2024 CHS SEC 4 PHYSICS PRELIMINARY EXAMINATION

Paper 1

1	С	2	D	3	В	4	Α	5	D
6	D	7	D	8	В	9	D	10	С
11	Α	12	С	13	Α	14	Α	15	В
16	C	17	В	18	Α	19	Α	20	D
21	Α	22	С	23	С	24	D	25	С
26	D	27	С	28	В	29	D	30	Α
31	С	32	Α	33	Α	34	D	35	D
36	D	37	В	38	С	39	D	40	D

Paper 2 Section A

S/N	Mark Scheme	Remarks
1ai	 Ball's speed is decreasing [M1] at a decreasing rate [A1] OR 	1 mark awarded for "ball is
	Deceleration [M1] is decreasing [A1] OR	decelerating at decreasing rate".
	Acceleration is decreasing [M1] and negative [A1]	
1aii	• (weight and) air resistance acts (on ball) downwards (or in opposite direction to motion/velocity) (resulting in	No credit is awarded for 1st mark if
	decreasing speed) [B1]	the answer mentions that upward
	 As speed (or velocity) decreases, air resistance decreases [B1] 	force is acting on the ball as it is
	(downward) resultant force decreases (resulting in decreasing deceleration) [B1]	moving up.
1b	1.750 s [B1]	No penalty if answer in 2 d.p.
1c	 graph is below x-axis and gradient decreases smoothly without reaching 0 at 3.50 s. [B1] 	No penalty if draw past 3.50 s.
	 final velocity, v is below x-axis and 0 m / s < v < 25 m / s [B1] 	
2a	 energy transferred <u>mechanically</u> to gravitational potential (and kinetic) store of load [B1] 	If student writes "store" at least once,
	(some) energy is transferred	BOD all answers without "store".
	 mechanically due to (work done against) friction (or air resistance) [B1] to the internal store of 	If student does not write "store" at all,
	surrounding air (and load). [B1] OR	penalise i mark.
		No gradit awardad far the method of
	UN by propagation of electromagnetic wayon / infra rad radiation [P1] to the internal store of surrounding	aparav trapefor to surrounding oir if
	o by propagation of electromagnetic waves / initia-red radiation [b1] to the internal store of surrounding	the operative transfer in pot from the
	all (allu loau). [D1] ON	motor
2h	Moment – E x d [formula]	
20	-25×0.20 [B1]	
	$= 2.5 \times 0.20$ [B1] = 0.50 Nm (or 50 Ncm) [B1]	

S/N	Mark Scheme	Remarks
2c	As load is stationary, Upward force due to liquid (F) = Weight of Load M = 2.5 N [B1]	Accept if student calculated density of
	F = pA	load M [B1] and concluded that
	$= (p_{bottom} - p_{top}) \times A$	density of load M and the liquid are
	= [($h_{bottom} - h_{top}$) ρ g] x A	the same [B1]
	$2.5 = [0.030 \times \rho \times 10] \times (0.12 \times 0.02)$ [B1]	
	$\rho = 3500 \text{ kg m}^{-3}$	
3a	 molecules are in constant random motion [B1] 	
	 collide with (inner walls of) piston, exerting a force per unit area on it [B1] 	
3b	• (when gas is heated), molecules collide more frequently and forcefully with (inner walls of) piston, exerting a	
	larger force / pressure (than that due to atmosphere) [B1]	
	 hence, a downward force (or pressure) is needed to balance this larger force (or pressure) / keep the piston 	
	stationary / result in no net force on piston [B1]	
3ci	 wood is a poor conductor/good insulator of heat [B1] 	
3cii	• prevents hot gas rising out of the cylinder / prevents surrounding cool air sinking into the cylinder / minimising	
	convection currents [B1]	
3ciii	• reduce heat transfer to surrounding air by infra-red radiation / silver is a poor emitter of infra-red radiation [B1]	Penalise if student writes "absorber"
		or "absorber and emitter" as question
		specifically mentions "outer walls".
4a	 a wave that travels in a direction parallel to the direction of vibration (or oscillation) of particles [B1] 	

S/N	Mark Scheme	Remarks
	air pressure normal air pressure	[B1] for graph shape and correct values of maximum and minimum air pressures
5a	satellite: microwaves [B1]	
5b	v = d / t $t = d / v = (36\ 000\ x\ 1000) / (3.0\ x\ 10^8) [B1]$ $= 0.12\ s\ [B1]$	Penalise 1 mark for unit conversion error
5ci	 Plastic is an optically denser medium / has a higher refractive index than glass [B1] Angle of incidence (in plastic) is larger than critical angle (so total internal reflection occurs) [B1] 	
5cii	 lighter (than copper wires) cheaper to manufacture (than copper wires) experience less signal loss carry much more information (than copper wires) faster rate of data transmission 	[B1] for any answer
6a	live: brown neutral: blue earth: green and yellow	[B1] for all three correct answers
6b	neutral wire connected to the live pin/fuse and live wire connected to the neutral pin [B1]	Accept "live and neutral wires are swapped in position"

S/N	Mark Scheme	Remarks
6c	 even when fuse is blown (or switch is off), appliance is live / at high potential [B1] 	
	user can get electrocuted [B1]	
6d	 electrical cables are insulated from (internal components which are in turn insulated from) external casing. 	allow e.c.f. from (c)
	 user cannot get electrocuted as there is no electrical contact between the user and bare wire(s). [B1] 	Also accept if students stated that "even if the first layer of insulation is worn out, there is an additional layer of insulation", or words to that effect.
7a	copper [B1]	
7b	 When magnet falls, there is a change in magnetic flux experienced by the copper tube. [B1] By Foreday's Law, there is an induced electrometric force (a m f) in the tube. [B1] 	Allow e.c.f. from (a), except for last
	 As the copper tube forms a closed circuit, there is a current induced in the tube. [B1] 	conductor
7c	• By Lenz's Law, induced current creates a magnetic field that opposes the approaching (or departing) pole(s)	Accept "approaching and departing
	of the magnet. [B1] Magnetic force of repulsion (or attraction) is upwards (appecite to direction of weight), resulting in decreasing	the tube
	 Magnetic force of repulsion (of attraction) is upwards (opposite to direction of weight), resulting in decreasing (downward) resultant force / acceleration [B1] 	
7d	South [B1]	
8a	medical X-rays	Any other possible answer
	building materials	
	waste products from nuclear power stations	
	rocks	
	radon gas	
	 cosmic rays from outer space (accept the Sun) 	
	 food high in potassium eg. bananas, carrots, salt [B1] 	
8b	CPM α 1/d ²	[B1] to show k is the same for 2 sets
	$CPM = k/d^2$	of data
	$k = CPM \times d^2$	
	When d = 1.0, k = $(3\ 620 - 20) \times (1.0)^2 = 3\ 600$	[B2] to show k is the same for 3 sets
	When d = 2.0, k = $(920 - 20) \times (2.0)^2 = 3600$	of data
	When d = 3.0, k = $(420 - 20) \times (3.0)^2 = 3600$	
	Since the values of k are the same, the claim is true.	
8ci	24 000 years [B1]	
8cii	Count rate due to plutonium alone = $70 - 20 = 50$	No working required
	Count rate due to plutonium alone after 1 half-life = 200	e.c.f. from (c)(i) ie. 3 times the answer
	Count rate after 2 half-lives = 100	
	Count rate after 3 half-lives = 50	
	Hence, t = 3 x 24 000 = 72 000 years [B1]	

S/N	Mark Scheme	Remarks
8d	$239 p_{11} \rightarrow 235 H_{+} 4 H_{P}$	[B1] for correct atomic numbers
	$_{94}$ u $\rightarrow _{92}$ 0 $+ _{2}$ me	[B1] for correct mass numbers
8e	 alpha particles are easily absorbed by paper [B1] 	Do not accept gamma rays as they
	 beta particles are suitable [B1] 	penetrate through paper regardless of
		thickness.
8f	wear lead-lined gloves / suits	Accept "protective / radiation / hazmat
	 use thick concrete walls and lead-lined doors for rooms in which ionising radiation is produced 	suits"
	• store plutonium in a lead box	
<u>9a</u>	• 9.0 J of work is done per unit charge (by the battery) in driving charges around a complete circuit. [B1]	Accept "per 1 coulomb of charge"
901		
	= 6.3 / 1800	
Ohii	= 3.5 IIIA [B1] By Betential Divider Brinciple Ifermula	
901	$\frac{D}{D} = \frac{D}{D} = \frac{D}$	
	0.3/(9.0 - 0.3) = 1000/RL[D1]	
	(2 - (2 - 6)) / (0.0035 [B1])	
	– (3.0 – 0.3)7 0.0033 [B1] – 771 O [B1]	
00	- // Ω[D]	
90	 Iditip urawit (with correct circuit symbol) in parallel to LDR [DT] when light intensity decreases, resistance of LDP increases, causing p.d. across LDP to increase (and lamp). 	
	to light up) [B1]	
9d	 same n.d. across lamp and I.DR, but I.DR has smaller resistance than lamp [M1] 	e c.f. if lamp is drawn in series to I DR
50	• hence (by $P = V^2 / R) I DR$ dissipates more power [A1]	in (c) Answer must be consistent to
		that of (c).
9e	 reduce length of filament to ¼ of its original length [B1] 	Penalise 1 m if both answers do not
	• increase cross-sectional area of filament to 4 times its original area (or increase diameter of filament to twice	have numerical factors.
	its original diameter) [B1]	

Paper	2	Section	В
-------	---	---------	---

S/N		Mark Scheme	Remarks
10a	•	a region of space in which an electric charge experiences a force. [B1]	
10bi	•	(at least 3) parallel equidistant lines with arrows pointing downwards [B1]	
10bii	•	force (on electron) due to electric field is (vertically) upwards [B1] force (on electron) due to magnetic field is (vertically) downwards (or opposite direction to electrostatic	Award 1 mark overall if direction of electric and magnetic forces are
		force) and of same magnitude as electrostatic force [B1]	reversed.
10600	•	no neviesulani loice [D1]	
100111	•	at least 1 closs in region between parallel plates [D1]	
TUDIIIZ	•	thumb representing force is (vertically) downwards and second finger representing current is to the left, (so forefinger representing magnetic field is into plane of paper) (with all three directions mutually perpendicular) [B1]	
10biv	•	electron causes electrons in metal rod to move to the right side of the rod as like charges repel [B1] force of attraction between electron and positive charge on the left side (of rod) is larger than force of repulsion [B1]	
11ai	•	an energy store that is made up of total kinetic energy associated with the random motion of the particles [B1] and the total potential energy between the particles in the system. [B1]	Accept if students say "sum of the kinetic energy and potential energy of all the particles". Penalise 1 m if student mentions "store" for potential or kinetic. Penalise 1 m if student writes "one particle" or "substance/object/body" instead of "particles". No marks awarded for "gravitational potential" instead of "potential".
11aii	•	potential energy of steam molecules higher than potential energy of water molecules (while kinetic energy is the same). [B1] steam molecules are further apart / steam molecules can move freely in all directions / (higher potential energy) to overcome intermolecular forces of attraction (compared to water molecules) / (higher potential energy) as it has absorbed latent heat of vaporisation [B1]	

S/N	Mark Scheme	Remarks
11bi	E = Pt = IVt = (3.0)(24)(15.0 x 60) [B1] = 64.8 kJ	
11bii	Let final temperature be θ By conservation of energy, Energy transferred electrically + Loss of energy of water = Gain in energy of ice $E + m_w c_w (\Delta \theta_w) = m_i l_f + m_i c_w (\Delta \theta_i)$ $64800 + (0.050)(4200)(100 - \theta) [B1] = (200)(334) + (0.200)(4200)(\theta - 0) [B1]$ $\theta = 18.1 \text{ °C } [B1]$	Penalise 1 m for wrong unit conversion.
11biii	 some of the energy transferred from the heater and water is used to increase energy in internal store of container / surrounding air. [M1] actual temperature lower than (ii) [A1] 	No need to write "store". Accept "some energy is transferred by heating due to temperature difference from surrounding air of higher temperature, so actual temperature higher than (ii)" as long as (b)(ii) answer is lower than typical room temperature.