

VICTORIA JUNIOR COLLEGE JC 1 PROMOTIONAL EXAMINATION Higher 2

CANDIDATE NAME	
CT GROUP	
CHEMISTRY	9729
Paper 1 Additional Materials: Data Booklet	2 hours

READ THESE INSTRUCTIONS FIRST

Write your name and CT group on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A: Answer all questions in the spaces provided on the Question Paper.

Section B: Answer all questions on college writing papers.

Begin each question on a fresh sheet of paper.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use					
Section A	1				
	2				
	3				
Section B	1				
	2				
Total					

Section A: Structured Questions [35 marks]

Answer all the questions in the spaces provided.

S1 A pure sample of NO₂(g) is introduced into an evacuated vessel and the following equilibrium is established at a constant volume.

$$2NO_2(g) \Rightarrow 2NO(g) + O_2(g)$$
 $\Delta H > 0$

(a) At 80 °C, 30% of NO₂ has dissociated at equilibrium and the total pressure is 3 atm. Calculate the mole fraction of NO₂, NO and O₂ in the equilibrium mixture.

[2]

(b) Calculate the value of K_p at 80 °C, giving its units.

(c)	(i)	Explain how an increase in temperature would affect the value of K_1	p
-----	-----	--	---

[2]	

(ii) Temperature of the reaction is raised at time t₁ and a new equilibrium is established at time t₂ and maintained till time t₃.

Complete the graph below showing how the rates of the forward and reverse reactions change from time t_1 to t_3 . Use dotted line for the forward reaction and solid line for the reverse reaction.

S2 (a) On heating gaseous phosphorus pentachloride, the following equilibrium is set up:

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

When 12.0 g of phosphorus pentachloride were put into a sealed evacuated vessel of capacity 1.00 dm^3 , and heated to $300 \,^{\circ}\text{C}$, the pressure increased to $3.50 \times 10^5 \,\text{Pg}$.

(i) Use the above data to calculate the average M_r of the gaseous mixture.

(ii) Hence, determine the percentage dissociation of PCI_5 in the mixture.

[2]

(iii) Sketch a graph to show how the value of the product pV changes with pressure for PCI₃ in the diagram below.

[1]

(b) (i) State the electronic configurations of phosphorus and sulfur.

phosporus:	
	••••••
sulfur:	ro.

(ii) With reference to the *Data Booklet*, explain how the first ionisation energy of phosphorus is compared to that of silicon and sulfur.

*** *** * * * * * * * * * * * * * * * *	

	·

	2222 U2 12 3 4 4 7 10 10 10 10 10 10 10 10 10 10 10 10 10

	43

.....[3]

[Total: 10]

			5
S3	(a)	Dime Meth	thyl ether (DME), CH₃OCH₃, is a gas which can be synthesised from methanol, CH₃OH. anol can be obtained from biomass, such as plant waste from agriculture.
		(1)	Draw the shape of a molecule of dimethyl ether, CH ₃ OCH ₃ , showing the values of the bond angles about oxygen and carbon atoms.
			[2]
		(ii)	Explain why dimethyl ether form a product with gaseous A/Cl ₃ when they react in a molar ratio of 1:2. Draw a diagram to illustrate the shape of the product formed about the oxygen atom.
			The state of the second of the
			ng pagamagagan a samili ma <mark>gaga maga akigan sittera a <i>madama dat ma</i>na</mark> n itali akida da da da da da da da da da d Angaman ay kepada itali angan magaman akadit
			tariga i markata makatak menasa menasa j
			[2]
		(Explain why dimethyl ether is soluble in methanol.

	(iv)	Explain why methanol has a lower boiling point than water.
	(v)	Some bond energies are given in the table below.
		Bond Bond energy, kJ mol ⁻¹
		C=O 740
		C-O 360
		C-F 485
		Given that the sizes of fluorine and oxygen are comparable, explain the relative strength of these bonds with reference to the bond energies given.
		The second secon
		[2]
(b)	Pota	assium hydrogen tartrate, $KHC_4H_4O_6$ (KHT) is a sparingly soluble salt. In a saturated tion with undissolved solid KHT , the following equilibrium is established.
		$KHC_4H_4O_6(s) \rightleftharpoons K^+(aq) + HC_4H_4O_6^-(aq)$
	At 2	5 °C, the solubility of KHT in water is 0.032 mol dm ⁻³ .
	(i)	Write an expression for the solubility product, K_{sp} , of KHT. Hence calculate the value of K_{sp} .
		[2]
	(ii)	State the effect, if any, on the solubility and $K_{\rm sp}$ of KHT when solid potassium chloride is added to a saturated solution of KHT.
		[2]

(iii) The hydrogen tartrate ion, $HC_4H_4O_6^-$ (HT⁻), is a weak monobasic acid and its concentration in the saturated solution of KHT can be determined by titration with a strong base like sodium hydroxide of known concentration.

In a titration experiment, $20.00~\rm cm^3$ of $0.0400~\rm mol~dm^{-3}$ aqueous sodium hydroxide was needed to neutralise a saturated solution of KHT at 25 °C.

Calculate the volume of saturated solution of KHT used in the titration.

[1]

500 cm³ of 0.50 mol dm⁻³ potassium chloride is added to 500 cm³ of saturated KHT solution to form a solution **A** at 25 °C.

(iv) Calculate the concentration of hydrogen tartrate ion, HT-, in solution A.

[1]

(v) - Calculate the mass of KHT precipitated.

[2]

[Total: 17]

Section B: Essay Questions [40 marks]

Answer both questions on the writing paper provided.

Begin each question on a fresh sheet of paper.

E1 (a) The sulfur-iodine cycle has been proposed as a means of producing hydrogen fuel more efficiently than by electrolysis.

At high temperatures, the sulfur-iodine cycle involves three gas-phase equilibria:

	Equation			∆H _r °/ kJ mol⁻¹
1	$I_2(g) + SO_2(g) + 2H_2O(g)$	→	$H_2SO_4(g) + 2HI(g)$	ΔH₁°
2	2H₂SO₄(g)	\rightarrow	$2SO_2(g) + 2H_2O(g) + O_2(g)$	+439
3	2HI(g)	\rightarrow	$H_2(g) + I_2(g)$	+11

- (i) Conditions are chosen so that the three equilibrium reactions above all proceed from left to right. Assuming that the products of reaction 1 are all consumed in reactions 2 and 3, write an overall equation for the sulfur-iodine cycle. [1]
- (ii) Standard enthalpy change of formation for H₂O(g), ΔH₁° is -242 kJ mol⁻¹.

Using the data given, construct an energy cycle to determine ΔH_1^{\bullet} .

[3]

(b) Consider the reaction,

$$SF_6(g) + 4H_2O(g) \rightarrow H_2SO_4(g) + 6HF(g)$$

(i) State and explain the sign of ΔS for the reaction.

[1]

(ii) Use the data on standard enthalpy change of formation below to calculate the standard enthalpy change for this reaction.

	SF ₆ (g)	H₂O(g)	H ₂ O(g) H ₂ SO ₄ (g) HF(
ΔH _f °/ kJ mol⁻¹	-1210	-242	-735	-273	

[2]

(iii) By considering the entropy and enthalpy changes, predict the spontaneity of the reaction of sulphur hexafluoride with water. [2]

- Hydrogen can be used to generate electricity in a fuel cell. The earliest hydrogen fuel cell (c) used phosphoric acid, H₃PO₄, as an electrolyte. H₃PO₄ is a weak Bronsted Acid that is often used to form buffer solutions with near-physiological pH.
 - (i) Explain fully what is meant by the phrase weak Bronsted Acid.

[1]

A student purchased a bottle of concentrated phosphoric acid, H₃PO₄ from an online merchant. The following information regarding the H₃PO₄ purchased was provided by the merchant:

General description

In aqueous solutions, phosphoric acid, H₃PO₄ behaves as a triprotic acid. The triprotic acid has three ionisable hydrogen atoms, which can be lost sequentially.

Properties:

- Total volume: 1.00 dm³
- Concentration: 14.7 mol dm⁻³
- Relative Molecular Mass of H₃PO₄: 98.0
- $K_{a1} = 7.5 \times 10^{-3} \text{ mol dm}^{-3}$
- $K_{a2} = 6.2 \times 10^{-8} \text{ mol dm}^{-3}$
- $K_{a3} = 4.8 \times 10^{-13} \text{ mol dm}^{-3}$
- (ii) Calculate the volume of water that needs to be added to dilute 10 cm3 of the 14.7 mol dm⁻³ H₃PO₄ solution to a final concentration of 0.500 mol dm⁻³.
- (iii) Write down the expression for Ka2 of H3PO4

[1]

- The student plans to prepare a buffer solution that contains the species H₂PO₄⁻ and HPO₄²⁻. (d)
 - With the aid of equations, explain how this H₂PO₄⁻/HPO₄²⁻ buffer solution maintains a fairly constant pH when
 - a small amount of acid is added
 - a small amount of base is added

[3]

(ii). To prepare the buffer solution, the student added 8.0 cm³ of 1.00 mol dm⁻³ NaOH to 10.0 cm³ of 0.500 mol dm⁻³ H₃PO₄.

Calculate the pH of the resultant buffer solution formed.

[3]

(iii) Sketch the titration curve of pH against volume of NaOH when 10.0 cm3 of 0.500 mol dm⁻³ H₃PO₄ is titrated against 20.00cm³ of 0.500 mol dm⁻³ NaOH.

Label the co-ordinates corresponding to the points of maximum buffering capacity. [2]

[Total: 20]

- E2 Alkenes are hydrocarbons that contain at least one carbon-carbon double bond. Dienes are hydrocarbons that contain two carbon-carbon double bonds and they display reactivity similar to alkenes.
 - (a) Compound A has the formula CH₃CH=CHCH=CHCH₂CI. It is a diene which exhibit isomerism.

Draw all the possible stereoisomers of compound A.

[2]

(b) Cyclohexene and cyclohexa-1,4-diene are cyclic alkenes.

- (i) State the total numbers of sigma and pi bonds in a molecule of cyclohexa-1,4-diene.
 [1]
- (ii) State the type of hybridisation that carbon 1 undergoes and the shape around it. [2]
- (iii) Cyclohexene undergoes hydrogenation to form cyclohexane.

 Describe the mechanism for the bromination of cyclohexane to form bromocyclohexane.

 [3]
- (iv) Bromocyclohexane undergoes further substitution to form 1,3-dibromocyclohexane.

 State the probability of forming 1,3-dibromocyclohexane from bromocyclohexane. [1]

Cyclohexa-1,4-diene can be made by heating buta-1,3-diene with ethyne. The diagram below shows the movement of electron pairs, represented by curly arrows, needed to generate the cyclohexa-1,4-diene in a single step.

buta-1,3-diene ethyne

(v) In a similar type of reaction, cyclohexene can be formed from two alkenes.

Suggest the names of the two alkenes that would react to form cyclohexene in this type of reaction. [2]

(vi) In another similar reaction, penta-1,3-diene reacts with propene to form two products that are constitutional isomers. Draw the structures of these two isomers.

[1]

(c) B, C and D are compounds with molecular formula C₆H₁₂.

B does not decolorise aqueous bromine but will decolourise bromine in sunlight.

C decolourises aqueous bromine and reacts with HBr to give $CH_3CHBrCH_2CH(CH_3)_2$. On oxidation with hot, acidified potassium manganate(VII), C gives E, $C_5H_{10}O_2$, as the only organic product.

D undergoes oxidation with hot, acidified potassium manganate (VII) to give $CH_3CH_2CO_2H$ as the only organic product.

- (i) Suggest the identities of the organic compounds B, C, D and E by giving their structural formulae. [4]
- (ii) Write the balanced equation for the oxidation of C to E.

 You may use [O] to represent the oxidation of C.

 [1]
- (iii) Give the structural formula of the major product obtained when CH₃CHBrCH₂CH(CH₃)₂ reacts with hot alcoholic potassium hydroxide. [1]
- (d) It was observed that the boiling point of cis-but-2-ene-1,4-diol is lower than that of the trans isomer. Suggest a reason for this observation.

[2]

[Total: 20]

END OF PAPER

[Turn over