Name:	Class	s:
	ST ANDREW'S JUNIOR COLLE	GE
CHEMIST		ION 9729/04
Paper 4 P		14 August 2023 2 hours 30 minutes
Additiona	I Materials: Qualitative Analysis Notes	
READ TH	ESE INSTRUCTIONS FIRST.	Shift
•	r name and class on all the work you hand in. Is of the practical shift and laboratory in the boxes above.	Laboratory
•	ark blue or black pen.	For Examiner's Use
You may i	use a soft pencil for any diagrams or graphs.	
Do not us fluid.	e staples, paper clips, highlighters, glue or correction	14
nuiu.		2
	I questions in the spaces provided on the Question	3
	f an approved scientific calculator is expected, where	4 13
appropriate. You may lose marks if you do not show your working or if		13 Total
you do no	ot use appropriate units.	55
The numb	er of marks is given in the brackets[] at the end of	
each ques	tion or part question.	
ouon quot		

analysis

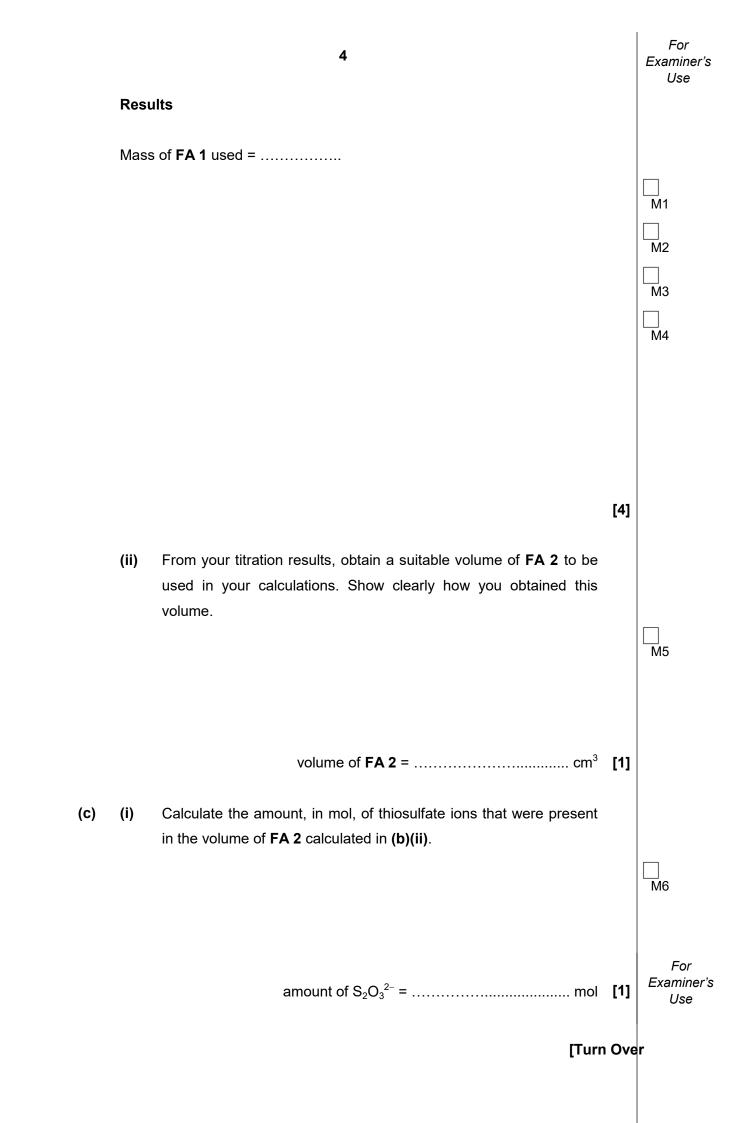
The formula of hydrated copper(II) sulfate is $CuSO_4 \bullet xH_2O$, where x represents the number of moles of water of crystallisation in one mole of the compound.

You are to determine the value of **x** by titrating a solution of iodine, I₂, with a solution of thiosulfate ions, $S_2O_3^{2-}$. The iodine is formed by the reaction of copper(II) ions, Cu^{2+} , with iodide ions, I⁻.

$$2Cu^{2+} + 4I^{-} \rightarrow 2CuI + I_2$$

 $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^{-}$

You are provided with the following.


FA 1 is hydrated copper(II) sulfate, $CuSO_4 \bullet xH_2O$. **FA 2** is 0.050 mol dm⁻³ sodium thiosulfate, $Na_2S_2O_3$. **FA 3** is 1.0 mol dm⁻³ potassium iodide, KI.

(a) Preparation of hydrated copper(II) sulfate, FA 4

- Weigh accurately about 3.50 g of FA 1 in a clean and dry weighing bottle. Record the mass of FA 1 used on page 4.
- Transfer FA 1 into a 100 cm³ beaker. Add approximately 80 cm³ of deionised water to FA 1 in the beaker and stir until the salt has dissolved. Rinse the weighing bottle with deionised water several times, adding each rinsing to the beaker.
- **3.** Pour the contents carefully into a 250 cm³ volumetric flask. Rinse the beaker with deionised water and add these washings to the flask.
- **4.** Fill the flask to the mark with deionised water and shake to ensure thorough mixing.
- 5. Label the solution FA 4.

(b) (i) Titration of iodine against FA 2

- 1. Fill a burette with **FA 2**.
- **2.** Using a pipette, transfer 25.0 cm³ of **FA 4** into a conical flask.
- **3.** Use a measuring cylinder to add approximately 7.0 cm³ of **FA 3** into the same conical flask. This will form a white precipitate in a brown solution.
- Titrate this mixture with FA 2. When the brown solution becomes pale, add 1.0 cm³ of starch indicator. The mixture will turn a blue-black colour.
- **5.** Continue titrating this mixture until the blue-black colour just disappears to leave behind the white precipitate. This is the end-point of the titration.
- 6. Repeat steps 2 to 5 until consistent results are obtained.

(ii) Use your answer to (c)(i) to obtain the amount, in mol, of copper(II) ions present in 25.0 cm³ of FA 4.

amount of copper(II) ions in 25.0 cm³ of **FA 4** = mol [1]

(iii) Determine the concentration, in mol dm⁻³, of copper(II) ions in FA 4.

concentration of copper(II) ions in **FA 4** = mol dm⁻³ [1]

(iv) Use your answer to (c)(iii) to calculate the M_r of CuSO₄•xH₂O.

M_r of CuSO ₄ • x H ₂ O =	For Examiner's Use
[Turn Ove	r

Hence, deduce the value of **x**. Show your working. [*A*_r: Cu, 63.5; O, 16.0; H, 1.0; S, 32.1]

(d) State and explain how the use of a measuring cylinder to measure the volume of FA 3 in step 3 of (b)(i) will affect the accuracy of the titration result.

(e) (i) When titrating iodine against FA 2, a student recorded that 23.40 cm³ of FA 2 was used. However, the actual volume of FA 2 added was 23.50 cm³.

Considering that the maximum error in a single burette reading is $\pm 0.05 \text{ cm}^3$, explain why the student's titre volume is accurate. [1]

.....

For Examiner's Use

6

(ii) Student **B** suggested improving the accuracy of the titration results by changing the concentration of **FA 2** to 0.040 mol dm⁻³.

State and explain if the student's suggestion would make the titration results more accurate. [1]

2. Determination of the kinetics of a redox reaction

In acidic solutions, iron(III) ions are reduced by iodide ions to form iron(II) ions. The iodide ions are oxidised to iodine.

$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(aq)$$

The rate of this reaction can be investigated by using starch indicator, which turns blue-black in the presence of iodine. Sodium thiosulfate is added to the reaction mixture to react with iodine as it is formed. The blue-black colour is seen when all the thiosulfate has reacted.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

You will investigate how the rate of reaction is affected by changing the concentration of the iodide ions.

FA 5 is 0.0500 mol dm⁻³ potassium iodide, KI. **FA 6** is 0.0500 mol dm⁻³ acidified iron(III) chloride, FeC l_3 . **FA 7** is 0.00500 mol dm⁻³ sodium thiosulfate, Na₂S₂O₃.

- (a) Prepare a table on page 10 for your results to be recorded to an appropriate level of precision. You will need to include the volume of FA 5, volume of water, reaction time and the rate of reaction for each of the five experiments.
 - Note: In each of these experiments, you will need to place the beaker on a printed page on page 1 of the insert. You will view the page by looking vertically down through the mixture. You will stop the stopwatch when you can no longer see the prints on the printed page.

Experiment 1

- 1. Fill a burette with **FA 5**.
- 2. Transfer 20.00 cm³ of **FA 5** into a 100 cm³ beaker.
- Use a 25.0 cm³ measuring cylinder to measure 20.0 cm³ of FA 7 and add to the same 100 cm³ beaker.
- 4. Use a 10.0 cm³ measuring cylinder to measure 5.0 cm³ of starch indicator and add to the same 100 cm³ beaker.
- 5. Use another 10.0 cm^3 measuring cylinder to measure 10.0 cm^3 of **FA 6**.
- Pour the FA 6 into the same 100 cm³ beaker and start timing immediately.
 Ignore the initial purple colour observed.
- 7. Stir once and place the beaker on the printed page on page 1 of the insert.
- 8. Stop timing as soon as the solution turns blue-black and obscures the prints on the printed page.
- 9. Record this reaction time to the nearest second.
- 10. Wash the beaker and dry it with a paper towel.

Experiment 2

- 1. Fill a second burette with deionised water.
- 2. Transfer 10.00 cm^3 of **FA 5** into a 100 cm^3 beaker.
- 3. Transfer 10.00 cm^3 of deionised water into the beaker containing **FA 5**.
- Use a 25.0 cm³ measuring cylinder to measure 20.0 cm³ of FA 7 and add to the same 100 cm³ beaker.
- 5. Use a 10.0 cm³ measuring cylinder to measure 5.0 cm³ of starch indicator and add to the same 100 cm³ beaker.
- 6. Use another 10.0 cm^3 measuring cylinder to measure 10.0 cm^3 of **FA 6**.
- Pour the FA 6 to the same 100 cm³ beaker and start timing immediately. Ignore the initial purple colour observed.
- 8. Stir once and place the beaker on the printed page on page 1 of the insert.
- 9. Stop timing as soon as the solution turns blue-black and obscures the prints on the printed page.
- 10. Record this reaction time to the nearest second.
- 11. Wash the beaker and dry it with a paper towel.

For Examiner's Use

Experiments 3–5

1. Carry out three further experiments to investigate how the reaction time

changes with different volumes of potassium iodide, **FA 5**. The combined volume of **FA 5** and deionsied water must always be 20.00 cm^3 . Do not use a volume of **FA 5** that is less than 6.00 cm³.

Results

(ii)

The rate of reaction can be calculated as shown:

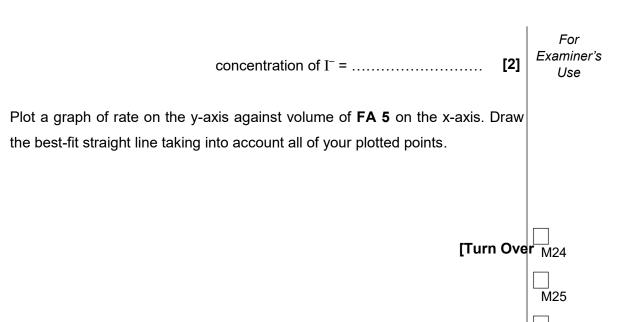
Rate = $\frac{1000}{Reaction Time}$

[5]

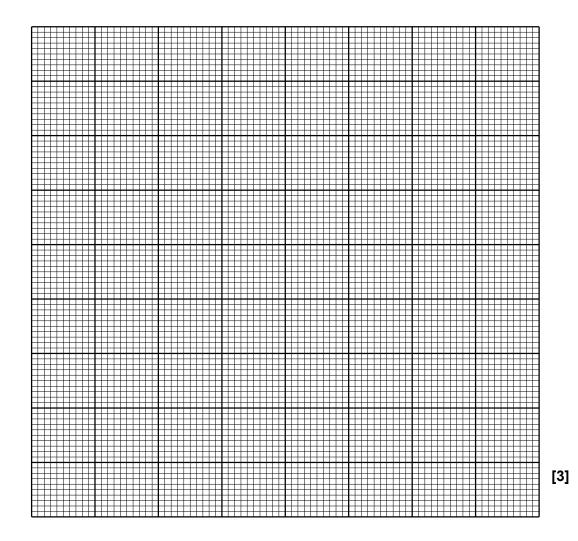
(b) (i) Calculate the amount, in mol, of the thiosulfate ions, $S_2O_3^{2-}$, used in each experiment.

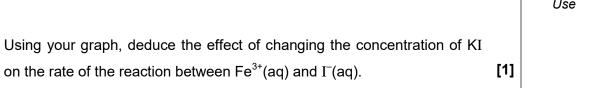
Calculate the amount, in mol, of the iodide ions, I⁻, that were used to produce the amount of iodine that reacted with the amount of $S_2O_3^{2-}$ in (b)(i).

amount of $S_2O_3^{2-}$ = mol


[Turn Over M21

[1]


For


amount of I^- = mol [1]

(iii) Using your answer to (b)(ii), calculate the concentration of I⁻ up to the time of appearance of the blue colour.

(C)

(d)

For Examiner's Use

M27

[Turn Over

12

.....

.....

(e) A student carries out the same investigation as in (a) but the solutions are mixed in a different order. The student places FA 5 and an appropriate volume of deionised water in one beaker and all the other reactants in a second beaker. The student then transfers the mixture from the second beaker to the first beaker and starts timing.

Explain which method is a better method.

You may use the data in the table below to explain your answer.

electrode reaction	E ^e / V
$S_4O_6^{2-} + 2e^- \rightleftharpoons 2S_2O_3^{2-}$	+0.09
$I_2 + 2e^- \rightleftharpoons 2I^-$	+0.54
$Fe^{3+} + e^- \Rightarrow Fe^{2+}$	+0.77

[2]

[Total: 15]

3. Qualitative Analysis

In this question you will deduce the identities of the following organic and inorganic compounds.

- ethanol, CH₃CH₂OH
- methanoic acid, HCOOH
- metal halide

You are provided with aqueous samples of three of these compounds, **FA 8, FA 9** and **FA 10**.

Perform the tests described in Table 3.1 on page 15. Some of the observations have been completed for you. There is no need to carry out those tests. Record your observations in Table 3.1.

You will also plan and conduct your own experiments in Table 3.2 on page 18.

Using the observations in Table 3.1 and Table 3.2, you will then deduce the identities of **FA 8, FA 9** and **FA 10**.

Test and identify any gases evolved. If there is no observable change, write **no observable change**.

You are advised to carry out the experiments on each unknown compound one at a time.

			Observations		
	Test	FA 8	FA 9	FA 10	
(a)	Test the unknown using Universal Indicator paper.			Universal Indicator paper turned light green. pH is 7.	
(b)	To 1 cm depth of the unknown in a test-tube, add 1 cm depth of sodium carbonate.			No effervescence seen.	
(c)	To 1 cm depth of the unknown in a test-tube, add 1 cm depth of dilute sulfuric acid, followed by 3 drops of potassium manganate(VII) solution.				For Examiner's Use
	tube in the hot				
				[Turn Ov	er M30
					 M31

	water bath for 5		
	minutes.		
	Test and		
	determine if any		
	gas is evolved		
	using a moist		
	blue litmus paper.		
(d)	To 1 cm depth of		
	aqueous iodine,		
	add aqueous		
	sodium hydroxide		
	dropwise until a		
	permanent yellow		
	colour is		
	obtained.		
	Then add 5 drops		
	of the unknown		
	into the same		
	test-tube.		
	Place the test-		
	tube in the hot		
	water bath for 1		
	minute.		

For Examiner's Use

(e) Identifying unknown metal halide

[Turn Over

[4]

(i) From your observations in Table 3.1, identify and explain which of the unknown compounds is the metal halide.

	FA	
	explanation:	
		[1]
(ii)	Suggest the reagent and carry out the test to confirm the identity of the halide in the metal halide.	
	reagent:	
	observations:	
	FA contains anion.	[2]

For Examiner's Use

(iii) In Table 3.2 below, describe two tests that will allow you to identify the cation in the metal halide. Perform the tests and record the

observations in the same table. Use only the bench reagents provided.

Test	Observations	
	FA	

Table 3.2

The cation in metal halide is

[3]

(iv) The nature of the cation of the metal halide in aqueous solution accounts for its observations in test (a) and (b) in Table 3.1.Describe and explain the nature of the cation by means of an

Examiner's Use 19 equation. equation: M40 explanation: M41 [2] Identifying organic liquids From your observations in Table 3.1, identify which unknown is methanoic acid, HCOOH, and state the evidence. FA evidence: M42[1] [Total: 13]

(f)

4. Planning: Determining the concentration of aqueous methanoic acid and the enthalpy change of neutralisation

When aqueous methanoic acid, HCOOH (aq), is mixed with aqueous sodium hydroxide, NaOH (aq), the reaction releases heat causing a rise in the temperature of the solution.

HCOOH (aq) + NaOH (aq)
$$\rightarrow$$
 HCOONa (aq) + H₂O (*l*) $\Delta H_{\text{neut}} < 0$

A series of experiments can be performed where increasing volumes of aqueous methanoic acid and decreasing volumes of aqueous sodium hydroxide are mixed and the temperature rise, ΔT , for each experiment is determined.

In each of the experiments using different volumes of aqueous methanoic acid and aqueous sodium hydroxide, the **total** volume has to be kept **constant**. Since the total volume of mixture remains the same, the temperature rise, ΔT , is a direct measure of the heat given out by the reaction. The maximum amount of heat is evolved when all the acid present is exactly neutralised by all the alkali.

The weighted average initial temperature, $T_{average}$, of methanoic acid and sodium hydroxide may be calculated using the formula given below:

$$T_{average} = \frac{(V_{HCOOH} \times T_{HCOOH}) + (V_{NaOH} \times T_{NaOH})}{Total \ volume \ of \ the \ mixture}$$

Plotting a graph of ΔT against the volume of methanoic acid will give two straight lines of best–fit.

Extrapolation of the two straight lines will produce a point of intersection from which the concentration of aqueous methanoic acid and the enthalpy change of neutralisation, ΔH_{neut} , of the exothermic reaction between aqueous methanoic acid and aqueous sodium hydroxide can be determined.

The volume of aqueous methanoic acid used should be at least 20.00 cm³ and the total volume of the reaction mixture should be kept constant at 60.00 cm³ for all experiments.

For Examiner's Use

(a) Fill up Table 4.1 for the volume of methanoic acid and volume of sodium

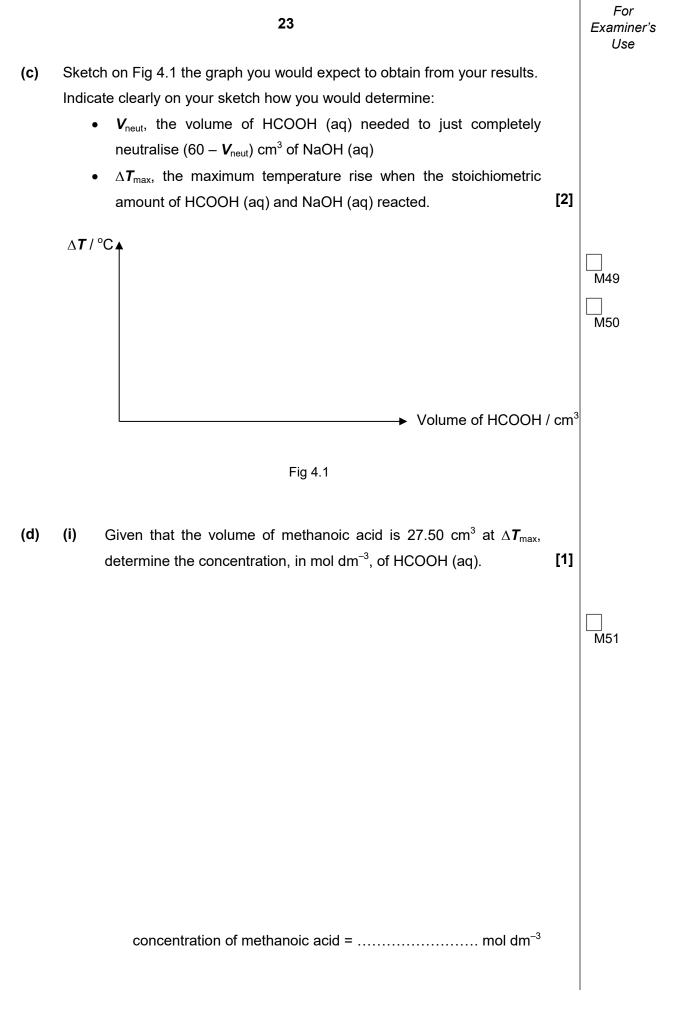
hydroxide to be used in the six experiments to plot a suitable ΔT -volume of methanoic acid graph.

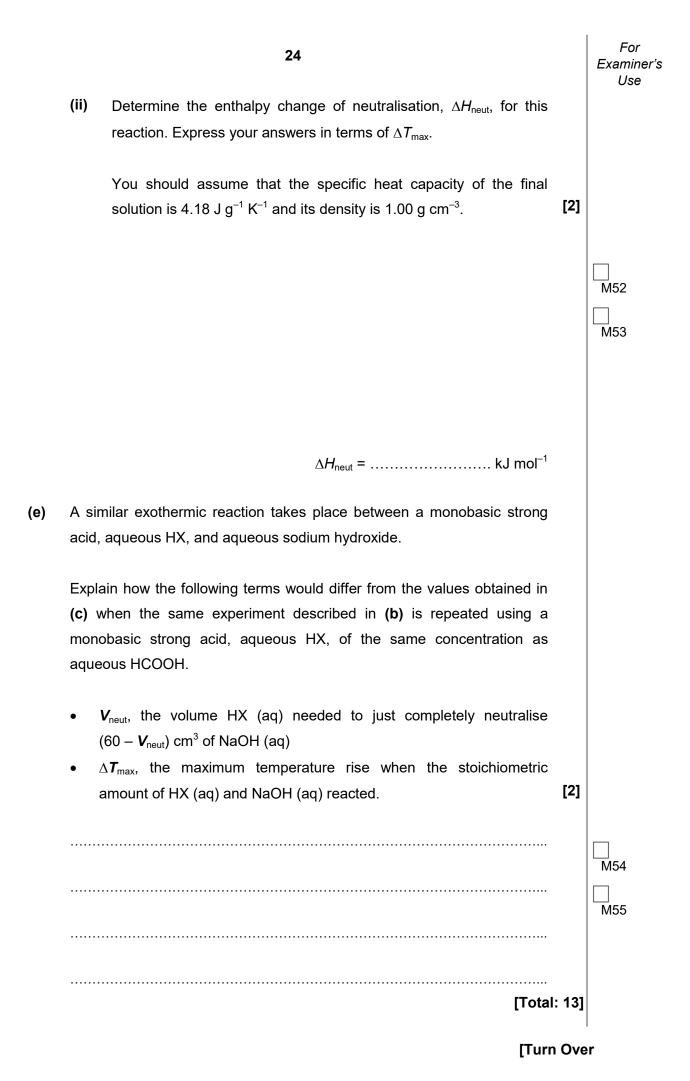
Experiment number	V _{нсоон} / cm ³	V _{NaOH} / cm ³
number	/ cm ³	/ cm ³
1		
2		
3		
4		
5		
6		

Table 4	1.1
---------	-----

[1]

(b) Plan an investigation to determine the concentration of methanoic acid and the enthalpy change of neutralisation, ΔH_{neut} , of the exothermic reaction between aqueous methanoic acid and aqueous sodium hydroxide.


You may assume that you are provided with:


- methanoic acid solution of approximate concentration 1.8 mol dm⁻³,
- 1.5 mol dm⁻³ aqueous sodium hydroxide,
- the equipment normally found in a school or college laboratory.

In your plan you should include brief details of:

- the apparatus you would use
- the quantities you would use
- the procedure you would follow
- the measurements you would make to allow a suitable ∆*T*-volume of methanoic acid graph to be drawn
- how the data measured would be used to determine values needed for the plotting of the graph
- how you would ensure that an **accurate** and **reliable** value of the concentration of methanoic acid and ΔH_{neut} is obtained. [5]

22	For Examiner's Use
	_
	M44
	M45
	M46
	M47
	M48

Qualitative Analysis Notes

[ppt. = precipitate]

(a) Reactions of aqueous cations

cation	reaction with			
cation	NaOH(aq)	NH₃(aq)		
aluminium, A <i>l</i> ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess		
ammonium, NH₄⁺(aq)	ammonia produced on heating	_		
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.		
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.		
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess		
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution		
iron(II), Fe ²⁺ (aq)	green ppt., turning brown on contact with air insoluble in excess	green ppt., turning brown on contact with air insoluble in excess		
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red–brown ppt. insoluble in excess		
magnesium, Mg²⁺(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess		
manganese(II), Mn ²⁺ (aq)	off-white ppt., rapidly turning brown on contact with air insoluble in excess	off-white ppt rapidly turning brown on contact with air insoluble in excess		
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess		

(b) Reactions of anions

anion	reaction
carbonate, CO ₃ ^{2–}	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in $NH_3(aq)$)
bromide, Br⁻(aq)	gives pale cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I⁻(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in $NH_3(aq)$)
nitrate, NO₃⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO₂⁻(aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil; NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO ₂ in air)
sulfate, SO ₄ ²⁻(aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ^{2–} (aq)	SO ₂ liberated on warming with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in dilute strong acids)

(c) Tests for gases

gas	test and test result		
ammonia, NH ₃	turns damp red litmus paper blue		
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)		
chlorine, Cl ₂	bleaches damp litmus paper		
hydrogen, H ₂	"pops" with a lighted splint		
oxygen, O ₂	relights a glowing splint		
sulfur dioxide, SO ₂	turns aqueous acidified potassium manganate(VII) from purple to colourless		

(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl ₂	greenish yellow gas	pale yellow	pale yellow
bromine, Br ₂	reddish brown gas / liquid	orange	orange-red
iodine, I ₂	black solid / purple gas	brown	purple