

KUO CHUAN PRESBYTERIAN SECONDARY SCHOOL

2024 PRELIMINARY EXAMINATION

Secondary 4 Express

NAME		
CLASS	REG. NO	
CHEMISTRY	609	92 / 01
Paper 1 Multiple Choice	28 Augu	st 2024
		1 hour
Additional Materials: Multiple Choice Answer Sheet.		

READ THESE INSTRUCTIONS FIRST

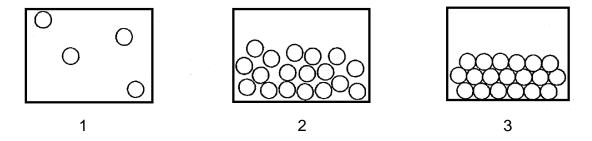
Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, class and register number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

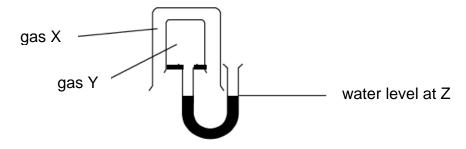
Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.


Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

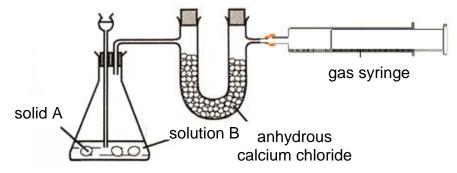
A copy of the Periodic Table is printed on page 22.

The use of an approved scientific calculator is expected, where appropriate.


1 Diagrams 1, 2 and 3 show the particles of three substances at room temperature and pressure.

Which of these substances are correctly represented by the corresponding diagram?

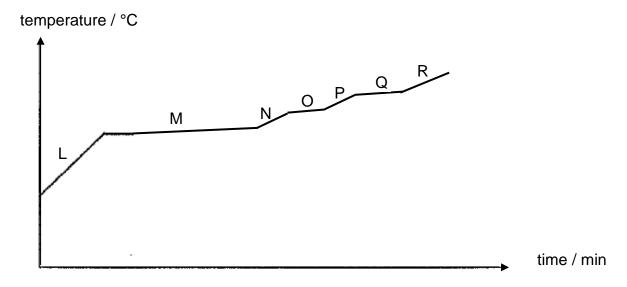
	1	2	3
Α	argon	mercury	dry ice
В	ethane	sodium chloride	mercury
С	ethanol	hydrogen chloride	copper
D	water	helium	zinc


2 The set—up below shows how the relative rate of diffusion of gas X and Y can be determined.

Which pair of substances could X and Y be if the water level at Z increases?

	Х	Υ
Α	argon	ethane
В	neon	carbon monoxide
С	oxygen	methane
D	carbon dioxide	nitrogen

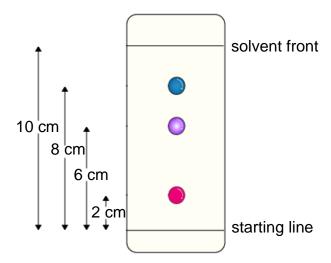
3 The diagram shows a simple laboratory set-up used to prepare and collect a dry gas.


Which pair of reagents would be most suitable to prepare the gas produced using this set-up?

	solid A	solution B
Α	ammonium chloride	sodium hydroxide
В	magnesium	sulfuric acid
С	potassium carbonate	aqueous ammonia
D	sodium hydroxide	hydrochloric acid

4 The three main components of liquid air are nitrogen, oxygen and argon. Their respective boiling points are:

nitrogen: -196°C oxygen: -183°C argon: -186°C


Liquid air can be separated into its three main components by fractional distillation. The graph shows the temperature of a liquid air mixture as it is heated.

In section P of the graph, the mixture remaining consists of

- A liquid nitrogen and argon only.
- **B** liquid nitrogen only.
- C liquid oxygen and argon only.
- **D** liquid oxygen only.

5 The diagram shows the chromatogram obtained from the analysis of a dye mixture. Four measurements are shown in the diagram below.

What is the R_f value of the most soluble dye?

- **A** 0.20
- **B** 0.80
- **C** 1.25
- **D** 5.00

6 The solubilities of three solids in water and tetrachloromethane are given in the table below.

solid	solubility in water	solubility in tetrachloromethane
sand	not soluble	not soluble
sodium chloride	good	not soluble
sulfur	not soluble	good

Which of the experimental procedures would be suitable for obtaining pure sand from a mixture of sand, sodium chloride and sulfur?

- A Add tetrachloromethane and stir, then filter to collect residue.
- Add tetrachloromethane and stir, then filter. Add the residue to water and stir, then filter to collect residue.
- Add water and stir, then filter. Add tetrachloromethane to filtrate and stir, then evaporate to dryness.
- **D** Add water and stir, then filter. Evaporate the filtrate to dryness.

Which pair of statement correctly describes the properties of the compound iron(II) sulfide, FeS, and a mixture of iron and sulfur?

	iron(II) sulfide	mixture of iron and sulfur
1	The ratio of iron to sulfur is always 2 : 1.	The ratio of iron to sulfur can vary.
2	Iron(II) sulfide has the same properties as iron and sulfur.	The mixtures do not have the same properties as iron and sulfur.
3	Iron and sulfur react when heated to form iron(II) sulfide.	Iron and sulfur mix together with no energy change.

- **A** 1 and 2
- **B** 1 and 3
- C 3 only
- **D** All the above
- 8 An ion of formula X²⁻ contains 10 electrons.

If the relative atomic mass of X is 16, what is present in the nucleus of the ion?

- **A** 8 protons and 8 neutrons
- **B** 10 protons and 6 neutrons
- C 10 protons and 10 neutrons
- **D** 12 protons and 8 electrons
- **9** Which compound contains both ionic and covalent bonds?
 - A ammonia
 - **B** barium chloride
 - **C** methyl propanoate
 - **D** potassium sulfate

10 Which substance has metallic bonding?

substance	electrical	conductivity property of product forme the reaction between sub-	
Substance	in solid state	in molten state	and oxygen
Α	Х	X	reacts with alkali
В	X	✓	no reaction with acid or alkali
С	✓	✓	reacts with alkali
D	✓	✓	reacts with both acid and alkali

An investigation of the properties of the chlorides of Period 3 elements shows that the boiling points of sodium chloride and silicon tetrachloride are 1465°C and 57°C respectively.

This difference in boiling points is a result of

- A covalent bonds being weaker than ionic bonds.
- **B** metallic character decreasing across the period.
- **C** silicon forming weaker bonds with chlorine as compared to sodium.
- **D** silicon tetrachloride having weak intermolecular forces of attraction.
- **12** Two comments about hydrogen chloride are made below.
 - Comment 1: Hydrogen chloride has strong covalent bonds in its simple molecular structure.

Comment 2: Hydrogen chloride is soluble in water.

Which statement is correct?

- A Both comments are correct and comment 1 explains comment 2.
- B Both comments are correct but comment 1 does not explain comment 2.
- **C** Both comments are incorrect.
- **D** Comment 2 is correct but comment 1 is incorrect.

13 Bismuth is in the same group as nitrogen in the Periodic Table.

What is the chemical formula of lithium bismuthide?

- A Li₃Bi
- **B** LiBiO₃
- C LiBi₃
- **D** Li₃BiO
- 14 Which substance contains the greatest number of atoms in 1g?
 - A CO₂
 - B NO
 - \mathbf{C} O₃
 - D SO₃
- 200 cm³ of ammonia burns in 100 cm³ of oxygen according to the following equation:

$$4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$$

What volume of gas will be collected at the end of the reaction when cooled to room temperature?

- **A** 66.7 cm³ **B** 100.0 cm³
- ${f C}$ 133.3 cm³ ${f D}$ 333.3 cm³

16 Magnesium oxide is produced by heating magnesium carbonate.

$$MgCO_3 \rightarrow MgO + CO_2$$

When 84 g of magnesium carbonate is heated, 34 g of magnesium oxide is produced.

What is the percentage yield of magnesium oxide?

[Mr: MgCO₃, 84; MgO, 40]

A
$$\frac{34}{40} \times 100$$

B
$$\frac{34}{84} \times 100$$

c
$$\frac{40}{34} \times 100$$

D
$$84 \times \frac{34}{40} \times 100$$

17 20.0 cm³ of 0.500 mol/dm³ hydrochloric acid were added to 0.7 g of a sample of sodium carbonate containing some sodium chloride as impurity. The excess acid was neutralised by 10.0 cm³ of 0.400 mol/dm³ of sodium hydroxide solution.

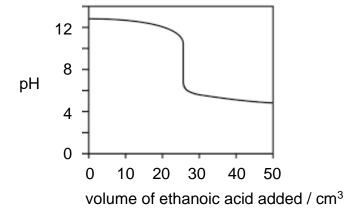
What is the percentage purity of the sodium carbonate in the sample? [Mr: HCl, 36.5; Na₂CO₃, 106; NaOH, 40]

A 31.8%

B 45.4%

C 63.6%

D 90.9%

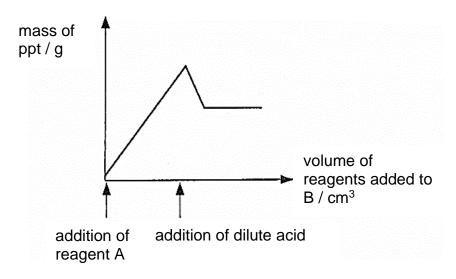

18 Arsine (AsH₃) is a gas that behaves like ammonia.

Which of the following particles are found in the solution when Arsine dissolves in water?

- A As+ and OH-
- **B** AsH₃, As⁺ and OH⁻
- C AsH₄+ and OH-
- **D** AsH₃, AsH₄⁺ and OH⁻

- 19 Which method(s) is/are suitable to test the strengths of acids and alkalis?
 - 1 titration
 - 2 using a pH meter
 - 3 measuring their electrical conductivity
 - A 1 only
 - **B** 1 and 2
 - **C** 2 and 3
 - **D** all of the above
- 20 Different indicators change colour over different pH ranges and it is important to choose the correct indicator to obtain an accurate result in a titration.

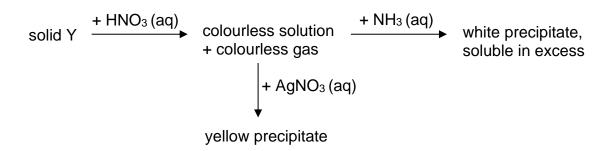
The graph below shows the change of pH when ethanoic acid is added to a fixed volume of aqueous sodium hydroxide in a titration.


Which would be the most suitable indicator to use in this titration?

indicator	pH range for the	colour	
indicator	colour change	lower pH	higher pH
Α	0.3 – 3.0	yellow	violet
В	4.2 - 6.3	red	yellow
С	8.2 – 10.0	colourless	pink
D	11.6 – 14.0	blue	yellow

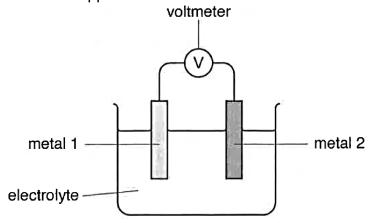
- 21 In the Haber process,
 - 1 the hydrogen used is obtained from the cracking of petroleum
 - 2 the reaction is pressurised to increase the yield
 - 3 the ammonia formed is collected by distillation

Which of the statement(s) is/are true?


- A 1 only
- **B** 1 and 2
- **C** 2 and 3
- **D** all of the above
- In a quantitative analysis, reagent A is gradually added to a salt solution B (that contains either 1 or 2 different anions), followed by the addition of a dilute acid. The graph below shows how the mass of precipitate formed changes with the reagents added.

Which of the following combinations would produce the graph above?

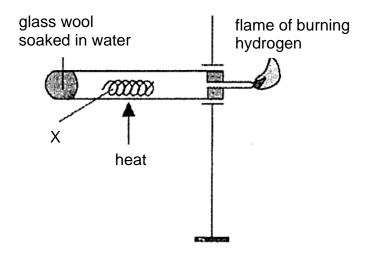
	anions in salt solution B	reagents (A and acid) added
Α	C <i>l</i> -	AgNO₃ and HNO₃
В	CO ₃ ²⁻ , C <i>l</i> ⁻	Ba(NO ₃) ₂ and HNO ₃
С	CO ₃ ²⁻ , SO ₄ ²⁻	AgNO₃ and HC <i>l</i>
D	CO ₃ ²⁻ , SO ₄ ²⁻	Ba(NO ₃) ₂ and HC <i>l</i>


23 Solid Y contains a mixture of two salts. The scheme below shows some reactions of solid Y.

Which of the following could be the two salts present in solid Y?

- A aluminium carbonate and ammonium chloride
- B calcium chloride and zinc carbonate
- **C** copper(II) carbonate and sodium iodide
- **D** zinc iodide and calcium carbonate

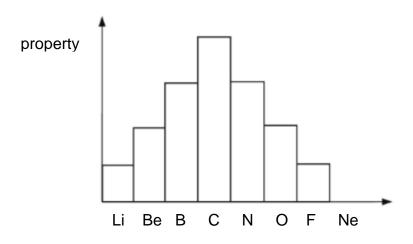
24 The table shows the voltage produced by some cells when different metals are used together with copper.



metal 1	metal 2	voltage / V
silver	copper	-0.46
magnesium	copper	+2.69

What would be the likely voltage obtained when silver is used as metal 1 and magnesium is used as metal 2?

- **A** –2.23 V
- **B** -3.15 V
- **C** 2.23 V
- **D** 3.15 V
- 25 Which of the following reactions takes place in a hydrogen fuel cell?
 - **A** Hydrogen ions are oxidised at the anode.
 - **B** Hydrogen ions are reduced at the cathode.
 - **C** Hydrogen loses electrons to form H⁺ ions at the anode.
 - **D** Oxygen gains electrons to form O²⁻ at the cathode.


26 The set-up below shows the reaction of substance X.

What is the possible identity of X?

- **A** X is a metal above hydrogen in the reactivity series.
- **B** X is a metal below hydrogen in the reactivity series.
- **C** X is an oxide of a metal that is above hydrogen in the reactivity series.
- **D** X is an oxide of a metal that is below hydrogen in the reactivity series.

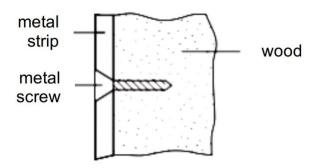
27 The bar chart shows the variation of a specific property of elements in Period 2 from lithium to neon.

Which property of these elements is shown in the chart?

- A atomic radius
- **B** melting point
- **C** number of electrons used in bonding
- **D** number of shells holding electrons

- 28 The elements in a group of Periodic Table shows the following trends.
 - The element with the lowest proton number has the lowest reactivity.
 - The melting point of the elements decreases down the group.
 - The density of the elements increases down the group

Which group can the elements be found in?


- **A** 1
- **B** 17
- **C** 18
- **D** transition
- 29 The following observations were made when nickel and iron were placed separately into salt solutions of metals S, T and U.

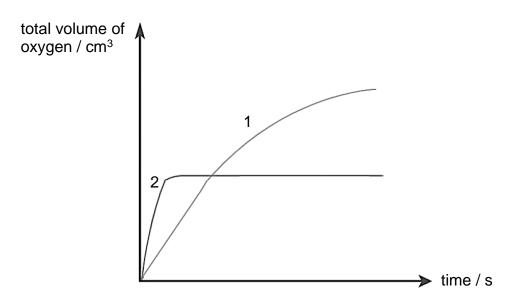
	salt solution of S	salt solution of T	salt solution of U
nickel	solid deposit formed	no visible change	no visible change
iron	solid deposit formed	solid deposit formed	no visible change

What is the correct order in decreasing reactivity of the five metals?

- A S > Ni > Fe > T > U
- **B** S > Ni > T > Fe > U
- C U > Fe > T > Ni > S
- D U > T > Fe > Ni > S

30 An old railway carriage is being restored by having metal strips secured to the outside of the wooden carriage by means of screws.

After a few weeks of being exposed to wind and rain, the screws are heavily corroded but the metal strips are not.


Which two metals would give this result?

	screw	strip
Α	copper	iron
В	copper	zinc
С	iron	copper
D	iron	magnesium

- **31** For which process is the enthalpy change always positive?
 - **A** boiling
 - **B** combustion
 - **C** dissolving of acids in water
 - **D** respiration

32 Manganese(IV) oxide catalyses the decomposition of aqueous hydrogen peroxide into water and oxygen.

In order to follow the rates of this reaction for two different solutions of hydrogen peroxide, the total volumes of oxygen evolved were recorded at regular time intervals and the results were plotted. In each experiment, the same mass of catalysts were used and the temperature was kept constant.

If curve 1 corresponds to 25.0 ${\rm cm^3~of~4.0~mol/dm^3~of~solution,~curve~2~would~correspond~to}$

- A 7.5 cm³ of 8.0 mol/dm³ solution.
- **B** 12.5 cm³ of 4.0 mol/dm³ solution.
- C 25.0 cm³ of 2.0 mol/dm³ solution.
- **D** 25.0 cm³ of 8.0 mol/dm³ solution.
- **33** Which statement about the fractional distillation of crude oil is correct?
 - A At each level of the fractionating column, only one compound is collected.
 - **B** The fraction at the top of the column is the least flammable.
 - **C** The fraction collected at the bottom of the column has the highest viscosity.
 - **D** The higher up the fractionating column, the higher the temperature.

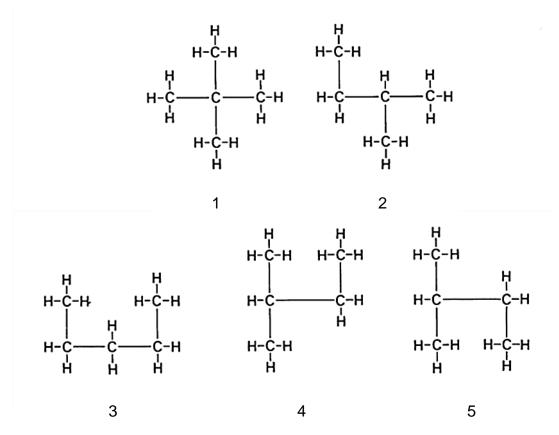
34 Banana releases a gas that is able to make other fruit ripen. When this gas is bubbled into aqueous bromine, the reddish-brown solution decolourises.

What could be the identity of this gas?

- A ethane
- **B** ethene
- **C** iodine
- D sulfur dioxide

Answer questions 35 and 36 based on the following information.

The reaction pathways of the conversions between the 4 organic chemistry homologous series are as shown below.


35 How many of the above reactions are redox reactions?

- **A** 0
- **B** 2
- **C** 4
- **D** 6

Which of the following shows the correct reactant and conditions for reaction pathway 1?

	reactant	conditions						
	reactant	COTIGITIONS						
Α	hydrogen	150 °C, Ni catalyst						
В	hydrogen	UV light						
С	none	600 °C, Al ₂ O ₃ and SiO ₂ as catalysts						
D	none	37 °C, yeast, absence of oxygen						

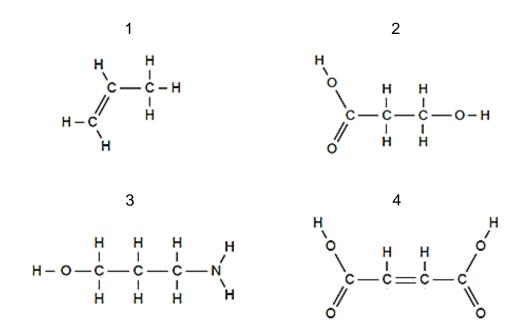
37 Five structural formulae are shown below.

How many of the structures represent isomers of one another?

- **A** 2
- **C** 4

- **B** 3
- **D** 5

38 A student investigated the reaction of different vegetable oils and margarines with hydrogen.


100 cm³ of hydrogen was passed through 1 g samples containing a catalyst. The volume of hydrogen gas remaining in each reaction was recorded in the table below.

sample	volume of hydrogen remaining / cm ³							
Р	0							
Q	87							
R	100							

Which sample(s) is/are unsaturated vegetable oils?

- **A** Ponly
- **B** P, Q and R
- **C** P and Q
- **D** R only
- 39 In which reaction is water **not** a product?
 - A combustion of petroleum gases
 - **B** esterification between propanoic acid and butanol
 - **C** fermentation of glucose
 - **D** neutralization between dilute nitric acid and aqueous ammonia

Which of the following monomer(s) would undergo polymerisation on their own?

- A 1 and 2 only
- **B** 1, 2 and 4
- **C** 2 and 4
- **D** all of the above

End of Paper

The Periodic Table of Elements

Group																	
1	2											13	14	15	16	17	18
							1 H hydrogen							1			2 He
Key						1										4	
3	4	proton (atomic) number									5	6	7	8	9	10	
Li	Be		atomic symbol									В	С	N	0	F	Ne
lithium 7	beryllium		name									boron	carbon	nitrogen	oxygen	fluorine	neon
11	9 12		relative atomic mass									11 13	12 14	14 15	16 16	19 17	20 18
Na	Mg											Al	Si	15 P	S	Cl	
sodium	magnesium											A t aluminium	silicon	phosphorus	sulfur	chlorine	Ar argon
23	24	3	4	5	6	7	8	9	10	11	12	27	28	31	32	35.5	40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium —	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	lanthanoids		Ta	W	Re	Os	Ir	Pt	Au	Hg	Τl	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
133	137		178	181	184	186	190	192	195	197	201	204	207	209	_	_	_
87	88	89–103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	F1	Мс	Lv	Ts	Og
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium	nihonium	flerovium	moscovium	livermorium	tennessine	oganesson
_	_		_	_	_	_	-	_	_	_	_	_	_	_	-	_	_
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lantha	noide	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
lanthanoids		lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
		139	140	141	144	_	150	152	157	159	163	165	167	169	173	175	
actinoids		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		actinium	thorium 232	protactinium 231	uranium 238	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
			232	231	230	_	_		_	_	_	_			_		j

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.). The Avogadro constant, $L=6.02\times10^{23}\,\mathrm{mol^{-1}}$.