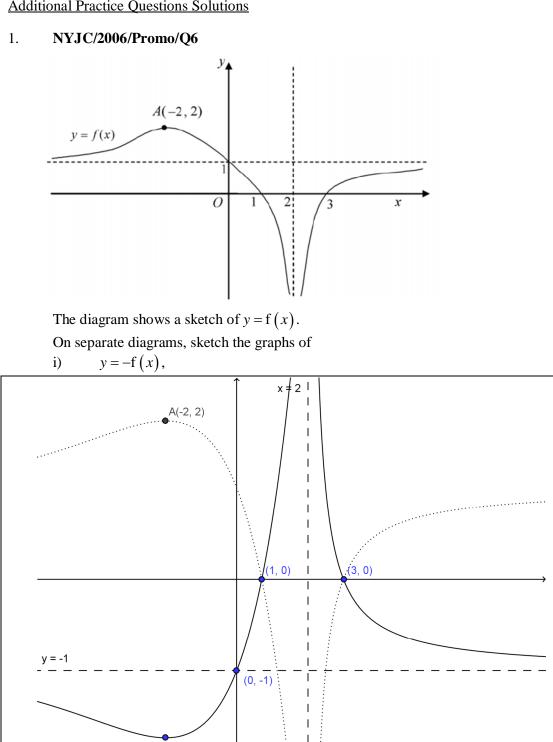
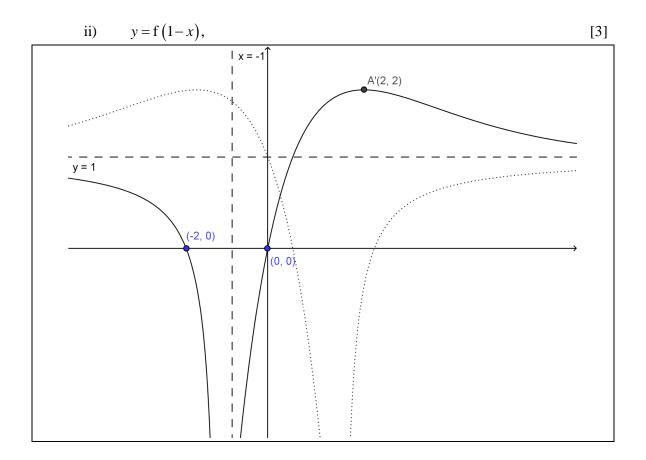
Additional Practice Questions Solutions



I

A'(-2,-2)

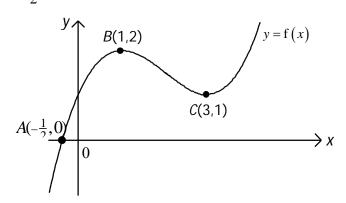
[2]



2. **RJC/2006/Promo/Q2**

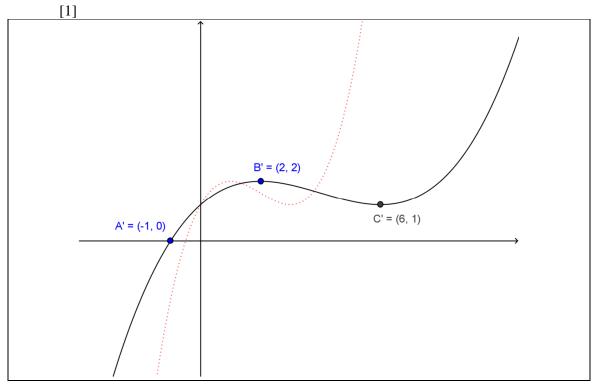
The diagram below shows the graph of y = f(x). The points A, B and C have

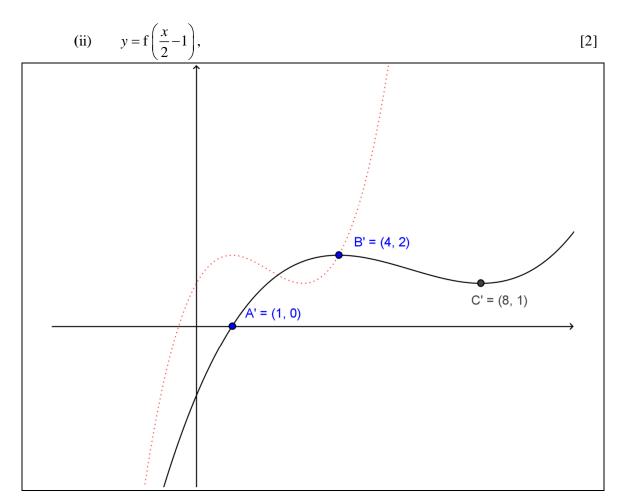
coordinates $\left(-\frac{1}{2},0\right)$, (1, 2) and (3, 1) respectively.



Sketch on separate diagrams, the graphs of

(i)
$$y = f\left(\frac{x}{2}\right),$$



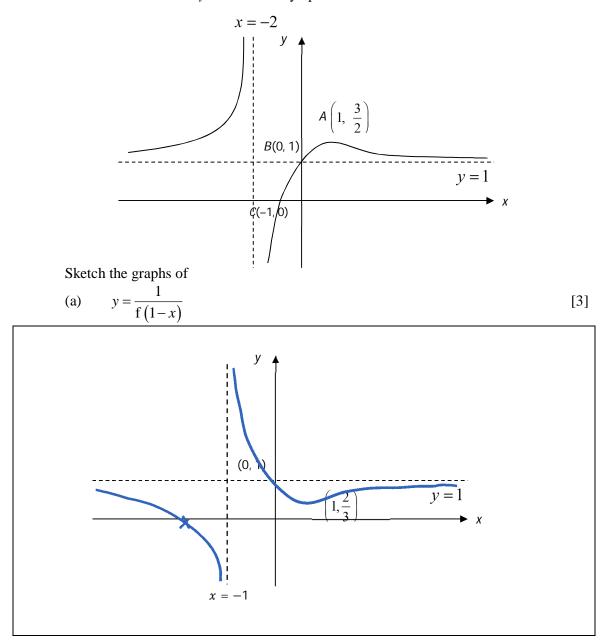


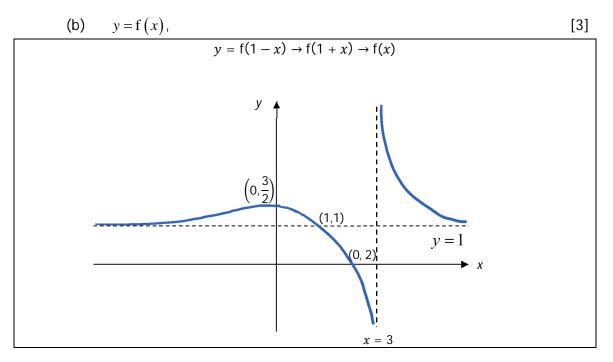
State, in each case, the coordinates of the points corresponding to A, B and C, where appropriate.

3. HCI/2006/Promo/Q6

The diagram below shows the graph of y = f(1-x). The curve has a maximum point at $A\left(1, \frac{3}{2}\right)$, and axes intercepts at B(0, 1) and C(-1, 0).

The lines x = -2 and y = 1 are the asymptotes.

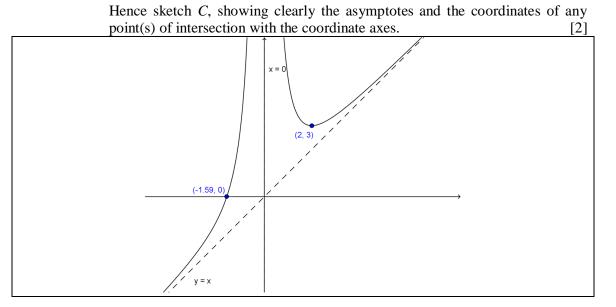




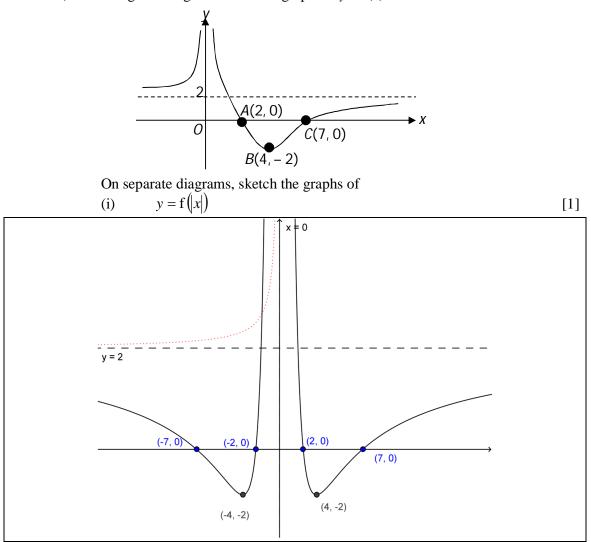
4. SAJC/2006/Promo/Q9 (modified)

a) The curve *C* has equation $y = \frac{x^3 + a}{x^2}$ where *a* is a constant. Given that *C* has a stationary point at x = 2, find the value of *a* and determine the nature of the stationary point. Write down the equation of the asymptotes of *C*. [4]

 $y = \frac{x^3 + a}{x^2} = x + ax^{-2}$ $\frac{dy}{dx} = 1 - 2ax^{-3} = 0 \text{ when } x = 2$ $1 - \frac{2}{8}a = 0$ a = 4 $\frac{d^2y}{dx^2} = 24x^{-4} > 0, \text{ therefore } (2, 3) \text{ is a minimum point.}$ Asymptotes: x = 0 and y = x

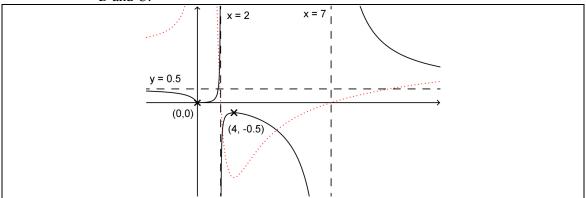


b) The given diagram shows the graph of y = f(x).



(ii)
$$y = \frac{1}{f(x)}$$
 [2]

in each case showing clearly the asymptotes and the points corresponding to A, B and C.



5. **MI/2006/Promo/Q8**

The equations of the curves C_1 and C_2 are given by

$$C_1: x^2 + 3y^2 = 3,$$

$$C_2: x^2 - y^2 = 2.$$

(i) Give a geometrical description of the curve C_1 and state any axes of symmetry. [4]

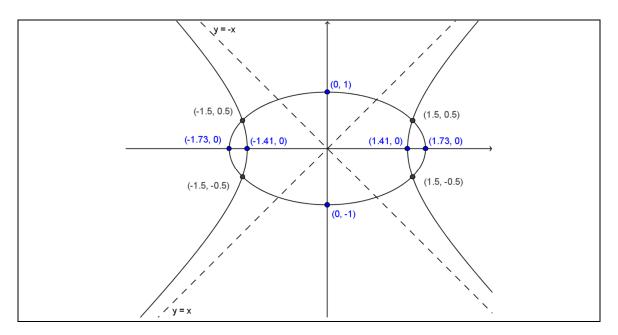
 C_1 is an ellipse, centred on (0, 0). Horizontal diameter is $2\sqrt{3}$, vertical diameter 2.

Axes of symmetry are y = 0 and x = 0.

(ii)	State the equations of the asymptotes of C_2 .	[1]
	$y = \pm x$	

Sketch C_1 and C_2 on the same diagram, indicating clearly the asymptotes and state the coordinates of the points of intersection of the curves C_1 and C_2 .

[5]



6. CJC/2006/Promo/Q3

A graph with equation y = f(x) undergoes 3 successive transformations as follows:

- I: A scaling parallel to *x*-axis with scale factor $\frac{1}{2}$
- II: A translation of 3 units in the direction of the positive x-axis
- III: A scaling parallel to *y*-axis with scale factor 2

The resulting equation is $y = 2 \ln (6 - 2x)$. Determine the equation of the graph y = f(x), showing your workings clearly.

[3]

Let:

- III': Scaling parallel to y-axis with scale factor ½
- II': Translation of -3 units in the direction of the positive *x*-axis

I': Scaling parallel to *x*-axis with scale factor 2.

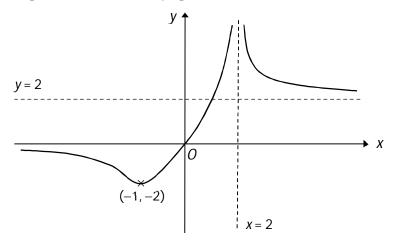
These will undo the original three transformations. Applying them successively to $y = 2 \ln(6 - 2x)$:

$$2\ln(6-2x) \xrightarrow{III'} \ln(6-2x) \xrightarrow{II'} \ln\left(6-2\left(x-3\right)\right) = \ln(-2x) \xrightarrow{I'} \ln\left(-2\left(\frac{1}{2}x\right)\right) = \ln\left(-x\right)$$

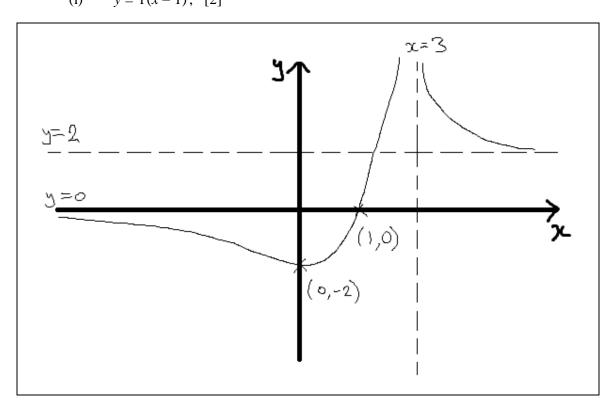
Therefore the original graph was $y = \ln(-x)$

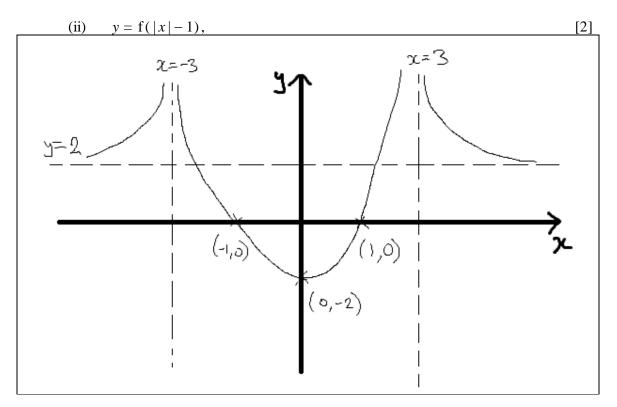
7. VJC/2006/Promo/Q12 (modified)

The diagram shows the graph of y = f(x). The curve passes through the origin and has minimum point (-1, -2). The asymptotes are x = 2, y = 0 and y = 2.

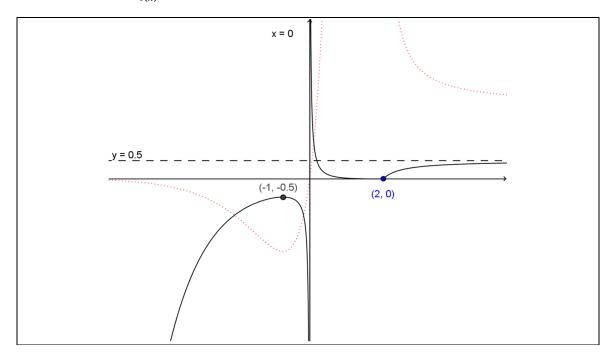


Sketch, on separate diagrams, the graphs of (i) y = f(x-1), [2]





(iii) $y = \frac{1}{f(x)}$



8. ASRJC/JC1 Promo/2019/Q1

The graph of y = f(x) undergoes transformations in the following order:

- I. Reflection in the *x*-axis
- II. Translation in the positive *x*-direction by 4 units
- III. Scaling parallel to the x-axis by a scale factor of $\frac{1}{2}$

The equation of the resulting graph is $e^{2y} = 7 - 3x$.

Find the equation of the original graph in the form y = f(x).

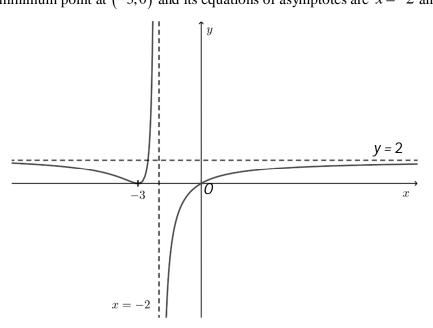
Method 1

Reverse III: Scaling parallel to the x-axis by a scale factor of 3. (Replace x by $\frac{x}{2}$) Equation becomes: $e^{2y} = 7 - x$ Reverse II: Translation in the negative x-direction by 4 units. (Replace x by x+4) Equation becomes: $e^{2y} = 7 - (x+4)$ $e^{2y} = 3 - x$ Reverse I: Reflection in the x-axis (replace y by - y) Equation becomes $e^{-2y} = 3 - x$ \Rightarrow y = f(x) = $-\frac{1}{2}\ln(3-x)$ Method 2 After the 3 transformations, y = f(x) becomes y = -f(3x-4)As the final curve is $y = -\frac{1}{2}\ln(7-3x)$ So f $(3x-4) = \frac{1}{2} \ln(7-3x)$ Let $z = 3x - 4 \Longrightarrow x = \frac{z+4}{3}$ $f(z) = \frac{1}{2} \ln \left[7 - 3 \left(\frac{z+4}{3} \right) \right] = \frac{1}{2} \ln (3-z)$ $y = f(x) = \frac{1}{2}\ln(3-x)$ Method 3 After the 3 transformations, y = f(x) becomes y = -f(3x-4)As the final curve is $y = -\frac{1}{2}\ln(7-3x)$ So f $(3x-4) = \frac{1}{2} \ln(7-3x) = \frac{1}{2} \ln[-(3x-4)+3]$ $f(x) = \frac{1}{2}\ln(3-x)$

[3]

9. RVHS/JC1 Promo/2019/Q5

(a) The diagram shows the graph of y = f(x). The curve passes through the origin, has a minimum point at (-3,0) and its equations of asymptotes are x = -2 and y = 2.



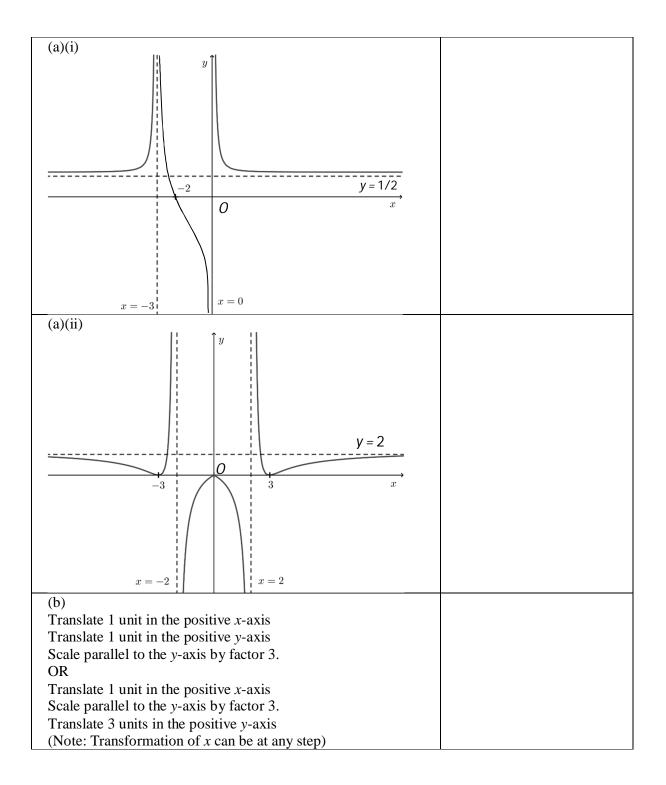
Sketch the following graphs on separate axes.

(i)
$$y = \frac{1}{f(x)}$$
 [3]

(ii)
$$y = f(-|x|)$$
 [2]

(b) Describe a series of transformations that transforms the graph of $x^2 + (y+1)^2 = 1$

onto the graph of
$$(x-1)^2 + \frac{y^2}{9} = 1.$$
 [3]



[2]

[2]

[1]

10. ASRJC/Promo 9758/2020/Q6 (part)

The curve C_1 whose equation is $x^2 + y^2 = 16$ undergoes, in succession, the following transformations:

- A: Translation of 4 units in the negative *x*-direction.
- B: Translation of 2 units in the positive *y*-direction.
- C: Scaling by factor 2 parallel to the *y*-axis.
- (i) Find the equation of the resulting curve C_2 .
- (ii) Sketch C_1 and C_2 on the same diagram, indicating clearly the relevant features of the two curves. You need not find the coordinates of axial intercepts.
- (iii) State the coordinates of the points of intersection between C_1 and C_2 .

Question 10

(i) $x^2 + y^2 = 16$

Transformation A, replace *x* with *x*+4: Transformation B, replace *y* with *y*-2: Transformation C, replace *y* with $\frac{y}{2}$:

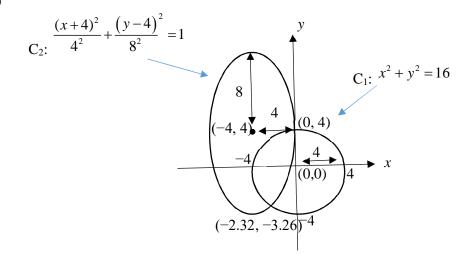
$$(x+4)^{2} + y^{2} = 16$$

$$(x+4)^{2} + (y-2)^{2} = 16$$

$$(x+4)^{2} + \left(\frac{y}{2} - 2\right)^{2} = 16$$

$$\frac{(x+4)^{2}}{4^{2}} + \frac{(y-4)^{2}}{8^{2}} = 1$$

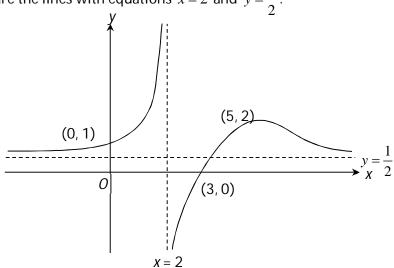
(ii)



(iii) Intersection points are (-2.32, -3.26) and (0, 4)

11. MI 2020 Promo 9758/2020/PU1/Q3

The diagram below shows the graph of y = f(x). The curve intersects the *x*-axis and *y*-axis at the points (3, 0) and (0, 1) respectively. It has a maximum point at (5, 2). The asymptotes of the curve are the lines with equations x = 2 and $y = \frac{1}{2}$.



On separate diagrams, sketch the following graphs, indicating the coordinates of any stationary points and points of intersections with the axes and the equations of any asymptotes.

(i)
$$y = f(|x|+2)$$
 [3]
(ii) $y = \frac{1}{f(x)}$ [3]

