

新加坡海星中学 MARIS STELLA HIGH SCHOOL PRELIMINARY EXAMINATION SECONDARY FOUR

CHEMISTRY

Paper 1 Multiple Choice

6092/01 28 August 2024 1 hour

Additional Materials: Optical Test Answer Sheet (OTAS) – 1 sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid. Write your class, index number, Centre number, O level index number and name in the spaces at the top of this page.

There are **forty** questions on this paper. Answer **all** questions. For each question, there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your answer in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this question booklet. A copy of the Periodic Table is printed on page **17**. The use of an approved scientific calculator is expected, where appropriate.

The total number of marks for this paper is 40.

At the end of the examination, hand in the following separately: (1) Optical Test Answer Sheet (OTAS) (2) Question Paper **1** A gaseous mixture of oxygen, sulfur dioxide and propene are passed through the apparatus shown below. Only one gas is collected.

What is the property of the gas collected?

- A turns moist blue litmus red.
- **B** relights a glowing splint.
- **C** burns with a yellow flame.
- D turns acidified potassium manganate(VII) solution colourless.
- 2 An experiment was conducted to compare the diffusion of gas X and gas Y.

Which pair of gases could be X and Y that will cause a decrease in the water level at P?

	gas X	gas Y
Α	carbon monoxide	fluorine
в	fluorine	neon
с	methane	oxygen
D	nitrogen	carbon dioxide

- 3 A series of experiments were conducted on a substance. Which observation suggests that the substance cannot be an element?
 - **A** It has a fixed melting point.
 - **B** It forms two oxides when heated in air.
 - **C** It produces one spot on the chromatogram.
 - **D** It forms two products when the molten substance undergoes electrolysis.
- 4 The R_f values of some substances in ethanol are shown below.

substance	R _f value
Х	0.20
Y	0.80
Z	0.45

Which of the following cannot be concluded from the R_f value of X?

- **A** X is less soluble in ethanol than Y and Z.
- ${f B}$ X will also have the same R_f value when the solvent used is water.
- **C** The distance travelled by Y is four times the distance travelled by X.
- **D** The distance travelled by X is one-fifth the distance travelled by ethanol.

5 Diagrams W, X and Y show how the particles of a substance are packed at different temperatures.

The graph below shows the temperature changes which occur upon warming the substance.

In which region of the graph would all the particles be packed as in Y?

6 Ethanol has the structure shown.

How many of the electrons in a molecule of ethanol are not involved in bonding?

- **A** 6
- **B** 8
- **C** 10
- **D** 12

- 7 An element X has an electronic configuration 2.1. The compound formed when X combines with oxygen is most likely to be
 - **A** a liquid at room temperature.
 - **B** a compound with a low melting point.
 - **C** a good conductor of electricity in both solid and molten states.
 - **D** a solid that dissolves in water to form an electrolyte.
- 8 Scientists have discovered the use of an isotope of lead, Pb, which can treat non-cancerous eye disorders. ²¹⁰Pb is an isotope of ²⁰⁷Pb.

Which statement about these isotopes is correct?

- A ²¹⁰Pb atom has 210 neutrons but ²⁰⁷Pb atom has 207 neutrons.
- **B** ²¹⁰Pb atom and ²⁰⁷Pb atom have 125 protons each.
- **C** ²¹⁰Pb atom has 3 neutrons more than ²⁰⁷Pb atom.
- **D** ²¹⁰Pb atom has 3 protons more than ²⁰⁷Pb atom.
- **9** Buckminsterfullerene is a form of carbon. The diagram shows the structure of a molecule of buckminsterfullerene, which is made up of 60 carbon atoms.

Which of the following would most likely be the properties of buckminsterfullerene?

	melting point	solubility in water	electrical conductivity as a solid
Α	high	insoluble	good
в	high	soluble	poor
С	low	insoluble	good
D	low	soluble	poor

- **10** Which statement best explains why calcium oxide has a higher melting point than potassium bromide?
 - A Calcium oxide is a covalent compound and potassium bromide is an ionic compound.
 - **B** Calcium is less reactive than potassium.
 - **C** The forces of attraction between calcium ions and oxide ions is stronger than that between potassium ions and bromide ions.
 - **D** The melting point of potassium is lower than calcium.
- 11 If 2 g of hydrogen gas contains x molecules, how many molecules will 2 g of oxygen gas contain?

Α	$\frac{x}{2}$	В	$\frac{x}{16}$
С	$\frac{x}{32}$	D	X

12 Under certain conditions, 50 cm³ of a gaseous compound, N_xO_y , decomposes completely to give 50 cm³ of nitrogen gas and 25 cm³ of oxygen gas. All gas volumes are measured at the same temperature and pressure.

Which of the following about the values x and y is correct?

- **A** x = 1, y = 2
- **B** x = 2, y = 1
- **C** x = 2, y = 3
- **D** x = 2, y = 4
- **13** Zinc oxide is produced by heating zinc carbonate.

$$ZnCO_3 \rightarrow ZnO + CO_2$$

What is the percentage yield of zinc oxide if 125 g of zinc carbonate on heating produces 75 g of zinc oxide? ($M_r ZnCO_3 = 125$, $M_r ZnO = 81$)

- **14** 18 g of magnesium required x cm³ of 0.500 mol/dm³ dilute hydrochloric acid to react completely. What is the value of x?
 - **A** 3000
 - **B** 1500
 - **C** 3
 - **D** 1.5
- **15** Which of the following does not show suitable reagents used for preparation of the named salts?

	salt reagents	
A barium sulfate barium nitrate solution		barium nitrate solution + sulfuric acid
B lithium nitrate lith		lithium hydroxide solution + nitric acid
С	magnesium chloride	magnesium + hydrochloric acid
D	lead(II) chloride	lead(II) carbonate + hydrochloric acid

16 Salt PQ is to be prepared by reacting the carbonate of P with the acid HQ by titration.

What are the solubilities of the carbonate, the acid and the salt in water?

	carbonate of P	acid HQ	salt PQ
Α	insoluble	soluble	insoluble
в	soluble	soluble	soluble
с	soluble	insoluble	insoluble
D	insoluble	soluble	soluble

- **17** When a solution of zinc sulfate was added to a solution containing the nitrates of barium, iron and copper, a white precipitate forms. What is the precipitate?
 - A zinc nitrate
 - **B** iron(II) sulfate
 - **C** copper(II) sulfate
 - D barium sulfate

18 An excess of sodium hydroxide is added to an aqueous solution of salt **X** and boiled. No observable change seen. However, ammonia gas is only given off after aluminium foil is added to the hot solution.

What could X be?

- A ammonium chloride B sodium chloride
- C ammonium sulfate D sodium nitrate
- **19** Graphs X and Y shown below represent the results of two experiments (X and Y), demonstrating the catalytic decomposition of hydrogen peroxide using manganese(IV) oxide.

Assuming that all other conditions are kept constant, which of the following is a correct explanation of the results?

	experiment X	experiment Y	
A	20 cm ³ of 1.0 mol/dm ³ hydrogen peroxide was used.	5 cm ³ of 2.0 mol/dm ³ hydrogen peroxide was used.	
В	20 cm ³ of 1.0 mol/dm ³ hydrogen peroxide was used.	10 cm ³ of 2.0 mol/dm ³ hydrogen peroxide was used.	
С	1.0 g of manganese(IV) oxide was used.	0.5 g of manganese(IV) oxide was used.	
D	reaction was carried out at 60 °C.	reaction was carried out at 30 °C.	

20 Rubidium, Rb, is an element in the same group of the Periodic Table as lithium, sodium and potassium.

Which statement/s about rubidium is/are likely to be incorrect?

- 1 It forms a soluble carbonate salt.
- 2 It reacts explosively with cold water.
- 3 It forms a carbonate with a chemical formula of RbCO₃.
- 4 It can be extracted via electrolysis of concentrated aqueous RbCl.

A 1 and 2 B 1 an	d 3
------------------	-----

- **C** 2 and 3 **D** 3 and 4
- **21** W, X, Y and Z are four consecutive elements in the Periodic Table. W is a halogen. Which of the following chemical formulae of the compound formed from the elements is correct?
 - **A** Z₂W
 - **B** Y₂W
 - **C** ZW₂
 - D YW₂
- **22** A 150 cm³ sample of air was passed into the apparatus shown below:

The gas was passed between the two gas syringes and over the heated copper turnings. What is the final volume of gas left in the apparatus?

- **A** 31 cm³
- **B** 79 cm³
- **C** 119 cm³
- **D** 173 cm³

- 23 In which of the reactions below is the underlined substance acting as a reducing agent?
 - $\mathbf{A} \quad \mathbf{H}_2 + \underline{\mathbf{CuO}} \rightarrow \mathbf{Cu} + \mathbf{H}_2\mathbf{O}$
 - **B** $ZnO + \underline{CO} \rightarrow Zn + CO_2$
 - **C** $2\text{HC}/+ \underline{\text{MgO}} \rightarrow \text{MgC}_{l_2} + \text{H}_2\text{O}$
 - **D** $\underline{Cl_2}$ + 2FeC $l_2 \rightarrow$ 2FeC l_3
- 24 A household bleach contains sodium chlorate(I), NaC/O, as its active ingredient. When sodium chlorate(I) is stirred into excess aqueous hydrogen peroxide, the reaction that occurs is represented by the following equation.

 $NaCIO(aq) + H_2O_2(aq) \rightarrow NaCI(aq) + O_2(g) + H_2O(I)$

Which of the following can be deduced from the reaction?

- 1 Hydrogen peroxide acts as a reducing agent in this reaction.
- 2 The final solution gives a precipitate with acidified silver nitrate.
- 3 The final solution bleaches litmus.
- A
 1 and 2
 B
 1 and 3

 C
 2 and 3
 D
 1, 2 and 3
- **25** Three electrochemical cells are set up using copper metal and three unknown metals, U, V and W as electrodes, immersed in dilute sulfuric acid of the same concentration. The potential difference between the metals are given in the table below.

electrochemical cell metals used		voltage /V	positive electrode
1	Cu, U	-0.45	U
2	Cu, V	+1.11	Cu
3	Cu, W	+2.71	Cu

From these results, deduce which of the following correctly lists the metals in order of increasing ease of oxidation.

- A U V Cu W
- B W V Cu U
- **C** U Cu V W
- D W Cu V U

26 A student wants to electroplate his key. He sets up his electrolytic cell as shown below.

Which of the following observations will he make after some time?

	graphite electrode	key solution	
A	effervescence is observed	pink-brown deposit	remains blue
в	no visible change	grey deposit	remains blue
С	effervescence is observed	pink-brown deposit	blue solution fades
D	no visible change	pink-brown deposit	blue solution fades

27 The electrolyte in the three cells below is 2 mol/dm³ copper(II) sulfate solution. The switch is closed and the colour of the electrolyte is observed as electrolysis progresses.

In which of the cells will the blue colour of the electrolyte fade?

Α	Z only	В	X and Z
С	X and Y	D	Y and Z

28 The percentage of ammonia obtained at equilibrium in the Haber Process is plotted against pressure for two temperatures, 400°C and 500°C.

Which of the following correctly represents the two graphs obtained?

29 Copper(II) carbonate, zinc carbonate and calcium carbonate decompose on heating to produce metal oxides and carbon dioxide gas.

Which of the following shows the correct order of temperature at which their decomposition occurs?

	lowest temperature		highest temperature
Α	calcium carbonate	copper(II) carbonate	zinc carbonate
В	copper(II) carbonate	zinc carbonate	calcium carbonate
С	zinc carbonate	calcium carbonate	copper(II) carbonate
D	zinc carbonate	copper(II) carbonate	calcium carbonate

30 Small pieces of different metals were added to aqueous solutions. Use the information below to answer **Question 30 and 31**.

solution	metal added									
	Х	iron	copper	zinc	Y					
copper(II) chloride	copper displaced	copper displaced		copper displaced	copper displaced					
nitrate of metal X		metal X no reaction displaced		metal X displaced	metal X displaced					
iron(III) chloride	no reaction		no reaction	iron displaced	iron displaced					
chloride of metal Y	no reaction	no reaction	no reaction	no reaction						
zinc chloride	no reaction	no reaction	no reaction		zinc displaced					

Which of the following correctly shows the different metals arranged in the order of increasing reactivity?

- A copper, iron, X, zinc, Y
- B copper, X, iron, zinc, Y
- C X, copper, iron, zinc, Y
- **D** X, iron, copper, Y, zinc
- 31 Which is the preferred method to extract metal Y from its ore?
 - **A** heating the ore with ammonia
 - **B** heating the ore
 - C electrolysis of its molten ore
 - **D** heating the ore with carbon
- **32** Which of the following gases cannot be removed from the exhaust gases of a petrol-powered car by its catalytic converter?
 - A carbon dioxide
 - **B** carbon monoxide
 - C hydrocarbons
 - **D** nitrogen dioxide

33 The enthalpy change when one mole of hydrogen ions is neutralised is known as the enthapy of neutralisation.

 $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$ $\Delta H = -57 \text{ kJ}$

How much energy is released when one mole of sulfuric acid is completely neutralised?

Α	228 kJ	В	57 kJ
С	114 kJ	D	28.5 kJ

34 The energy diagram for a particular reaction under catalysed and uncatalysed conditions is shown below.

What is the activation energy of the backward catalysed reaction?

Α	+40 kJ	В	+20 kJ
С	+30 kJ	D	+10 kJ

35 Useful fractions are obtained by the fractional distillation of petroleum. Which fraction is correctly matched with its use?

	fraction	use
Α	petrol	aircraft fuel
в	bitumen	car fuel
С	kerosene	for making roads
D	petroleum gas	fuel for cooking

36 Amines are organic compounds with the functional group –NH₂. The first four members of the amine homologous series is shown below.

name	chemical formula
methylamine	CH ₃ NH ₂
ethylamine	CH ₃ CH ₂ NH ₂
propylamine	CH ₃ CH ₂ CH ₂ NH ₂
butylamine	$CH_3CH_2CH_2CH_2NH_2$

What is the general formula for amines?

- **A** $C_nH_{2n+3}N$ **B** $C_nH_{2n-1}NH_2$
- $\label{eq:constraint} \textbf{C} \quad C_n H_{2n+1} N H_2 \qquad \qquad \textbf{D} \quad C_n H_{2n+1} C H N H_2$
- **37** An alkene has one functional group per molecule. 2.8 g of the alkene reacts with 8.0 g of bromine. What is the chemical formula of the alkene?
 - **A** C₂H₄
 - **B** C₃H₆
 - **C** C₄H₈
 - **D** C₅H₁₀
- **38** Organic compound X underwent the following successive reactions:
 - 1 reaction with steam at 300°C, 60 atm and phosphoric(V) acid
 - 2 reaction with excess acidified potassium manganate(VII)

The final organic product was CH₃CH₂CH₂COOH.

Which of the following is likely to be X?

- A CH₃CH=CH₂
- **B** CH₃CH₂CH₂CH₃
- C CH₃CH₂CH=CH₂
- D CH₃CH₂CH₂COOCH₃

- 39 What is the formula of the ester formed when propanoic acid reacts with ethanol?
 - A CH₃CH₂CO₂CH₂CH₃
 - B CH₃CH₂CO₂CH₃
 - C CH₃CO₂CH₂CH₃
 - **D** $CH_3CO_2CH_3$
- 40 The diagram below shows an organic molecule.

How many different types of polymer can be formed using the monomer above?

- A none
- B one
- **C** two
- D three

End of Paper

The Periodic Table of Elements

Group																	
1	2											13	14	15	16	17	18
	Kev						1 H hydrogen 1										2 He ^{helium} 4
3	4	proton (atomic) number					1				5	6	7	8	9	10	
Li	Be		atomic symbol									В	С	N	0	F	Ne
lithium	beryllium		name								boron	carbon	nitrogen	oxygen	fluorine	neon	
11	9 12		relat	ive atomic i	nass							11	12	14	16	19	20
No	12 Ma											13	14 Si		10		10 Ar
sodium	magnesium											A l aluminium	silicon	nhosphorus	Sulfur	chlorine	argon
23	24	3	4	5	6	7	8	9	10	11	12	27	28	31	32	35.5	40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	IC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	le	1	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium	ruthenium	rhodium	palladium	silver 108	cadmium 112	indium	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Та	W	Re	Os	Ir	Pt	Au	На	Τ1	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
133	137		178	181	184	186	190	192	195	197	201	204	207	209	-	_	-
87	88	89–103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium	nihonium	flerovium	moscovium	livermorium	tennessine	oganesson
-	-		_	-	-	-	—	-	-	_	-	-	-	-	-	_	-
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lantha	anoids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
lantine		lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
		139	140	141	144	-	150	152	157	159	163	165	107	109	1/3	1/5	
		09	90 Th	91 Do	92	93 No	94 Du	95	90	97 DV	98	99 Eo	Em	Md	102 No	103	
actir	noids	AC	I [] thorium	Pa	Uuranium	nentunium	r U plutonium	AIII		DK berkelium		ES einsteinium	fermium	IVIQ mendelevium	INO nobelium		
			232	231	238			-			-	-	—		-	-	
		L				I		I	L	l	L	I	I	I	l	I	L

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$

17