(

YEAR FOUR INTEGRATED PROGRAMME END-OF-YEAR ASSESSMENT

CHEMISTRY Paper 2

2 October 2020

1 h 45 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, register number, and class on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams or graphs.

Do not use highlighters, glue, correction fluid or correction tape.

Answer all questions.

Write all answers on the blanks provided in the question paper.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

A copy of the Periodic Table is provided on page 2.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80.

For Examiner's Use					
Section A (50)					
Section B (30)					
Total (80)					

This document consists of **20** printed pages

圣尼各拉女校 CHIJ ST NICHOLAS GIRLS' SCHOOL

Girls of Grace • Women of Strength • Leaders with Heart

6092 CHEMISTRY GCE ORDINARY LEVEL SYLLABUS (2018)

The Periodic Table of Elements

	_																_							-	_						
C	D	2 He ^{helium}	10	Ne	neon	20	18	Ar	argon 40	36	Ъ	krypton	04 7	, v	Xe	xenon 131	86	Rn	radon	I					71	Lu	lutetium	175	103	٦	lawrencium -
11/	۸II		0	ш	fluorine	19	17	Cl	chlorine 35.5	35	Ъ	bromine	D CI	°,		iodine 127	85	At	astatine	I					20	γb	ytterbium	173	102	No	nobelium -
	۷۱		ω	0	oxygen	16	16	S	sulfur 32	34	Se	selenium	2	0	e	tellurium 128	84	Ъ	polonium	I	116	2	livermorium		69	Tm	thulium	169	101	рМ	mendelevium -
>	٧		2	z	nitrogen	14	15	٩	phosphorus 31	33	As	arsenic	0 1	0 0	ŝ	antimony 122	83	B	bismuth	209					68	ш	erbium	167	100	Б Е	fermium -
2	1		9	U	carbon	12	14	S:	silicon 28	32	Ge	germanium	2 0	ດີເ	لې کړ	tin 119	82	Pb	lead	207	114		tlerovium -		67	٩	holmium	165	66	Es	einsteinium -
=			2	В	boron	11	13	Al	aluminium 27	31	Ga	gallium	2 9	τ, υ	5	115	81	Τl	thallium	204					66	D	dysprosium	163	98	ç	californium -
										30	Zn	zinc e E	C0 07	4 (0 .	S.	cadmium 112	80	Нa	mercury	201	112	ۍ ک	copernicium		65	Tb	terbium	159	97	¥	berkelium -
										29	Cu	copper	104	4 •	Bg	silver 108	79	Au	gold	197	111	Rg.	roentgenium -		64	Gd	gadolinium	157	96	Cm	curium
dn										28	īZ	nickel	29	4 (0 .	Ъ	palladium 106	78	Ţ	platinum	195	110	Ds	darmstadtium		63	Eu	europium	152	95	Am	americium -
פ										27	ပိ	cobalt	22	4 (0 -	ہے۔ ک	rhodium 103	17	Ŀ	iridium	192	109	Ĭ			62	Sm	samarium	150	94	Pu	plutonium –
		1 H hydrogen								26	Fе	iron E.e.	00	1	۲r	ruthenium 101	76	0s	osmium	190	108	Hs	hassium		61	Ът	promethium	I	93	dN	neptunium -
			-							25	ЧN	manganese	<u>د</u>	4 0	<u>ပ</u>	technetium -	75	Re	rhenium	186	107	B	pohrium		60	Νd	neodymium	144	92	⊃	uranium 238
			umber	loc		nass				24	ບັ	chromium	20	4	Mo	molybdenum 96	74	\geq	tungsten	184	106	Sg	seaborgium -		59	ŗ	praseodymium	141	91	Ра	protactinium 231
		Key	(atomic) n	mic symb	name	/e atomic i				23	>	vanadium E 1	0	4	QN S	niobium 93	73	Та	tantalum	181	105	Db	dubnium I		58	Ce	cerium	140	06	Ч	thorium 232
			proton	atc		relativ				22	Ξ	titanium	4 4 4	<u></u>	Z	zirconium 91	72	Ŧ	hafnium	178	104	Ł	Rutherfordium -		57	La	lanthanum	139	89	Ac	actinium -
										21	Sc	scandium	0 0 0 0 0 0 0	ט י נע	>	yttrium 89	57 - 71	lanthanoids			89 - 103	actinoids				,					
=	=		4	Be	beryllium	ი	12	Mg	magnesium 24	20	Ca	calcium	0 0 0 0 0	ဂိ ဖ	Ŋ	strontium 88	56	Ba	barium	137	88	Ra	radium		Inthanoid				actinoids		
_	_		e	:	lithium	7	11	Na	sodium 23	19	¥	potassium	50	òi	d Y S	rubidium 85	55	Cs	caesium	133	87	Ļ	francium		<u></u>	:					

The volume of one mole of any gas is $24 \, \text{dm}^3$ at room temperature and pressure (r.t.p.).

Section A Answer all the questions in this section in the spaces provided. The total mark for this section is 50.

A1 Choose from the following substances to answer the questions below.

	aluminium sulfate calcium carbonate manganese(IV) oxide	ammonium chloride iodine nickel	argon lead(II) hydroxide nitrogen dioxide							
Eac	Each substance can be used once, more than once or not at all.									
List	List the substance that is									
(a)	in the solid state at room energy of a reaction,	temperature and can be	used to lower the activation							
				[1]						
(b)	used to fertilise soil,									
				[1]						
(c)	added to the blast furnac	e to remove impurities in	the extraction of iron,							
				[1]						
(d)	amphoteric,									
				[1]						
(e)	prepared by adding exc crystallization,	cess metal carbonate t	o dilute acid, followed by							
				[1]						
(f)	separated from a mixture	by sublimation.								
			[Total: 6 Marks]	[1]						

A2 Kelly attempted to separate a homogeneous liquid mixture containing three substances that are soluble in each other. The table below shows the melting and boiling points of the three substances.

substance	melting point / °C	boiling point / °C
W	-114	55
X	-95	80
Y	50	340

Kelly carried out fractional distillation and recorded the total volume of distillate collected at various temperatures. She stopped the experiment once the thermometer reached a reading of 85 °C.

(a) State the substance(s) remaining in the mixture at the end of this experiment.

......[1]

(b) Sketch the graph of temperature against total volume of distillate collected as the thermometer's reading increased from 50 °C to 85 °C.

Chromatography was carried out on substance \mathbf{Y} and a toxic dye separately using water as the solvent. The results obtained are shown in chromatogram \mathbf{A} and chromatogram \mathbf{B} respectively.

(c) Determine the R_f value of substance Y. Show your working clearly and leave your answer to 2 decimal places.

......[1]

(d) Does the toxic dye contain substance Y? Explain your answer.

.....[1]

(e) When carrying out chromatography, explain briefly why the start line should be drawn with a pencil and not a pen.

[1] [Total: 6 Marks] **A3** The structure of five chemical substances are shown below.

(e) In terms of bonding and structure, explain whether structure IV can conduct electricity in the solid state.

[2] [Total: 7 Marks]

A4 During the extraction of copper, its sulfides are commonly blasted in furnaces with hot air to liberate sulfur dioxide gas as shown in the equation below.

$$Cu_2S + O_2 \rightarrow 2Cu + SO_2$$

(a) Describe a test that can be carried out to prove that the gas liberated is sulfur dioxide. Include any relevant observations.

.....[2]

(b) Is Cu₂S oxidised, reduced or both in the equation above? Explain your answer using oxidation numbers.

.....[3]

(c) The furnaces release flue gas that contains mainly air and sulfur dioxide. Since sulfur dioxide gas is harmful for the environment, it can be removed from the flue gas using a 'scrubber' that contains compound **X** and water.

Write a balanced equation to represent the removal of sulfur dioxide by **X**.

[1] [Total: 6 Marks]

A5 Group II elements show similar trends in physical and chemical properties as Group I elements down the group. The trends of some properties of Group II elements are as shown.

Group II elements	Trends						
	Down Group II,						
Mg	1. melting and boiling point decreases						
Ca	2. reducing power						
Sr							
	3. ease of Group II carbonate decomposition						
Ва	decreases						

(a) Fill in the blank above with the most appropriate word.

[1]

[2]

(b) Explain the trend in melting point down Group II in terms of bonding and structure.

(c) Predict what will be observed when barium is added to a beaker of water. Include observations from any relevant confirmation test(s) as well. [2] (d) Explain the trend in the ease of Group II carbonate decomposition. [2] (e) Can strontium be extracted from its oxide using carbon? Explain your answer. [1] (f) A student attempted to protect calcium metal from corrosion by attaching a piece of magnesium strip to it via a wire. Will her attempt be successful? Explain your answer. [2] (g) Group II elements undergo exothermic reactions with Group VII halogens to form salts. State the chemical formula of the Group VII element that will have the most exothermic reaction with barium. [1] [Total: 11 Marks]

9

A6 Jason added 8.4 g of magnesium carbonate to 100 cm³ of 1.0 mol/dm³ dilute hydrochloric acid. The volume of gas liberated was measured against a fixed time interval and graph **A** was obtained.

(a) Calculate the volume of gas produced by the reaction and indicate the value in the graph above.

[2]

- (b) Jason repeated the experiment using different acids while **keeping all the other** conditions the same.
 - (i) On the same diagram, sketch another graph of the reaction using ethanoic acid. Label this graph as B.
 [1]
 - (ii) On the same diagram, sketch another graph of the reaction using dilute sulfuric acid. Label this graph as C.
- (c) Explain the difference in the rate of reaction between graph **A** and graph **C** in terms of collision theory.

.....[2]

(d) Jason attempted to prepare a pure and dry sample of magnesium ethanoate. He added excess magnesium strips to ethanoic acid dissolved in ethanol. Will his attempt be successful? Explain your answer.

......[1]

(e) Jason poured 1.0 mol/dm³ of aqueous potassium hydroxide from a beaker into another beaker containing 1.0 mol/dm³ of dilute nitric acid and heated the resulting mixture to dryness. However, he was unable to obtain a pure and dry sample of potassium nitrate. Suggest why and state a suitable method that he should have employed.

......[2]

[Total: 9 Marks]

A7 The flow chart below shows a series of chemical tests involving solution P.

(a) What could be the chemical formula of the anion present in P?
[1]
(b) What could be the chemical formula of the cation present in Q?
[1]
(c) Write down the ionic equation, with state symbols, for the formation of precipitate R.
[2]
(d) What will be observed when excess zinc strips are added into solution P?
[1]

Section B

Answer all **three** questions in this section. The last question is in the form of an either/or and only one of the alternatives should be attempted.

B8 The Haber process produces ammonia from the reaction between nitrogen and hydrogen. Finely divided iron is used as a catalyst to speed up the reaction.

 $N_2(g) + 3H_2(g) \implies 2NH_3(g) \qquad \Delta H = -92 \text{ kJ mol}^{-1}$

The process can be carried out at various temperature and pressure to obtain different yields of ammonia as shown in the graph below.

(a) Based on the graph above, state all possible temperatures and pressures that can be applied to obtain a yield of 80%.

......[2]

(b) Which set of conditions from (a) is more favourable? Support your answer with a good reason.

.....[1]

(c) Explain in terms of collision theory why the iron used is finely divided.

.....[2]

(d) If 4 moles of ammonia gas are produced from the Haber process, what is the energy change of this reaction? Show your working clearly.

[1]

(e) Nitrogen can also react with hydrogen to form hydrazine.

$$N_2 + 2H_2 \rightarrow N_2H_4$$

Draw the dot-cross diagram of hydrazine. Show only the valence electrons.

[2]

(f) Using the values of bond energies provided in the table below, calculate the enthalpy change of this reaction in (e).

bond	bond energy / kJ mol ⁻¹	bond	bond energy / kJ mol ⁻¹
H-H	436	N-N	163
N-H	391	N=N	418
		NEN	944

(g) Sketch a clearly labelled energy profile diagram for the formation of hydrazine.

[2] [Total: 12 Marks]

B9 The solubility curve of four gases in 100 g of water are shown below. Both carbon monoxide and NO_x can be generated from the engines of motor vehicles. Oxygen is produced when plants carry out photosynthesis and methane is a greenhouse gas that is produced from the decomposition of organic matter.

(a) Estimate the solubility of methane gas in 200 g of water at 25 °C.

(b) The percentage by mass of nitrogen in NO_x is 46.7 %, determine the value of *x*. Show your working clearly.

(c) Why is it important to minimise the amount of NO_x in our atmosphere?

.....[2]

[2]

- (d) Motor vehicles are now capable of removing both carbon monoxide and nitrogen monoxide. Provide a balanced chemical equation to show how they are removed.
 -[1]
- (e) The global ocean temperature change graph is shown below.

Based on the trend of this graph and the solubility curve, predict what could happen to the amount of dissolved oxygen in our oceans after the year 2000. As a result, suggest a possible negative impact on marine life.

[2] [Total: 8 Marks]

B10 EITHER

The Nobel Prize in Chemistry 2019 was awarded to John B. Goodenough, M. Stanley Whittingham and Akira Yoshino for their contributions to the development of the lithium-ion battery. This rechargeable battery laid the foundation for wireless electronics such as mobile phones and laptops. It also makes a fossil fuel-free world possible, as it is used for everything from powering electric cars to storing energy from renewable sources.

The initial design of Whittingham's lithium-ion battery is shown below. It consists of lithium ions that were stored in spaces between layers of titanium disulfide.

When the battery was used to operate an electronic equipment, electrons flowed from lithium metal to titanium disulfide. When recharging the battery, lithium ions flowed back to the metal.

- (a) In the empty boxes above, label the anode and cathode clearly, include the "+" and "-" sign to show where the positive and negative terminals are when the battery is discharging.
- (b) In the past, nickel-cadmium batteries were commonly used to operate laptops. Thanks to the development of lithium-ion batteries, the production of lighter laptops is now possible. Suggest why.

......[1]

[2]

(c) Yoshino replaced the lithium metal with a mixture of coke and lithium to make the battery much safer to use.

The reaction that occurs at the mixture is: $LiC_6 \rightarrow C_6 + Li^+ + e^-$

Goodenough further improved on the model by replacing titanium disulfide with cobalt(IV) oxide, which changed the voltage of the battery from 2 Volts to 4 Volts.

The reaction that occurs at cobalt(IV) oxide is: $CoO_2 + Li^+ + e^- \rightarrow LiCoO_2$

(i) Is titanium disulfide or cobalt(IV) oxide a stronger oxidising agent? Support your answer based on the information given.

.....[2]

(ii) Construct an overall equation for the improved battery.

(d) A simple cell constructed from the laboratory using magnesium and copper is shown below.

(i) Describe what will be observed at the anode and cathode when the voltmeter is replaced with a light bulb.

Anode:	
Cathode:	

[2]

(ii) Provide **two** disadvantages of using the magnesium-copper simple cell as compared to the use of the lithium - cobalt(IV) oxide battery.

[2] [Total: 10 Marks]

B10 OR

Cells 1 and 2 were set up using four electrodes and two different electrolytes. Electrodes W and X are made up of graphite while electrodes Y and Z are made up of platinum. The electrolyte in **Cell 1** is aqueous potassium nitrate.

The switch was closed for a while and the following results were obtained as shown below.

(a) Suggest a possible electrolyte used in Cell 2.

......[1]

(b) Write the half equation for the reaction that occurred at the anode of Cell 1.

......[1]

(c) If the volume of gas collected at **Y** is 2.4 dm³, what is the number of moles of electrons that passed through **X**? Show your working clearly.

(d) If electrode **W** is replaced with a copper electrode **V**, write down two observations in **Cell 1** after the switch in the circuit is closed for a long time.

[2]

[2]

(e) The electrolyte in **Cell 1** is replaced with aqueous silver nitrate and a series of electrolytic experiments were carried out using graphite electrodes to determine how various factors affect the mass of silver deposited at the cathode.

The following results were obtained.

experiment	duration	current through	concentration	mass of silver		
	(s)	electrolyte	of electrolyte	deposited		
		(A)	(mol/dm³)	(g)		
1	100	9.65	1.0	0.108		
2 100		9.65	0.5	0.108		
3	200	9.65	0.5	0.216		
4 100		19.30	1.0	0.216		

(i) Which two experiments should be used to determine the relationship between concentration of electrolyte and the mass of silver deposited?

......[1]

(ii) From the results above, identify two factors that affect the mass of silver deposited and describe their relationships.

.....

......[2]

(iii) Determine the mass of silver deposited when a current of 19.30 A is passed through the 1.5 mol/dm³ of electrolyte for 50 s.

[1] [Total: 10 Marks]

End of Paper

20