
Permutations and Combinations Solutions

2(a)(i)	Case 1: 2 red + 2 green, no of ways = ${}^{5}C_{2} \times {}^{8}C_{2} = 280$
	Case 2: 1 red + 3 green, no of ways = ${}^{5}C_{1} \times {}^{8}C_{3} = 280$
	Case 3: 4 green, no of ways $= {}^{8}C_{4} = 70$
	Total no of ways = $280 + 280 + 70 = 630$
(ii)	No of ways to select at least 1 of each colour
	= n(any 4 of 13 balls) - n(4 of 5 red) - n(4 of 8 green)
	$= {}^{13}C_4 - {}^5C_4 - {}^8C_4 = 640$
(b)	Case 1: blue trousers, i.e. any 2 of 5 skirts: no of ways = ${}^{5}P_{2} = 20$
	Case 2: green trousers, i.e. no green skirt: no of ways = ${}^{4}P_{2} = 12$
	Case 3: yellow trousers, i.e. no yellow skirt: no of ways = ${}^{4}P_{2} = 12$

	Total no of ways = $20 + 12 + 12 = 44$
3	The number of seating arrangements $= 4! = 24$
	Number of ways = $3! \times 2! = 12$
	Number of ways = $4! \times 2! \times 6 = 288$

4(a)	No of ways = ${}^{10}C_1 \times {}^9C_3 = 840$ OR ${}^{10}C_3 \times {}^9C_1 = 840$
(i)	Form CLC unit: ${}^{3}C_{2} \times 2$ ways
	Seat 8 units in a round table: $(8-1)!$ ways
	Total number of ways = ${}^{3}C_{2} \times 2 \times (8-1)! = 30240$
(ii)	Total number of ways = $30240 \times 10 = 302400$
(b)	Case 1: 4 digit number, ending with 2: No of ways = $2 \times 3 \times 2 \times 1 = 12$ Case 2: 4 digit number, does not end with 2: No of ways = $2 \times (2 + 1) \times 1 = 6$ Case 3: 5 digit number, ending with 2: No of ways = $4! \times 1 = 24$ Case 4: 5 digit number, does not end with 2: No of ways = $\frac{4!}{2!} \times 2 = 24$ Total number of ways = $12 + 6 + 24 + 24 = 66$

5(i)	No of delegations = $\begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} = 210$
(ii)	No of groupings = $\frac{\binom{11}{5}\binom{6}{3}\binom{3}{3}}{2!} = 4620$

6(i)	No of arrangements = $10! = 3628800$
(ii)	No of arrangements = $5! \binom{6}{5} 5! = 86400$
(iii)	No of arrangements = $(7-1)! 5!(11) = 950400$

7(i)	No of words = 5! $\frac{4!}{2!} \div 2 = 720$
(ii)	No of words $= \frac{6!}{2!} \times 2 = 6! = 720$
(iii)	No of words = 4! $\frac{4!}{2!} \times \frac{2}{2} = 288$
(iv)	No of words = $\frac{4!}{2!} {\binom{5}{4}} \frac{4!}{2} = 720$

8(a)	No of arrangements = $\frac{6!}{2!} = 360$
------	--

(b)	No of selections = $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$ x 2 = 8
-----	---

9(i)	No of 4-digit numbers = $3 \times 3! = 18$
(ii)	No of 4-digit numbers = $2! \times 5 = 10$

10(i)	Total number of possible results = $3^5 = 243$
(ii)	Number of ways of obtaining 'Windfall' = 3
(iii)	No. of ways to obtain a success = $\left(\frac{5!}{3!2!} \times 2 + \frac{5!}{3!}\right) \times 3 = 120$
	Total number of ways $= 243 - 120 = 123$
	Reqd no. of ways = ${}^{10}C_3 \times {}^7C_3 \times {}^4C_4 \times \frac{3!}{2!} = 12600$

11(a)(i)	Required number of 8-letter code-words = $5^8 = 390625$
(ii)	Required number of 8-letter code-words = $\frac{8!}{(2!)^3} = 5040$
(iii)	First, consider that each letter occurs once, then we add 3 more letters (from A , B , C , D , E) to form the code-words.
	Case 1: 3 identical letters No. of ways = 5
	Case 2: 3 different letters
	No. of ways = ${}^{5}C_{3} = 10$
	Case 3: 2 identical letters and 1 different letter No. of ways = ${}^{5}C_{2} \times 2 = 20$
	Required number of 8-letter code-words $= 5 + 10 + 20 = 35$
(b)	Case 1: 2, 2, 5 people No. of ways = $\frac{{}^{9}C_{2} \times {}^{7}C_{2}}{2!} \times 1! \times 1! \times 4! = 9072$
	Case 2: 2, 3, 4 people No. of ways = ${}^{9}C_{2} \times {}^{7}C_{3} \times 1! \times 2! \times 3! = 15120$
	Case 3: 3, 3, 3 people No. of ways = $\frac{{}^{9}C_{3} \times {}^{6}C_{3}}{3!} \times (2!)^{3} = 2240$
	Total no. of ways = 26432

12(a)(i)	No. of arrangements = $\frac{4!}{2!} \times 5! = 1440$
(ii)	No. of arrangements = $4 \times {}^{3}P_{2} = 144$
(b)	No. of arrangements = $(10-1) \ge 2 \ge 11 = 7983360$
	Case 1: Mr Lin and Mr Tan at Circular Table
	No. of arrangements $= {}^{9}C_{4}(5-1) \ge 2 \times 5! = 725760$
	Case 2: Mr Lin and Mr Tan at Linear Table
	No. of arrangements = ${}^{9}C_{3}(6-1) \ge 2 \ge 4! = 483840$
	Total number of arrangements $= 1209600$

13(a) Case 1: 4 and 5 in the second and fourth positions $2 \times 3! = 12$ Case 2: 3 and 5 in the second and fourth positions $2 \times 2 = 4$ Total number = 12 + 4 = 16(b) Number of ways $= \left[\binom{4}{1} \cdot \binom{3}{3} + \binom{4}{2} \cdot \binom{3}{2} + \binom{4}{3} \cdot \binom{3}{1}\right] \cdot 3! = 204$ Alternative: ${}^{7}C_{4} \cdot 3! - 3! = 204$

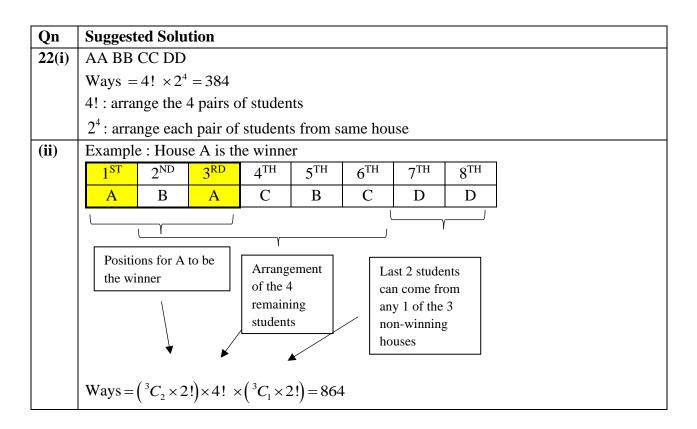
14(i)	${}^{6}C_{2} \times {}^{5}C_{4} = 75$ ways
(ii)	Number of ways if at least one of the sisters are included = number of ways without restriction – number of ways if none of the sisters is included = ${}^{11}C_6 - {}^{8}C_6 = 434$ Or ${}^{3}C_1 \times {}^{8}C_5 + {}^{3}C_2 \times {}^{8}C_4 + {}^{3}C_3 \times {}^{8}C_3 = 434$
(iii)	Select a man to be between the 2 sisters and group the 3 of them as one unit and arrange 4 units round a table ${}^{3}C_{1} \times 3! \times 2 = 36$
(iv)	First arrange the other 4 persons round the table. There are 4 ways to insert the sisters. $3! \times 4 = 24$ or ${}^{4}C_{2} \times 2! \times 2! = 24$

15	For distinct gifts, 5 ⁶ ways
	Now considering the distinct gifts, Case 1: 3 person get 1 gift

No of ways = ${}^{5}C_{3} \times 5^{6} = 156250$ Case 2: 1 person get 1 gift, another person gets 2 gifts No of ways = ${}^{5}C_{2}(2) \times 5^{6} = 312500$ Case 3: 1 person get 3 gifts No of ways = ${}^{5}C_{1} \times 5^{6} = 78125$ Total number of ways = 156250 + 312500 + 78125 = 546875Alternative Stage 1: Distribute 6 distinct gifts among 5 people No of ways = 5^6 Stage 2: Distribute 3 identical gifts among 5 people Case 1: 3 person get 1 gift No of ways = ${}^{5}C_{3} = 10$ Case 2: 1 person get 1 gift, another person gets 2 gifts No of ways = ${}^{5}C_{2}(2) = 20$ Case 3: 1 person get 3 gifts No of ways = ${}^{5}C_{1} = 5$ Total number of ways = $(10+20+5)5^6 = 546875$

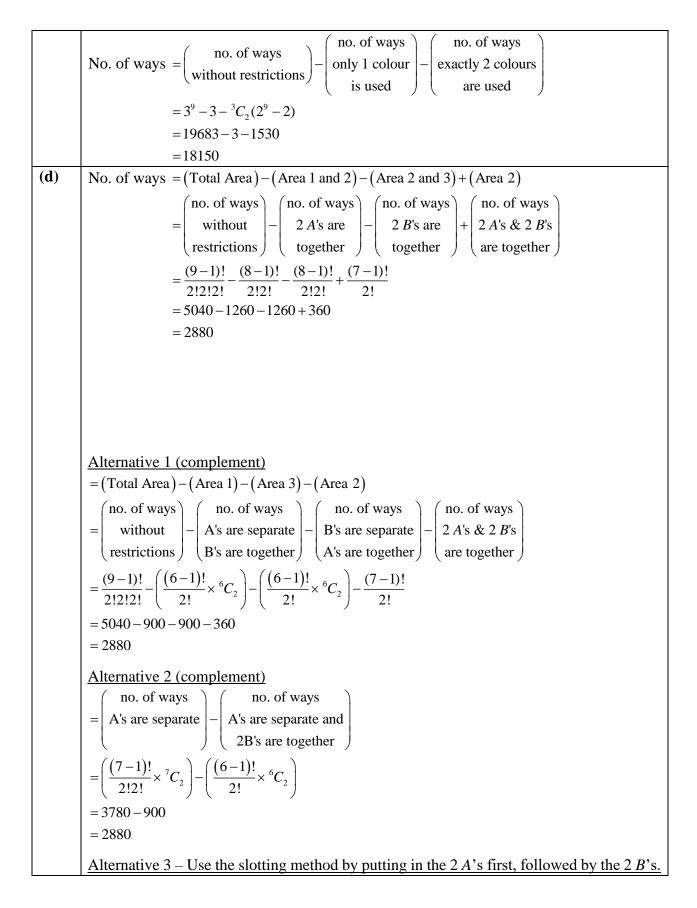
16(i)	Number of ways =	8! = 40320		
(ii)	Number of ways = 4!×4!×4 = 2304	4 = ways to arrange the boys and girls on each side 4!×4! = ways the groups of 4 boys & 4 girls can arrange themselves		
(iii)	Number of ways = ${}^{10}C_8 \times 8!$ or ${}^{10}P_8$ = 1814400	8! = ways to arrange the boys and girls $\frac{10!}{2!}$ = arrange 10 objects in a row with 2 identical		
(iv)	Number of ways = ${}^{4}C_{2} \times 2! \times {}^{8}C_{6} \times 6!$ or ${}^{4}P_{2} \times {}^{8}P_{6}$ = 241920	seats and ways to arrange the 2 boys ${}^{8}C_{6} \times 6! =$ ways to choose any 6 out of the 8 seats to sit the remaining 2 boys/4 girls and ways to arrange the 2 boys/4 girls		
L		$\frac{8!}{2}$		

17(i)	Number of ways = ${}^{9}C_{3} \times {}^{6}C_{3} \times {}^{3}C_{3} = 1680$
(ii)	Number of ways = $3 \times 2 \times {}^{7}C_{2} \times {}^{5}C_{2} \times {}^{3}C_{3} = 1260$
	(or $3 \times 2 \times {}^7C_3 \times {}^4C_2 \times {}^2C_2 = 1260$)
	There are 3 ways of assigning a car to <i>A</i> , 2 ways to <i>B</i> , followed by slotting the remaining people 7 people into the 3 cars.
	<u>Alternative Solution</u> When A and B are in the same car, number of ways = $3 \times {}^{7}C_{1} \times {}^{6}C_{3} \times {}^{3}C_{3} = 420$
	(There are 3 ways of assigning a car to both A and B , followed by slotting the remaining 7 people into the 3 cars)
	: number of ways when A and B are in different cars = $1680 - 420 = 1260$
(iii)	Number of ways = 11!-10!2! = 32659200
	<u>Alternative Solution</u> Number of ways = 9! $\times {}^{10}P_2 = 32659200$
	(Arrange the remaining 10 people first, then look for separated slots to accommodate A and B)
(iv)	Number of ways when A and B are together (B on A's left) = $10!$
	Number of ways when there is 1 person between <i>A</i> and <i>B</i> (<i>B</i> on <i>A</i> 's left) = ${}^{10}C_1 \times 9!$ Number of ways when there are 2 people between <i>A</i> and <i>B</i> (<i>B</i> on <i>A</i> 's left) = ${}^{10}C_2 \times 2! \times 8!$
	: number of ways = $11! - 10! - {}^{10}C_1 \times 9! - {}^{10}C_2 \times 2! \times 8! = 29030400$
	<u>Alternative Solution</u> Number of ways = 9! $\times {}^{10}C_1 \times {}^{8}C_1 = 29030400$
	(Arrange the remaining 10 people first, then choose 1 slot to accommodate A or B, followed by choosing one slot to accommodate the last person, with at least 3 people between A and B)


18	family	А		В		С		D	
(i)		Adult	kids	Adult	kids	Adult	kids	Adult	kids
		2	2	1	2	1	3	1	1

	4 family units, No. of ways = $4! \times 4! \times 3! \times 5! \times 2! = 829,440$
(ii)	Case 1: 3,3,2 No. of ways = $\frac{{}^{8}C_{3} \times {}^{5}C_{3} \times {}^{2}C_{2}}{2!} = 280$
	Case 2: 2,2,2,2 No. of ways = $\frac{{}^{8}C_{2} \times {}^{6}C_{2} \times {}^{4}C_{2} \times {}^{2}C_{2}}{4!} = 105$
	Total no. of ways = $280 + 105 = 385$
(iii)	There is only 1 way to divide the 8 children and the adults into 2 circles to satisfy all conditions. Family A and B (3 adults & 4 kids) must be in 1 circle and Family C & D are in another circle. Arrange the children in 1 circle : (4-1)! Slot in adults in between children : ${}^{4}C_{3} \times 3!$ No. of ways = $[(4 - 1)! \times {}^{4}C_{3} \times 3!] \times [(4 - 1)! \times {}^{4}C_{3} \times 3!] = 20736$

19	(i) $\frac{{}^{18}C_6 \times {}^{12}C_6 \times {}^{6}C_6}{3!} = 2858856 \text{ (Shown)}$
	(ii) Number of ways M and J in the same group
	$=\frac{{}^{16}C_4 \times {}^{12}C_6 \times {}^{6}C_6}{2!} = 840840$
	Required probability = $\frac{840840}{2858856}$ = 0.294 (3 s.f.)
	Case 1 : 3 particular participants stand in row 3
	Number of ways = $3! \times 6! = 4320$
	Case 2:3 participants stand in row 4
	Number of ways = $2 \times 3! \times 6! = 8640$
	Total number of ways = 12960


20(i)	No. of arrangements = $\frac{10!}{2!2!4!} - 1 = 37799$
(ii)	No. of arrangements
	=Total no. of ways with all E's together
	– No. of ways all E's together and C's and L's together
	- No. of ways all E's together and C's but L's separated
	- No. of ways all E's together and L's but C's separated
	$= \frac{(7-1)!}{2!2!} - (5-1)! - (4-1)!^4 C_2 - (4-1)!^4 C_2$
	=180-24-36-36=84

21(i)	$(8-1)! - (7-1)! \times 2! = 3600$
(ii)	6P4 = 360
	OR
	$6C2 \times 2! \times 4C2 \times 2! = 360$
	OR
	$6C4 \times 4C2 \times 2 \times 2C2 \times 2! = 360$
(iii)	For there to be ties, there are 4 cases to consider for the voting:
	(4,4,0,0), (3,3,1,1), (3,3,2,0) and $(2,2,2,2)$.
	$(4,4,0,0): 8C4 \times 4C4 \times 4C2 = 420$
	$(3,3,1,1): 8C3 \times 5C3 \times 2C1 \times 1C1 \times 4C2 = 6720$
	$(3,3,2,0): 8C3 \times 5C3 \times 2C2 \times \frac{4!}{2!} = 6720$
	$(2,2,2,2): 8C2 \times 6C2 \times 4C2 \times 2C2 = 2520$
	Total number of ways the votes could have happened:
	420+6720+6720+2520=16380

(iii) Ways =
$$(4-1)! \times ({}^{4}C_{3} \times 3!)^{4} \times 4! = 47775744$$

 $(4-1)!:$ arrange the 4 gps of 3 teachers in a circle
 $({}^{4}C_{3} \times 3!)^{4}:$ arrange the 3 out of 4 selected teachers
 $4!:$ arrange the 4 captains
ABCD – teachers, T - captains

Qn	Suggested Solution
23(a)	No. of ways
	$= ({}^{9}C_{2} {}^{7}C_{2} {}^{5}C_{5} \times \frac{3!}{2!}) + ({}^{9}C_{2} {}^{7}C_{3} {}^{4}C_{4} \times 3!) + ({}^{9}C_{3} {}^{6}C_{3} {}^{3}C_{3})$ = 2268 + 7560 + 1680 = 11508
(b)	Case 1: Triangle formed from 1 point from each side ${}^{=2}C_1 \times {}^{3}C_1 \times {}^{4}C_1 = 24$ Case 2: Triangle formed from 2 points on XZ + 1 other ${}^{=4}C_2 \times {}^{5}C_1 = 30$ Case 3: Triangle formed from 2 points on YZ + 1 other ${}^{=3}C_2 \times {}^{6}C_1 = 18$
	Case 4: Triangle formed from 2 points on XY + 1 other = ${}^{2}C_{2} \times {}^{7}C_{1} = 7$ Total no. of ways = 24 + 30 + 18 + 7 = 79
	$\frac{\text{Method 2 (complement)}}{\text{No. of ways}} = \begin{pmatrix} \text{no. of ways} \\ \text{of choosing 3 bulbs} \\ \end{pmatrix} - \begin{pmatrix} \text{no. of ways} \\ \text{of choosing 3 bulbs} \\ \end{pmatrix} - \begin{pmatrix} \text{no. of ways} \\ \text{of choosing 3 bulbs} \\ \end{pmatrix} - \begin{pmatrix} \text{no. of ways} \\ \text{of choosing 3 bulbs} \\ \end{pmatrix}$
	(without restrictions) (from side YZ) (from side XZ)
	$= {}^{9}C_{3} - {}^{3}C_{3} - {}^{4}C_{3}$
	= 84 - 1 - 4 = 79
(c)	No. of ways = $\binom{\text{no. of ways}}{\text{without restrictions}} - \binom{\text{no. of ways}}{\text{red or blue}} - \binom{\text{no. of ways}}{\text{blue or green}} - \binom{\text{no. of ways}}{\text{is used}} - \binom{\text{no. of ways}}{is $
	$+ \begin{pmatrix} \text{no. of ways} \\ \text{only red} \\ \text{is used} \end{pmatrix} + \begin{pmatrix} \text{no. of ways} \\ \text{only blue} \\ \text{is used} \end{pmatrix} + \begin{pmatrix} \text{no. of ways} \\ \text{only green} \\ \text{is used} \end{pmatrix}$
	$=3^9-3(2^9)+3$
	=19683 - 1536 + 3
	=18150
	Alternative method

No. of ways = $\begin{pmatrix} no. of ways \\ 2 A's are separated \\ initially \end{pmatrix} + \begin{pmatrix} no. of ways \\ 2 A's are together \\ initially \end{pmatrix}$
No. of ways = $2 A$'s are separated + $2 A$'s are together
(initially) (initially)
$=\frac{(5-1)!}{2!}\times {}^{5}C_{2}\times {}^{7}C_{2}+\frac{(5-1)!}{2!}\times {}^{5}C_{1}\times {}^{6}C_{1}$
$=12\times10\times21+12\times5\times6$
= 2880

Qn	Suggested Solution
24(i)	No. of numbers = ${}^{6}C_{4} \times 4! = {}^{6}P_{4} = 360$
(ii)	Case 1: AABC
	no. of numbers = ${}^{6}C_{1} \times {}^{5}C_{2} \times \frac{4!}{2!} = 720$
	Case 2: AABB
	no. of numbers = ${}^{6}C_{2} \times \frac{4!}{2!2!} = 90$
	Total no. of numbers = $720+90 = 810$
	Alternatively,
	Total – all different – all same – 3 same and 1 different
	$=1296-360-6-{}^{6}C_{1}^{5}C_{1}\times\frac{4!}{3!}=810$
(iii)	No. of numbers = $360 - 3 \times 4! = 288$