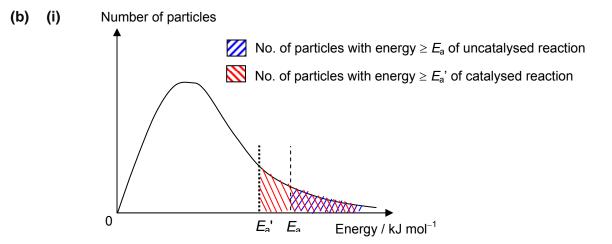
- (a) (i) $\Delta H_{f}(NH_{3}(g)) = \frac{1}{2}(+994) + \frac{3}{2}(+436) 3(+390) = -19.0 \text{ kJ mol}^{-1}$
 - (ii) $\Delta H_{\rm r} = 2(-119) 2(-19.0) = -200 \text{ kJ mol}^{-1}$
 - (iii) Na is oxidised because O.S. of Na increases from 0 (in Na) to +1 (in NaNH₂). NH_3/H is reduced because O.S. of H decreases from +1 (in NH₃) to 0 (in H₂).

(iv)
$$\begin{bmatrix} \bullet \bullet & \bullet \\ H \times \bullet & N \\ \bullet & \bullet \\ X \\ H \end{bmatrix}$$

- (v) NH_2^- + $CH_3OH \rightarrow NH_3$ + CH_3O^-
- (b) (i) Electron-withdrawing –OH groups in 'Tris' makes the lone pair of electrons on N atom less available for protonation.

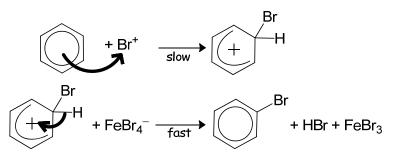
OR


Presence of intramolecular hydrogen bonding between -OH and $-NH_2$ groups in 'Tris' makes the lone pair on N atom less available for protonation.

Thus, 'Tris' is a weaker base and hence a smaller K_b than *tert*-butylamine.

(ii)
$$(CH_2OH)_3CNH_2 + HCl \rightarrow (CH_2OH)_3CNH_3^+Cl^-$$

(iii)
$$[OH] = K_0 \frac{[\text{base}]}{[\text{salt}]}$$
 OR $pOH = pK_0 + \lg \frac{[\text{salt}]}{[\text{base}]}$
 $10^{-(14-7.40)} = (1.20 \times 10^{-6}) \frac{[\text{base}]}{[\text{salt}]}$ $14 - 7.40 = -\lg (1.20 \times 10^{-6}) + \lg \frac{[\text{salt}]}{[\text{base}]}$
 $\Rightarrow \frac{[\text{base}]}{[\text{salt}]} = 0.209$
Since HC*l* = salt,
[salt] in buffer A = $\frac{100}{1000} \times 0.500 = 0.0500 \text{ mol dm}^{-3}$
[base] in buffer A = $0.209 \times 0.0500 = 0.0105 \text{ mol dm}^{-3}$
[base] in buffer A = $0.209 \times 0.0500 = 0.0105 \text{ mol dm}^{-3}$
[base] in buffer A = $0.209 \times 0.0500 + 0.0105) \times 121 = 7.31 \text{ g}$
(c) (i) Amide
(ii) Step 1: substitution; Step 2: acid-base reaction
(iii) $\int_{R} \int_{O} \int_{O} \int_{O} Br$
(iv) $H_3C-N=C=O$

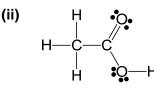

2 (a) A *transition element* is a *d*-block element which forms one or more stable ions with incompletely filled *d*-orbitals.

A catalyst provides an alternate reaction path of lowered activation energy, E_a '. Thus, the number of particles with energy $\geq E_a$ ' increases. Therefore, the frequency of effective collisions increases and hence rate increases.

(ii) electrophilic substitution

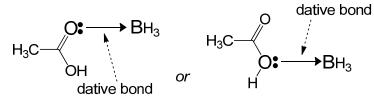
 $Br_2 + FeBr_3 \rightarrow Br^+ + FeBr_4^-$

- (iii) p–p orbital overlap results in the delocalisation of lone pair of electrons on N atom into the benzene ring of phenylamine, making the benzene ring highly electron rich and thus more susceptible towards electrophilic substitution. Hence, there is no need of FeBr₃ to generate stronger Br⁺ electrophile for the halogenation of phenylamine.
- (c) (i) Nickel(II) complexes are coloured because Ni(II) has d⁸ configuration/ partially unfilled d-orbitals so electron transition between *d*-orbitals is possible.

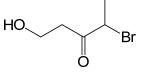

In an octahedral nickel(II) complex ion, the presence of ligands causes the d-orbitals to split into 2 (different) energy levels. Energy gap is relatively small such that radiation from the visible light spectrum is absorbed when an electron transits from a d-orbital of lower energy to a d-orbital of higher energy.

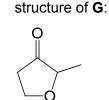
Hence, the colour seen is the complement of the colours absorbed.

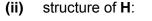
(ii) Since $\Delta G < 0$ for both reactions, it implies that the ligand exchange is energetically feasible for both reactions. \therefore H₂O is the weakest ligand among the three.


Since ΔG for reaction 2 is more negative than that of reaction 1, it implies that the ligand exchange in 2 is more energetically feasible. \therefore *en* is a stronger ligand than NH₃.

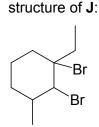
- (iii) Since the solution changes from violet to orange, it implies that ligand exchange reaction has occurred. The stronger CN^- ligands displace the weaker *en* ligands in $[Ni(en)_3]^{2+}$ to form stronger dative bonds with Ni²⁺ to give a more stable $[Ni(CN)_4]^{2-}$ complex.
- (iv) In each reaction, six Ni–O bonds are broken and six Ni–N bonds are formed. Hence, ΔH for both reactions are similar.
- (v) This is due to a larger increase in disorder of the system since the reaction **2** proceeds with an increase in number of particles.
- (vi) The *chelate effect* is entropy driven. Since both reactions have similar ΔH , the more positive ΔS in reaction **2** must be the cause for its more negative ΔG .
- 3 (a) (i) $CH_3CO_2H + 4[H] \rightarrow CH_3CH_2OH + H_2O$

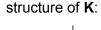

(iii) B has 3 bond pairs and no lone pair so the shape is trigonal planar.


(iv)


Electron–deficient B atom of BH_3 uses its empty p orbital to accept the lone pair of electrons on O atom of RCOOH to form dative bond so that B can achieve stable octet configuration.

- (v) Three more electron–donating –CH₃ groups in E increases the electron density of O atoms and makes the lone pair of electrons on O atom more available for dative bond formation. ∴ E will react faster with BH₃ as compared to ethanoic acid.
- (vi) structure of F:





(b) (i) electrophilic addition

(c) Amount of B₂H₆ formed = $\frac{0.0100}{2(10.8) + 6(1.0)} = 3.62 \times 10^{-4}$ mol

Since $2BF_3 \equiv B_2H_6$,

amount of BF₃ required = $2 \times (3.62 \times 10^{-4}) = 7.25 \times 10^{-4}$ mol

Assuming ideal gas behaviour (*i.e.* pV = nRT),

volume of BF₃ required =
$$\frac{(7.25 \times 10^{-4}) \times 8.31 \times (0 + 273)}{0.5 \times 1.01 \times 10^5}$$
 = 3.26 × 10⁻⁵ m³ = 32.6 cm³

(d) Like SiO₂, B₂O₃ has a giant covalent structure. Large amount of energy is required to overcome the strong covalent bonds between B and O atoms. ∴B₂O₃ has high melting point (510 °C).

4 (a) (i)
$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$

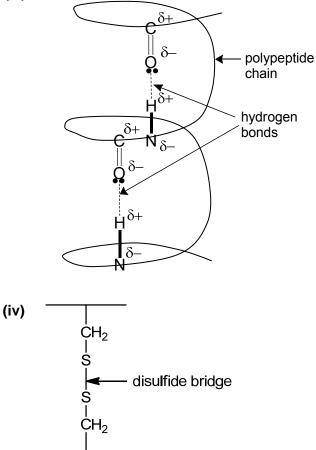
(ii) Amount of gas collected $= \frac{0.0104}{24} = 4.33 \times 10^{-4} \text{ mol}$ Amount of electrons $= 4 \times 4.33 \times 10^{-4} = 1.73 \times 10^{-3} \text{ mol}$ Using Q = It = nF, I × (2 x 60 x 60) = (1.73 × 10^{-3})(96500) I = 0.0232 A

Ē

(b)

$$Cl_2 + 2e^- = 2Cl^-$$
 +1.36 V
MnO₄⁻ + 8H⁺ + 5e⁻ = Mn²⁺ + 4H₂O +1.52 V

Since E_{cell} is positive, Cl^- from HC*l* will also react with MnO₄⁻ ions, the amount of MnO₄⁻ used in the titration will not be an accurate reflection of how much Fe²⁺ ions there is in the solution.


- (c) (i) green precipitate: Fe(OH)₂ red-brown precipitate: Fe(OH)₃
 - (ii) Amount of MnO_4^- used = 0.0250 × $\frac{36.3}{1000}$ = 9.08 × 10⁻⁴ mol

Since $MnO_4^{-} = 5Fe^{2^+}$, amount of Fe^{2^+} in 0.35 g of sample $= 5 \times 9.08 \times 10^{-4} = 4.54 \times 10^{-3}$ mol Mass of Fe in 0.350 g of sample $= 4.54 \times 10^{-3} \times 55.8 = 0.253$ g Mass of O in 0.350 g of sample = 0.350 - 0.253 = 0.0968 g Amount of oxygen in 0.350 g of sample $= \frac{0.0968}{16.0} = 6.05 \times 10^{-3}$ mol Mole ratio of Fe : O = 4.54×10^{-3} : $6.05 \times 10^{-3} = 1 : 1.33 = 3 : 4$ Hence, identity of oxide is Fe₃O₄.

- (d) (i) Amino acids are soluble in water because their zwitterions can form ion-dipole interactions with water molecules.
 - (ii) At pH 7, both amino acids exist as anions and will migrate towards the positive terminal.

Cysteine, having a bigger mass, will migrate slower towards the positive terminal and thus it will be closer to point \mathbf{M} as compared to glycine.

(iii)

(v) $SO_2 + H_2O \rightarrow H_2SO_3$

 H^{+} from H_2SO_3 causes $-COO^{-}$ to become -COOH, disrupting the ionic interactions in the tertiary and quaternary structures of the protein.

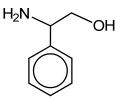
 H^{+} from H_2SO_3 causes $-NH_2$ to become $-NH_3^{+}$, disrupting the hydrogen bonds in the tertiary and quaternary structures of the protein.

Hence the protein loses its shape and undergoes denaturation.

(e) cys - arg - val - tyr - ile - met - pro - phe

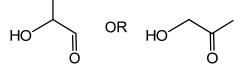
- **5 (a) (i)** Sodium burns with an orange/yellow flame and magnesium burns with bright white flame.
 - (ii) Since $O_2^{2^-}$ has the same ionic charge but a larger ionic radius than O^{2^-} ion, $|LE(Na_2O_2)|$ is smaller than $|LE(Na_2O)|$.
 - (iii) Na₂O(s) + H₂O(l) \rightarrow 2NaOH(aq) MgO(s) + H₂O(l) = Mg(OH)₂(s) or Mg(OH)₂(aq) pH of NaOH = 13 and pH of Mg(OH)₂ = 9

(b) (i)
$$2I^- + S_2O_8^{2-} \rightarrow I_2 + 2SO_4^{2-}$$

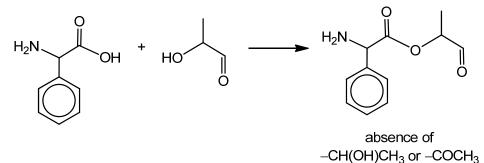

- (ii) $\operatorname{Co}^{2^+} \operatorname{reduces} S_2 O_8^{2^-}$ Step 1: $2\operatorname{Co}^{2^+} + S_2 O_8^{2^-} \rightarrow 2\operatorname{Co}^{3^+} + 2\operatorname{SO}_4^{2^-}$ $\operatorname{Co}^{3^+} \operatorname{oxidises} I^-$ Step 2: $2I^- + 2\operatorname{Co}^{3^+} \rightarrow I_2 + 2\operatorname{Co}^{2^+}$
- (iii) $S_2O_8^{2-} + 2e^- = 2SO_4^{2-} +2.01 V$ $Pb^{4+} + 2e^- = Pb^{2+} +1.69 V$ $E_{cell} = (+2.01) - (+1.69) = +0.32 V$ Since E_{cell} is positive, the reaction is energetically feasible/spontaneous.

 $I_{2} + 2e^{-} = 2I^{-} +0.54 V$ $Pb^{4+} + 2e^{-} = Pb^{2+} +1.69 V$ $E_{cell} = (+1.69) - (+0.54) = +1.15 V$

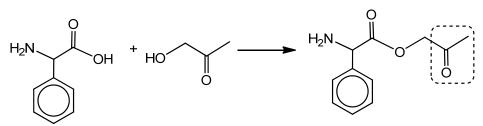
Since *E*_{cell} is positive, the reaction is energetically feasible/ spontaneous.


(iv) Pb^{2+} will react with I^{-}/SO_4^{2-} to form PbI_2 or $PbSO_4$ precipitate and hence cannot catalyse the reaction.

(c) (i) step 1: NaOH(aq) or KOH(aq), heat under reflux step 2: acidified K₂Cr₂O₇, heat under reflux structure of P:

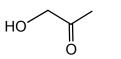


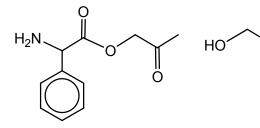
(ii) Carboxylic acid group of **Q** undergoes condensation with alcohol **R** to form ester **S**. **R**, **S** and **T** undergo positive iodoform test to form carboxylate salt and yellow CHI₃ $ppt \Rightarrow R$, **S** and **T** contains $-CH(OH)CH_3$ or $-COCH_3$


Hence, the two possible structures of \mathbf{R} (C₃H₆O₂) are

If R contains $-CH(OH)CH_{3},\ S$ that is formed from R will not give positive iodoform test.

If **R** contains $-COCH_3$, **S** will retain $-COCH_3$ and give positive iodoform test.


presence of -COCH₃


structure of R:

structure of **S**:

structure of T:

OH

