^2 - 1170m + 1980$
 $\frac{d^2x}{dm^2} = 180m - 1170$

	2	
	When $m = 2$, $\frac{d^2 x}{dm^2} = -810(<0)$	
	(2,13860) is a maximum point	
	When $m = 11$, $\frac{d^2 x}{dm^2} = 810 (>0)$	
	(11,2925) is a minimum point	
(ii)	$\frac{72}{(2,13860)} = 30m^{3} - 585m^{2} + 1950m^{2}}{(12,3360)}$ $\frac{(12,3360)}{(11,2925)}$	+ 12000
	m m	
(iii)	Required area	
	$= \int_{0}^{12} (30m^{3} - 585m^{2} + 1980m + 12000) dm$ = 105120 The total production of fishballs by Todo Fishball Company	
	for the fiscal year 2021 is 105120 kg .	
(iv)	When $d = 0$, $v = 40 - 5 = 35$	
(1)	Therefore, an employee produces 35 kg of fishball immediately after the training programme.	
(v)	HORHAL FLOAT AUTO REAL RADIAN HP $40^{-40}_{-50}_{-50}_{-2$	

Section B: Statistics [60 marks]

6	Solution [6] Probability	
(i)	First throw 2nd throw	
	0.9 Hit	
	0.8 Hit p. 1 no hit	
	0.2 Nohit 0.8 Hit	
	0.2 no hit	
(ii)	P(hit bull's-eye in his 2^{nd} throw) = 0.8 x 0.9 + 0.2 x 0.8 = 0.88	
(iii)	P(hit bull's-eye on 1 st throw hits bull's-eye on 2 nd throw)	
	$=\frac{0.8 \times 0.9}{1000}$	
	0.88	
	$=0.818$ (or $\frac{9}{11}$)	

7	Solution [6] Permutations and Combinations	
(i)	Required number of 7-letter code-words = $5^7 = 78125$	
	(each of blank _ can be filled by any of the 5 letters AUXYZ)	
(ii)	Required number of 7-letter code-words = $4^6 = 4096$	
	E.g. $AUX\underline{Z}AUX$ or $AUX\underline{Z}UXY __\underline{Z}__$ (each of blank can be filled by any 4 of the letters A, U, X, Y)	
(iii)	[Note: The first 4 letters A, U, X, Y are fixed. There is only one way to do/fix that.]	
	For ***.	
	choose 1 letter from 5 to be identical: $\begin{pmatrix} 5\\1 \end{pmatrix}$,	
	then from remaining 4 choose 1 to be the different letter: $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$	
	(e.g. AAU, UUX, UXX etc)	
	\therefore No. of ways = $\binom{5}{1} \times \binom{4}{1} = 20$	
	$\mathbf{OR} \begin{pmatrix} 5\\2 \end{pmatrix} \times \begin{pmatrix} 2\\1 \end{pmatrix} = 20$	

	(i.e. choose 2 letters from 5, then from the 2 chosen decide which 1 to be the identical.)	
(iv)	Case 1 : all 3* identical letters (<i>AAA</i> , <i>UUU</i> , <i>XXX</i> , <i>YYY</i> or <i>ZZZ</i>) No. of ways = 5	
	Case 2 : 2* identical, 1 different letter No. of ways = 20 (from part (iii))	
	Case 3 : all 3* different (<i>AUX</i> , <i>UXZ</i> etc) No. of ways = $\begin{pmatrix} 5 \\ 3 \end{pmatrix} = 10$	
	Required number of codewords $= 5+20+10 = 35$	

8	Solution [9] Binomial distribution	
(i)	Each student has the same probability of 0.08 of being left- handed.	
	The event that a student is left-handed is independent of another student.	
(ii)	Expected number = $30 \times 50 \times 0.92 = 1380$ students	
(iii)	Let <i>X</i> be the number of left-handed students in a class of 30. <i>X</i> ~ $B(30,0.08)$	
	Probability = $P(X \ge 4)$	
	$=1-P(X\leq3)$	
	=1-0.784206	
	= 0.215794	
	= 0.216 (3 s.f.)	
(iv)	Let W be the number of left-handed students in a lecture theatre	
	for left-handed students	
	Then $W \sim B(250, 0.08)$	
	Want <i>c</i> such that $P(X \le c) \ge 0.9$.	
	Using GC,	
	$P(X \le 25) = 0.8971$	
	$P(X \le 26) = 0.9306$	
	$P(X \le 27) = 0.9547$	
	Hence, a minimum number of 26 such chairs are needed in each lecture theatre in order to be 90% certain of meeting the needs of the left-handed students.	

7

9	Solution [7] Probability	
	A and B not mutually exclusive $\Rightarrow x + y > 0$	
	$P(A \mid S) = P(A)$	
	$\frac{5+x}{2} = \frac{15+x+y}{2}$	
	25 + x 55 + x + y	
	(5+x)(55+x+y) = (15+x+y)(25+x)	
	$275 + 60x + x^{2} + 5y + xy = 375 + 40x + x^{2} + 25y + xy$	
	x = y + 5	
	y = x - 5	
	Alternatively	
	<u>r norman vory</u>	
	$P(A \cap S) = P(A)P(S)$	
	5+x $15+x+y$ $25+x$	
	$\frac{1}{55+x+y} = \frac{1}{55+x+y} \times \frac{1}{55+x+y}$	
	(5+x)(55+x+y) = (15+x+y)(25+x)	
	$275 + 60x + x^{2} + 5y + xy = 375 + 40x + x^{2} + 25y + xy$	
	x = y + 5	
	y = x - 5	
(i)	$P(B \mid S) = \frac{3}{8}$	
	0 3 5 x	
	$\frac{3}{9} = \frac{3+x}{25+x}$	
	r = 7	
	x = 7	
	y - z	
(ii)	$P((S \cap A) \cup B') = \frac{30+x}{-37}$	
	$55 + x + y^{-} 64$	

(ii)	Using the GC.	
	NORMAL FLOAT AUTO REAL RADIAN MP	
	y=a+bx	
	a=119.5898156	
	b = -1.232157177	
	r=-0.9883765924	
	r = -0.988	
	Since r is close to -1, there is a strong negative linear	
	correlation between the age of a bicycle and its price.	
(iii)	$y = -1.23x + 119.59 \ ($ <u>to 2 d.p.</u> $)$	
	c = 119.59 means that the <u>resale value of a brand new bicycle of</u>	
	that particular model is \$119.59.	
	NORMAL FLOAT AUTO REAL RADIAN MP	
	+	
	++	
(iv)	When $x = 72$, $y = -1.23216(72) + 119.590 = 30.87$	
	$(OR \ y = -1.23(72) + 119.590 = 31.03)$	
	The cost of the 72 month old bicycle will be around \$30.87.	
	This estimate is unreliable as $x = 72$ is outside the data range	
	of the values of <i>x</i> .	

11	Solution [10] Hypothesis Testing	
(i)	Unbiased estimate of the population mean,	
	$\overline{x} = \frac{539}{35} = 15.4$ Unbiased estimate of the population variance,	

$$s^{2} = \frac{1}{34} \left(\sum x^{2} - \left(\frac{\sum x^{3}}{35} \right) \right)$$

$$= \frac{1}{34} \left(8647.4 - \frac{539^{2}}{35} \right)$$

$$= 10.2$$
(ii) Let μ be the population mean travel time from Town A to Park B.
To test H₀: $\mu = 14.5$
against H: $\mu > 14.5$
at 5% significance level
Test statistic:
Under H₀, $\bar{X} \sim N \left(14.5, \frac{x^{2}}{35} \right)$ approximately by Central Limit
Theorem since $n = 35 \ge 30$ is large,
 $\Rightarrow Z = \frac{\bar{X} - 14.5}{x/\sqrt{35}} \sim N(0, 1)$ approximately.
 p -value $= 0.0477 (3 s. f.)$
As p -value < 0.05 , we reject H₀.
There is sufficient evidence at 5% significance level that the
mean travel time from Town A to Park B is greater than 14.5
minutes.
(ii) At 5% level of significance means there is a probability of 0.05
that the test will conclude that the mean travel time from Town
A to Park B is more than 14.5 minutes when in fact it is 14.5
minutes.
(iv) Let \bar{T} be the random variable for the new sample mean travel
time.
Test H₀: $\mu = 14.5$
Against H; $\mu < 14.5$
Perform a 1-tail Z-test at 1% significance level.
Under H_{0} , $\bar{T} \sim N \left(14.5, \frac{9.6}{100} \right)$ approximately by Central Limit
Theorem since sample size ($n = 100$) is large

H_0 is rejected.	
Hence $z_{calc} < -2.326347877$	
$\frac{m - 14.5}{\sqrt{9.6/100}} < -2.326347877$	
<i>m</i> <13.77921	
i.e. <i>m</i> <13.8 (to 3sf)	

12	Solution [12] Normal Distribution + Sampling	
(i)	Let X be the mass of a "Comforta" cushion.	
	$X \sim N(170, 12^2)$	
	P(X > 165) = 0.6615388	
	≈ 0.662	
(ii)	$P(X_{max} < 165)$ where $X_{max} = max \{X_1, X_2, X_3\}$	
	$= [P(X < 165)]^3$	
	$=(1-0.6615388)^3$	
	= 0.0388	
(iii)	Let <i>Y</i> be the mass of a cushion cover.	
	$Y \sim N(20, \sigma^2)$	
	$X + Y \sim N(190, 12^2 + \sigma^2)$ $P(X + V > 170) \Rightarrow 0.0$	
	$P(X + Y \ge 1/0) > 0.9$	
	$P(z > \frac{170 - 190}{2}) > 0.9 - 100 $	
	$\left(\sum_{i=1}^{n} \frac{1}{\sqrt{12^2 + \sigma^2}} \right) > 0.5 / \frac{1}{\sqrt{12^2 + \sigma^2}}$	
	-20	
	$\frac{-2}{\sqrt{12^2+-2^2}} < -1.281551567$	
	$\sqrt{12} + \sigma$	
	$\sigma < 9.97/4658$	
	$\sigma < 9.98$ (shown)	
(iv)	0.05X + 0.02Y	
	$\sim N(0.05(1/0)+0.02(20), 0.05^{-}(12^{-})+0.02^{-}(8^{-}))$	
	$1.e.\ 0.03X + 0.021 \sim N(8.9,\ 0.3850)$	
	P(0.05X + 0.02Y < 10)	
	= 0.962	
	Let <i>S</i> be the mass of a "Serena" cushion.	
	$s^2 = \frac{50}{17^2}$	
	49 (17)	
	Since $n = 50$ is large, by Central Limit Theorem,	
	$\overline{S} \sim N\left(250, \frac{s^2}{50}\right)$ approximately.	
	$P(S \le 245) = 0.0198$	