2021 JC1 H1 Maths FE level up concepts Holiday REVISION

- Please present all your answers on this copy as it will be submitted to your tutor when Term 1 starts in 2022.
- If in doubt, please read your lecture notes, if still further in doubt, put a note under 'Learning Point' so that you remember to clarify your doubts with your tutor. Where possible, answers should be left as fraction.

Question	Solutions	Learning Point
1. Permutation and Combination (Arrangement)		I
(i) Three friends, Andy, Ben and Charlie, attend a	Arrange within family = 3!	
graduation ceremony with their parents.	Arrongo 3 familios - 32/3/21	
How many ways can the nine people be seated in a row	Arrange 5 rammes – 5×5×5:	
Ans: 1296	Total arrangement = $3 \times 3 \times 3 \times 3! = 1296$	
7415. 1290		
(ii) How many ways can the nine people be seated in a row if each set of parents must be seated together?	Arrange within each set of parents = 2!	
Ans: 5760	Arrange 3 sets of parents and 3 friends $= 6!$	
	Total arrangement = $(2!)^3 \times 6! = 5760$	
(iii) How many ways can the nine people be seated in a	Arrange within the 3 friends $(1 \text{ unit}) = 3!$	
row if the 3 friends must be seated together ? Ans: 30240	Arrange 1 unit and 6 parents = 7!	
	Total arrangement = $7 \times 3! = 30240$	

(iv) How many ways can the nine people be seated in a	Arrange all 6 parents first (no restriction) = 6!
row if the 3 friends wants to be separated? Ans:151200	SLOT the 3 friends into the 6 parents = ${}^{7}P_{3}$
	Total arrangement = ${}^{7}P_{3} \times 6! = 151200$
(v) How many ways can the nine people be seated in a row if each set of parents must be seated together AND	Arrange within each set of parents $=(2!)^3$
the 3 friends wants to be separated? Ans:1152	Arrange 3 sets of parents = 3!
	SLOT the 3 friends into the 3 sets of parents = ${}^{4}P_{3}$ (Think carefully here!)
	Total arrangement = $(2!)^3 \times 3 \times {}^4P_3 = 1152$
(vi) How many ways can the nine people be seated in a row if Andy must take the first seat, Ben must take	Arrange within each set of parents = $(2!)^3$
the last seat and each set of parents must be seated together?	Arrange Charlie and 3 sets of parents = 4!
Ans:192	Total arrangement = $(2!)^3 \times 4! = 192$

2. Permutation and Combination (Combination)			
In a college student committee, there are 4 Administrators,			
5 Liaison officers and 6 Group Leaders. They are to form an Ex-Co that consists of a President, a Vice-President and a Secretary.	Total selection (no restriction) = ${}^{15}P_3 = 2730$		
(i) How many selections are there to form the Ex-Co? Ans 2730			
 (ii) How many selections are there to form the Ex-Co if a President must be from the Administrators, a Vice- 	To select a President from Administrators = ${}^{4}C_{1}$		
Secretary must be from the Group Leaders? Ans : 120	To select a Vice President from the Liaison Officers = ${}^{5}C_{1}$		
	To select a Secretary from the Group Leaders = ${}^{6}C_{1}$		
	Total selections = ${}^{4}C_{1} \times {}^{5}C_{1} \times {}^{6}C_{1} = 120$		
(iii) How many selections are there to form the Ex-Co if at least 1 of them must be from the Administrators? Ans: 1740	<u>Method 1 (Complementary)</u> No restriction = ${}^{15}P_3 = 2730$ Nobody from the Administrators = ${}^{11}P_3 = 990$		
	Total selections $= 2730 - 990 = 1740$		
	<u>Method 1 (Consider cases though not recommended)</u> Case 1: 1 from the Administrators, the other 2 from others		
	$= {}^{4}C_{1} \times {}^{11}C_{2} \times 3! = 1320$		
	Case 2: 2 from Administrators, the other from others = ${}^{4}C_{2} \times {}^{11}C_{1} \times 3! = 396$		
	Case 3: 3 from Administrators = ${}^{4}P_{3} = 24$		
	Total selections $=1320 + 396 + 24 = 1740$		

 (iv) How many selections are there to form the Ex-Co if at least 2 of them must be from the Administrators and none must be from Group Leaders? Ans: 204 	$\frac{\text{Consider cases (only)}}{\text{Case 1: 2 from Administrators, the other 1 from Liaison Officers} = {}^{4}\text{C}_{2} \times {}^{5}\text{C}_{1} \times 3! = 180$	
All5. 204	Case 2: all 3 from the Administrators = ${}^{4}P_{3} = 24$	
	Total selections = $180 + 24 = 204$	
(\mathbf{u}) How many collections are there to form the Ey Co if on		
Administrator is already made the President and only another one must be from the Administrators?	one Ex-Co must be from the Administrators = ${}^{3}C_{1}$	
	1 Ex-Co from others = ${}^{11}C_1$	
	Total selections = ${}^{3}C_{1} {}^{11}C_{1} \times 2! = 66$	

3. Probability		
In an egg production factory, eggs are packed into cases on		
4 different production lines, L_1, L_2, L_3 and L_4 . The	P: packed properly	
proportion of packed eggs that come from production lines	99 99	
L_1, L_2, L_3 and L_4 are $\frac{7}{20}$, $\frac{1}{5}$, $\frac{3}{20}$ and $\frac{3}{10}$ respectively.	100 P P': not packed properly	
Records show that a small percentage of	$\frac{1}{20}$ \downarrow L_1 $\frac{1}{100}$ \mathbf{p}'	
eggs are not packed properly for sale. 1% from L_1 , 3%	$100 \frac{97}{97}$ F	
from L_2 , 3% from L_3 and p% from L_4 . A case is chosen	1 100 P	
at random. Draw a tree diagram to represent this	$\overline{5}$ L ₂	
information.	$3 \frac{100}{100} P'$	
(1) Given that the probability of the chosen case is faulty is 0.02 Find <i>n</i>	20 97	
Ans: $p = 2$	$L_3 \leftarrow \overline{100} P$	
	$\frac{3}{10}$ $\frac{3}{3}$	
	10 100	
	$1 - \frac{p}{100}$	
	P	
	p	
	100 P'	
	P(a case is faulty) = 0.02	
	$\frac{7}{20} \left(\frac{1}{100}\right) + \frac{1}{5} \left(\frac{3}{100}\right) + \frac{3}{20} \left(\frac{3}{100}\right) + \frac{3}{10} \left(\frac{p}{100}\right) = 0.02$	
	$0.014 + \frac{3p}{1000} = 0.02$	
	$\frac{3p}{1000} = 0.006$	
	3p = 6	
	p = 2	

ii) Find the probability that the case is not faulty and is	
from production line L_1 . Ans : $\frac{693}{2000}$	P(a case is from L ₁ and it is not faulty) = $\frac{7}{20} \left(\frac{99}{100}\right)$
	$= 0.3465 \text{ or } \frac{693}{2000}$
(iii) Find the probability that the case is not faulty or is	
from production line L_1 . Ans : 0.9835	$P(a \text{ case is from } L_1 \text{ or it is not faulty})$
	7 98 693
	$-\frac{1}{20}+\frac{1}{100}-\frac{1}{2000}$
	= 0.9835
(iv) Find the probability that a case that is not faulty is	
from L_{a} . Ans : $\frac{99}{2}$	$P(a \text{ box is from } L_1 a \text{ box is not faulty})$
280	$P(a \text{ box is from } L_1 \text{ and is not faulty})$
	- $P(a box is not faulty)$
	$=\frac{0.3465}{1000}$
	1-0.02
	$=\frac{99}{10000000000000000000000000000000000$
	280
(v) Ten randomly cases are chosen. Find the probability that	()10
none are rauny. Ans .0.017	Required probability = $(0.98)^{\circ}$
	= 0.817

1 Binomial Distribution		
From a production line making toys, a fixed number of toys are inspected for faults and that 10% of the toys are faulty.(i) State, in context, two assumptions needed for the number of faulty toys found to be well modelled by a binomial distribution.	(Looking for keywords): (event+independence; probability+constant) Assunption 1: event that a faulty toy selected is independent of another faulty toy selected Assumption 2: Probability that a toy is faulty is a constant at 0.1 for each toy.	
 (ii) 8 toys were selected. Find the probability that less than 4 toys are faulty. Ans: 0.995 ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ 	Let X be <u>no of faulty toys out of 8.</u> $X \sim B(\underline{8}, \underline{0.1})$ Less than 4 means: $P(X < 4) = P(X \le 3) = 0.99498 \approx 0.995$	
(iii) 8 toys were selected. Find the probability that at least 3 toys are faulty. Ans: 0.0381	at least 3 toys are faulty means: $P(X \ge 3) = 1 - P(X \le 2) = 0.0381$	
 (iv) 8 toys were selected. Find the probability that between 3 to 5 (inclusive) toys are faulty. Ans: 0.0381 	$P(3 \le X \le 5) = P(X \le 5) - P(X \le 2) = 0.03807 \approx 0.0381$	

 (v) A box is packed with 8 toys. There are 10 such boxes. Find the probability that there are at most 8 such boxes with less than 4 toys are faulty. Ans: 0.001104 (v) A box is packed with 8 toys. There are 10 such boxes. With less than 4 toys are faulty. Ans: 0.001104 (v) A box is packed with 8 toys. There are 10 such boxes. With less than 4 toys are faulty. Ans: 0.001104 	Let <i>W</i> be no of boxes with less than 4 toys that are faulty out of 10. $W \sim B(_10_, 0.99498)$	
10 boxes with 8 toys in each box	At most 8 such boxes means: $P(X \le 8) = 0.001104 \approx 0.00110$	
 (vi) A box is packed with 8 toys. There are now 30 such boxes. Find the probability that the mean number of toys that are faulty per box is more than 1. Ans: 0.0984 (vi) A box is packed with 8 toys in each box (vi) A box is packed with 8 toys in each box 	Let X be_no of toys that are faulty out of 8_ $X \sim B(\8 \0.1\)$ Then \overline{X} is the mean number toys that are faulty per box, out of 30 boxes. Since $n = 30$ is large, by Central Limit Theory $\overline{X} \sim N(0.8, \frac{8 \times 0.1 \times 0.9}{30})$ approximately $P(\overline{X} > 1) = 0.09835 \approx 0.0984$	

(vii) Every pallet has 9 such boxes. There are 12 such pallets.	P(has at least 3 toys that are faulty per box) = P($X \ge 3$)	
Find the probability that 8 pallets contains less than 2	= 0.038092	
boxes that have at least 3 toys that are faulty per pack.		
Ans: 0.00126		
	Let M be the no boxes that have at least 3 toys that are faulty per box	
	out of 9.	
	$M \sim B(\9_, \0.038092\)$	
••••• ••••• ••••• ••••• ••••• ••••• ••••		
	P(less than 2 boxes that have at least 3 toys that are faulty per box) =	
	$P(M < 2) = P(M \le 1) = 0.956292$	
12 pallets. 9 boxes in each pallet 8 toys in each box.		
	Let <i>H</i> be the no pallets that have with less than 2 boxes that have at	
	least 3 toys that are faulty out of 12.	
	H = P(-12) = 0.056202	
	$H \sim D(\12_, \0.930292\)$	
	P(8 pallets with less than 2 boxes that have at least 3 toys that are faulty	
	per box $= P(H = 8) = 0.00126$	

5. Norma	l Distribution			
Organic rockme	elons and waterm	elons are sold by		
weight. The we	eights, in grams,	of Rockmelons and		
Watermelons ar	e modelled as ha	wing independent		
normal distribut	tions with means	and standard	Let <i>R</i> and <i>W</i> be the random variables "weight of a randomly chosen	
deviations as sh	own in the table.		Rockmelon and Watermelon" respectively	
	Mean weight	Standard deviation	$K \sim N(800, 50^2)$ $W \sim N(1600, 180^2)$ Parkakility required = $P(700 \le R \le 000) P(1500 \le W \le 1700)$	
Rockmelon	800	50	$= 0.954 \times 0.421 = 0.402$	
Watermelon	1600	180		
 (i) Two melo random. F weighs bet Watermelo grams. 	ns, one of each ind the probabili- ween 700 grams on weighs betwee	n type, are chosen at ity that the Rockmelon and 900 grams, and the n 1500 grams and 1700 Ans: 0.402		
(ii) Find the pro	bability that the	total weight of 4	'differs' :See Chapter 4 Example 12(ii)	
randomly ch	osen Rockmelon	is differs twice the	$E((R_1 + R_2 + R_3 + R_4) - 2W) = 0$	
least 850 gr	andomly chosen	Ans: 0.0229	$\operatorname{Var}((R_1 + R_2 + R_3 + R_4) - 2W) = 139600$	
		1 ms. 0.022)	$(R_1 + R_2 + R_3 + R_4) - 2W \sim N(0, 139600)$	
			$P((R_1 + R_2 + R_3 + R_4) - 2W \ge 850)$	
			$=P((R_1 + R_2 + R_3 + R_4) - 2W \ge 850)$	
			$+ \mathbf{P}((R_1 + R_2 + R_3 + R_4) - 2W \le -850)$	
			= 0.0229	

 (iii) A Rockmelon with weight exceeding <i>m</i> grams is considered as "Premium". Calculate the least value of <i>m</i> such that the probability of a randomly chosen Rockmelon being "Premium" is 0.0505. Give your answer to the nearest gram. Ans: 882 	$P(R \ge m) = 0.0505$ Using GC, m = 882	
 (iv) Rockmelons are sold at \$0.05 per gram and Watermelons at \$0.03 per gram. Find the probability that the total selling price of a randomly chosen Rockmelon and 2 randomly chosen Watermelons is more than \$150. Ans: 0.0407 	Let $C = 0.05R + 0.03(W_1 + W_2)$. E(C) = 40 + 96 = 136 Var(C) = 6.25 + 58.32 = 64.57 $C \sim N(_136__, _64.57_]$	
	$P(C > 150) = 0.040732 \approx 0.0407$	
 (v) 12 randomly chosen rockmelons are carefully packed into a box. Find the probability that there is at most 1 Premium rockmelon in a box. (A Rockmelon with weight exceeding 882 grams is considered as "Premium). Ans: 0.880 	Let X be no of Premium rockmelon in a box out of 12. $X \sim B(12, 0.0505)$ $P(X \le 1) = 0.87966 \approx 0.880$	
 (vi) 20 such boxes are packed into a pallet for shipping. Find the probability that there are between 10 to 12 (inclusive) boxes with at most 1 Premium rockmelon in a box. Ans: 0.00144 	Let <i>Y</i> be no of boxes with at most 1 Premium rockmelon in a box out of 20. $Y \sim B(20, 0.879655)$ $P(10 \le Y \le 12) = P(Y \le 12) - P(Y \le 9) = 0.0014394 \approx 0.00144$	
(vii) 18 watermelons are randomly chosen. Find the probability that the average weight of the watermelons are less than 1.62kg. Ans: 0.681	$\overline{W} \sim N(1600, \frac{180^2}{18})$ P($\overline{W} < 1620$) = 0.68132 \approx 0.681	

6. Hypothesis Testing		
A company packs and sells brown sugar. A manager claims that the average mass of a packet of brown sugar is at least 500g. A random sample of 60 packets is examined and the mass, x g, of the contents of each packet is determined. The results are summarized as follows. $\sum (x-500) = -168 \qquad \sum (x-500)^2 = 8050$ (i) Find the unbiased estimates of the population mean and variance Ans: 497.2; $\frac{37898}{295}$	Unbiased estimate of population mean, $\overline{x} = \frac{\sum(x-500)}{60} + 500$ $= \frac{-168}{60} + 500 = 497.2$ Unbiased estimate of population variance, $s^{2} = \frac{1}{59} \left[8050 - \frac{(-168)^{2}}{60} \right]$ $= 128.47$ $= 128 \text{ (to 3 s f)}$	
(ii) Test at the 5% level of significance whether the manager's claim is valid. Ans:p = 0.0278	Let X be the mass of a packet of brown sugar and μ be the mean mass of a packet of brown sugar. To test $H_0: \mu = 500$ against $H_1: \mu < 500$ at 5% level of significance. Since $n = 60$ is large, by Central Limit Theorem: $\overline{X} \sim N\left(500, \frac{128.47}{60}\right)$ approximately under H_0 . Test statistic: $Z = \frac{\overline{X} - 500}{\sqrt{\frac{128.47}{60}}} \sim N(0,1)$. Using z-test, by GC, $\mu_0 = 500, s = \sqrt{128.47}, \ \overline{x} = 497.2, n = 60, \ z_{cal} = -1.91$ (to 3 s.f) p-value = 0.027841 = 0.0278 (to 3 s.f)	

		Since p -value = 0.02784 < 0.05, we reject H_0 and conclude that	
		there is sufficient evidence at 5% significance level to state that the	
(iii)	Evaluin what is meant by the abrase '50' level of	manager's claim is not valid.	
(111)	significance' in the context of the question	committing an error of rejecting the null hypothesis and concluding that	
	significance in the content of the question.	the manager's claim is not valid, when the manager's claim is actually	
		true.	
(iv)	A consumer protection group took sample of 32 packets		
	and conducts its own test. Using the same unbiased	Since $n = 32$ is large, by Central Limit Theorem	
	the smallest level of significance of the test if the null	Under H_0 . $\overline{X} \sim N\left(500, \frac{128.47}{32}\right)$ approximately	
	nypotnesis is rejected.	p-value = 0.0811	
		Reject H_0 means <i>p</i> -value $< \frac{\alpha}{2}$	
		³ ⁰ ¹ 100	
		$0.0811 < \frac{\alpha}{100}$	
		100	
		$\alpha > 8.11$	
		smallest level of significance is 8.11	
		č	
(v)	The consumer protection group took another sample of 20 packets and conducts its own test. Assuming that the	$\bar{X} \sim N\left(500, \frac{56}{20}\right)$	
	mass of brown sugar follows a normal distribution with	r = 500	
	level of significance to not reject the manager's claim	$z = \frac{x - 500}{5c}$	
	Ans: $r \approx 498$	$\sqrt{\frac{56}{20}}$	
		V 20 	
		Do not reject claim means $\frac{x-500}{\sqrt{5c}} > -1.55477$	
		$\sqrt{\frac{56}{20}}$	
		$\overline{x} > 497.39$	
		$\therefore \overline{x} \approx 498$	