2021 KSS AM Prelim P2 (Solutions)

1ai	$2x^{2} + (4-6m)x + 2m + 2 = 0$	
	$b^2 - 4ac \ge 0$	
	$(4-6m)^2 - 4(2)(2m+2) \ge 0$	
	$16 - 48m + 36m^2 - 8(2m + 2) \ge 0$	
	$36m^2 - 64m \ge 0$	
	$m(9m-16) \ge 0$	
	16	
	$m \le 0$ or $m \ge \frac{1}{9}$	
1.011		
1411	$2x^2 + 4x + 2 = 6x - 2$	
	When $m=1$, it is not within the set of values of m for which there will be real roots,	
	hence the curve will not meet the line/ the curve will not cut the line.	
1b	$nr^{2} + ar + n = -3a - 3nr$	
	$px^{2} + (3p + q)x + p + 3q = 0$	
	px + (3p + q)x + p + 3q = 0	
	$b^2 - 4ac < 0$	
	$(3p+q)^2 - 4p(p+3q) < 0$	
	$5p^2 - 6pq + q^2 < 0$	
	(q-5p)(q-p) < 0	
	p < q < 5p (shown)	
2i	(0) (0)	
<i>2</i> 1	$T_{r+1} = \begin{pmatrix} 9 \\ r \end{pmatrix} (2x^{-1})^{9-r} (ax^2)^r = \begin{pmatrix} 9 \\ r \end{pmatrix} 2^{9-r} a^r x^{3r-9}$	
	(r) (r)	
	$3r-9=-3$ $\Box r=2$	
	$(9)_{27}$	
	$512 = \binom{r}{2} \frac{2}{a}$	
	$a = -\frac{1}{2}$ or $\frac{1}{2}$ (reject $a < 0$)	
	$u = -\frac{1}{3}$ or $\frac{1}{3}$ (reject, $u < 0$)	
2ii	$\frac{1}{4} term = \left(\frac{1}{2}\right) \left(\frac{512}{3}\right) + \left(\frac{x^2}{3}\right) \left(\frac{9}{3}\right) 2^8 \left(-\frac{1}{2}\right) x^{-6} = 0$	
	$x^{*} = (8x)(x^{*})(12)(1)(3)$	
	$\frac{1}{r^4}$	
3i	Since the coefficient of the λ term is 0, it does not exist in the expansion.	
	$\angle CBA = \angle BAC$ ($CA = CB$) = $\angle BCT$ (all seg theorem)	

5i	$ED = 2\sin\theta, AB = 2\cos\theta$	
	$AF = 5\sin\theta, BC = 5\cos\theta$	
	$P = 5\sin\theta + 2\cos\theta + 5\cos\theta + 5 + 2\cos\theta = 5 + 9\cos\theta + 5\sin\theta (shown)$	
5ii	$5 + 5\sin\theta + 9\cos\theta = 5 + \sqrt{106}\cos(\theta - \tan^{-1}\frac{5}{9}) = 5 + \sqrt{106}\cos(\theta - 0.507)$	
	max value = $\sqrt{106} + 5 = 15.3 (3s.f)$ when $\theta = 0.507 (3s.f.)$	
5 iii	Area = $\frac{1}{2}(2\cos\theta + 2\cos\theta + 5\cos\theta)(5\sin\theta) = \frac{45}{4}\sin 2\theta$	
	maxArea occurs at $\theta = \frac{\pi}{4}$, <i>i.e.</i> $\sin 2(\frac{\pi}{4}) = 1$	
	but max P occurs when $\theta = 0.507$, hence max Perimeter does not imply max area	
6ia	$m = \pi + k$	
6ib	$l-k = \frac{\pi}{2}$	
6 ii	The number of solutions of $5-3\sin 2x = 4 + \cos \frac{1}{2}x$ is determined by the number of 1	
	intersections between the graphs of $y = 5 - 3\sin 2x$ and $y = 4 + \cos -x$.	
7i	$h^2 + 2h - 1680 = 0$	
	(h-40)(h+42) = 0	
	h = 40 , $h = -42$ (reject)	
7iia	$\frac{dh}{dt} = -\frac{1}{3}t$	
	$h = \int -\frac{1}{3}t dt = -\frac{1}{6}t^2 + c$	
	t = 0, c = 40	
	$\therefore h = -\frac{1}{6}t^2 + 40 (shown)$	

7iib	$\frac{dV}{dt} = 2h + 2 = 82 - \frac{t^2}{2}$	
	dh = 3	
	$\frac{dv}{dt} = \frac{dv}{dh} \times \frac{dn}{dt} = (82 - \frac{t}{3}) \left(-\frac{1}{3}t \right) = -\frac{32}{3}t + \frac{t}{9}$	
	$t = 6 \frac{dV}{dV} = -140 \mathrm{gm}^3 / \mathrm{g}$	
	$t = 0, \frac{dt}{dt} = -140 cm / s$	
7iic	h = 0,	
	$40 = \frac{1}{c}t^2$	
	6 $t = 15.49 = 15.5s (3s, f_{\rm e}), -15.49 (reject)$	
	· · · · · · · · · · · · · · · · · · ·	
8a	$\log_a 8 \times \log_{16} a = \frac{\log_2 2^3}{100} \times \frac{\log_2 a}{100} = \frac{3}{100}$	
	$\log_2 a \log_2 2^* 4$	
8bi	$\log_x x^2 = 2 = 2 = 1$ (shown)	
	$\frac{1}{\log_x 4x^{-2}} - \frac{1}{\log_x 2^2 - 2} - \frac{1}{2p - 2} - \frac{1}{p - 1} - \frac{1}{p - 1}$	
8bii	1 -	
	$p + \frac{1}{p-1} = 3$	
	$p^2 - 4p + 4 = 0$	
	$(p-2)^2 = 0$	
	p = 2	
	$2 = \log_x 2$	
	$x^2 = 2$	
	$\therefore x = \sqrt{2}$ or $-\sqrt{2}$ (reject)	
9ai	$C = 1000e^{0.15(12)} = 6050$	
0	12	
9a11	m = 12	
	$value = 123800 - 1000e^{-119/30.3} = $119/30$	
9aiii	$28000 = 1000e^{0.15m}$	
	$m = \frac{\ln 28}{22.2}$	
	0.15 Nearest month = 23	

9b	$2x\sqrt{3} + 5x\sqrt{5} = 3x\sqrt{5} + 2\sqrt{3}$	
	$x = \frac{\sqrt{3}}{\sqrt{3} + \sqrt{5}} = \frac{\sqrt{3}}{\sqrt{3} + \sqrt{5}} \times \frac{\sqrt{3} - \sqrt{5}}{\sqrt{3} - \sqrt{5}} = \frac{3 - \sqrt{15}}{3 - 5} = \frac{\sqrt{15} - 3}{2}$ $\therefore a = -3 \text{ and } b = 15$	
10i	$F = kv^2$	
	$25 = k(40^2)$	
	$k = \frac{1}{64}$	
	$\therefore F = \frac{1}{64}v^2$	
10ii	$\frac{v^2}{1} + 100$	
	$C = \frac{\text{cost in }\$/\text{hr}}{\text{speed in km/h}} = \frac{64}{v} = \frac{v}{64} + \frac{100}{v}$ (shown)	
	speed in kinsti v 04 v	
10iii	$\frac{dC}{dt} = \frac{1}{CA} - \frac{100}{2}$	
	$dv = 64 - v^2$ dC	
	$\frac{dv}{dv} = 0$	
	$\frac{1}{1} - \frac{100}{2} = 0$	
	$64 v^2$	
	v = 80 or -80 (reject)	
	$d^2C = 200$	
	$\frac{1}{dv^2} = \frac{1}{v^3}$	
	$v = 80$, $\frac{d^2C}{dv^2} = \frac{200}{80^3} > 0 \Rightarrow$ minimum	
	$\therefore v = 80 km / h$	
10iv	$C = \frac{80}{100} + \frac{100}{100} = \frac{82}{50} = \frac{50}{100}$	
	$C = \frac{1}{64} + \frac{1}{80} = \frac{52.507}{80}$ km	
10v	All costs remain constant, no changes, no delay or emergencies to	
	delay time. Machine runs at constant speed.	