

| SYLLABUS RELEVANCE & TEXTBOOK CHAPTERS |   |            |  |  |
|----------------------------------------|---|------------|--|--|
| O-LEVEL PURE (5072)                    | ✓ | Chapter 14 |  |  |
| O-LEVEL SCIENCE (5116)                 | ✓ | Chapter 13 |  |  |
| N-LEVEL SCIENCE (5155)                 | ✓ | Chapter 11 |  |  |

Lesson Package & Accompanying Slides Designed by Alex Lee (2008) Last Modified by Alex Lee (2011)

# 1. Structure & Physical Properties of Pure Metals

In Chemistry, a metal is defined as an element which tends to <u>lose</u> electrons, to form a positively charged ion. As an element, the atoms undergo metallic bonding and delocalize their electrons to form positive ions.

The structure of a metal is a lattice of positive ions, in a 'sea' of delocalized electrons



lost, forming positive ions. Arranged in a lattice fashion. Their negative charges helps to hold the positive ions together.

Below lists four physical properties of metals. Match these four properties with their corresponding explanations by connecting them with straight lines.



# 2. Structure & Physical Properties of Alloys

The term 'alloys' are used to refer to metals with other elements mixed into them. These other elements may be either metals or non-metals themselves. Since the chemical properties of the constituents remain the same, **alloys are mixtures**, not compounds.

Some Common Allovs:

Brass – mixture of <u>copper</u> and zinc

Bronze – mixture of <u>copper</u> and tin

Nichrome – mixture of **nickel** and **chromium** 

Steel – mixture of ..... iron and carbon

Stainless Steel – mixture of ......, chromium, carbon and nickel





Unlike a pure metal, alloys are far less malleable and ductile, as it the presence of 'foreign atoms' prevent the metallic atoms from sliding past each other so easily. In daily life, we tend to use alloys more often than pure metals. Below lists several reason as to why, industrially, alloys are more useful.



# 3. Review Questions

|                 | Alkali Metals                               | Transition Metals         |
|-----------------|---------------------------------------------|---------------------------|
| Texture         | softer                                      | harder                    |
| Melting Points  | lower m.p.                                  | higher m.p.               |
| Density         | less dense                                  | more dense                |
| Reactivity      | more reactive                               | less reactive             |
| Oxidation State | always +1                                   | multiple oxidation states |
| Colour of Salts | white when solid<br>colourless when aqueous | forms coloured salts      |

(a) In the table below, compare and contrast between alkali metals and transition metals.

(b) Sodium, magnesium and aluminium are in the same period of the Periodic Table. Which of these three metals has the highest melting point? Explain your answer.

Aluminium, as it has the most valence electrons (i.e. three), leading to a larger number of delocalised electrons to hold the positive ions together.

(c) Explain why pure metals are malleable and ductile, while alloys have a harder texture.

In a pure metal, the atoms are arranged in an orderly manner and hence layers of atoms are able to slide over each other easily.

In an alloy, the presence of foreign atoms disrupt the regular arrangement, and

hence the atoms are no longer able to slide over each other easily.

(d) (i) Are alloys able to conduct electricity? Explain why they are able or not able to do so.

Yes; this is because alloys contain delocalised electrons in their structure which are mobile and hence able to carry an electric current.

- (ii) State two reasons why steel, and not iron, is often used for making kitchen utensils.
   Steel has a harder, stronger texture, i.e. less malleable and ductile.
   Kitchen utensils often use stainless steel, which does not rust.
- (e) Name the only two pure metals which are **not** grey in appearance, and state their colours.

copper (pink) and gold (yellow)

# 4. Metal Oxidation Reactions 1 & 2: Reactions with Cold Water and Steam

Some metals are more reactive than others, i.e. they form compounds more readily. In general, the alkali metals (Group I) are the most reactive, followed by the alkali earth metals (Group II). Below lists the reactivity series for nine common metals.

|                                |        |                   | Cold Water (4)                                                                                                                                                                       | Hot Steam (6)                                                             |
|--------------------------------|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Potassium<br>Sodium<br>Calcium |        | easing reactivity | <b>Reacts with cold water</b> to<br>produce <u>hydroxides</u> and<br>hydrogen gas.<br>Ca (s) + 2 H <sub>2</sub> O (l) $\rightarrow$<br>Ca(OH) <sub>2</sub> (aq) + H <sub>2</sub> (g) | Explosive reaction,<br>dangerous to conduct.                              |
| Magnesium                      |        | incr              | Reacts slowly with water,                                                                                                                                                            | vigorously with steam.                                                    |
| Zinc                           | — Carb | on                |                                                                                                                                                                                      | <b>Reacts with steam</b><br>to produce <u>oxides</u> and<br>hydrogen gas. |
| Iron                           |        |                   |                                                                                                                                                                                      | Zn (s) + H₂O (g) →<br>ZnO (s) + H₂ (g)                                    |
| Lead                           | Lude   |                   | No reaction occurs.                                                                                                                                                                  |                                                                           |
| Copper                         | — nyui | ogen              |                                                                                                                                                                                      | No reaction occurs.                                                       |
| Silver                         |        |                   |                                                                                                                                                                                      |                                                                           |

(a) (i) Where in the above reactivity series would caesium be located?

Above potassium

(ii) Where in the above reactivity series would barium be located?

Above calcium but below sodium

# (b) Construct chemical equations for the reaction

(i) between sodium and cold water,

 $2 \text{ Na} + 2 \text{ H}_2\text{O} \longrightarrow 2 \text{ NaOH} + \text{H}_2$ 

(ii) between magnesium and steam.

 $Mg + H_2O \longrightarrow MgO + H_2$ 

# 5. Metal Oxidation Reactions 3 & 4: Reactions with Dilute Acid and Oxygen

Apart from reactions with water and steam, the reactivity series can also predict other oxidation reactions of metals; namely with acid (as learnt in the chapter on acids and bases) and when heated in the presence of oxygen.

|           |          |  | Reaction with HCI (7)                            | Heating with $O_2(8)$                                                                |
|-----------|----------|--|--------------------------------------------------|--------------------------------------------------------------------------------------|
| Potassium | Livity   |  |                                                  |                                                                                      |
| Sodium    | ng react |  | <i>Explosive reaction, dangerous to conduct.</i> | <i>Violent reaction, dangerous to conduct.</i>                                       |
| Calcium   | ncreasi  |  |                                                  |                                                                                      |
| Magnesium | Carbon   |  | Reacts with dilute acids                         | Burns in oxygen with a bright white flame.                                           |
| Zinc      |          |  | hydrogen gas.                                    |                                                                                      |
| Iron      |          |  | $MgCl_2 (aq) + H_2 (g)$                          | <b>Reacts with oxygen</b><br>(in the presence of heat)<br>to produce <u>oxides</u> . |
| Lead      | Hydroger |  | Only reacts, slowly, with an acid when heated.   | 2 Cu (s) + O <sub>2</sub> (g)<br>→ 2 CuO (s)                                         |
| Copper    |          |  | No reaction occurs                               |                                                                                      |
| Silver    |          |  |                                                  | No reaction occurs.                                                                  |

(a) Name a metal which is able to react with dilute acids but not with steam.

Lead

- (b) Construct chemical equations, including state symbols for
  - (i) the reaction between zinc and sulfuric acid,

 $Zn(s) + H_2SO_4(aq) \longrightarrow ZnSO_4(aq) + H_2(g)$ 

(ii) the reaction when lead is heated in air,

2 Pb (s) +  $O_2$  (g)  $\longrightarrow$  2 PbO (s)

(iii) the reaction between iron and hydrochloric acid.

Fe (s) + 2 HCl (aq)  $\longrightarrow$  FeCl<sub>2</sub> (aq) + H<sub>2</sub> (g)

# 6. Review Questions

(a) Samples of five unknown metals were placed into separate beakers of cold water as shown.



(i) Arrange the five metals in order of increasing reactivity.

C, A, E, B, D

(ii) Suggest the identity for metal **D**, citing the main reason for your choice.

Potassium, as it gives off a (lilac) flame when reacting.

(iii) Metals **A**, **B** and **C** were found to be calcium, iron and magnesium, not in any particular order. Suggest the identities of metals **A**, **B** and **C**.

(iv) A student makes a hypothesis that metal **E** is actually lithium. State **two** reasons why this hypothesis is wrong.

Lithium is less dense than water and will float, not sink.

Lithium, an alkali metal, would react more vigorously than metal B (calcium).

(b) A student carried out an experiment to investigate the reactivity of five metals, **A** – **E**. The results obtained are given below.

| Metal | Reaction With H <sub>2</sub> O                                        | Reaction With H <sub>2</sub> SO <sub>4</sub>                 |
|-------|-----------------------------------------------------------------------|--------------------------------------------------------------|
| A     | Reacts very slowly with cold water, but<br>very vigorously with steam | Reacts vigorously and gives off<br>hydrogen gas              |
| В     | Does not react with cold water, but<br>moderately with steam          | Reacts moderately and gives off<br>hydrogen                  |
| С     | Does not react with water or steam                                    | Does not react even when heated                              |
| D     | Reacts vigorously with cold water                                     | Reacts explosively and gives off<br>hydrogen gas that burns  |
| E     | Does not react with water or steam                                    | Only reacts when heated, few bubbles<br>of hydrogen produced |

(i) Arrange the five metals in increasing order of their reactivity.

C, E, B, A, D

(ii) Suggest which metal could be

copper: C

sodium: D

magnesium: A

# 7. <u>Relating Thermal Stability of Salts to the Reactivity Series</u>

Some salts are able the decompose upon heating. Such salts are referred to as being **thermally unstable**. On the other hand, salts which do not decompose upon heating are referred to as being thermally stable.

The thermal stability of a salt can be predicted from the reactivity series:

| The more reactive the meta     | , the <b>more</b> | <b>stable</b> a | compound | it forms. | Therefore, | it is |
|--------------------------------|-------------------|-----------------|----------|-----------|------------|-------|
| more difficult / requires more | energy to         | ermally dec     | ompose   |           |            |       |

This can be illustrated by observing the ease of thermal decomposition of metal carbonates, metal hydroxides, metal nitrates and metal sulfates. As you would observe, the lower the metal in the reactivity series, the easier to decompose its compound.

|                       | Metal Carbonates<br>CO3 <sup>2-</sup> | Metal Hydroxides<br>OH | Metal Nitrates<br>NO3 <sup>-</sup> | Metal Sulfates<br>SO4 <sup>2-</sup> |
|-----------------------|---------------------------------------|------------------------|------------------------------------|-------------------------------------|
| <b>K</b> <sup>+</sup> | may not thermally                     | may not thermally      | thermally<br>decomposes to form    |                                     |
| Na <sup>+</sup>       | decompose                             | decompose              | nitrites and O <sub>2</sub>        |                                     |
| Ca <sup>2+</sup>      |                                       |                        |                                    | may not thermally<br>decompose      |
| Mg <sup>2+</sup>      |                                       |                        |                                    |                                     |
| Zn <sup>2+</sup>      |                                       | the owned by           | the curre all t                    |                                     |
| Fe <sup>2+</sup>      | decomposes to form                    | decomposes to form     | decomposes to form                 |                                     |
| Pb <sup>2+</sup>      |                                       |                        |                                    | thermally                           |
| Cu <sup>2+</sup>      |                                       |                        |                                    | oxides and $SO_2/SO_3$              |
| Ag <sup>+</sup>       |                                       |                        |                                    |                                     |

(a) Solid samples of calcium carbonate and lead(II) carbonate are heated strongly over an open flame. Which compound would you expect to take a longer time to decompose? Explain how you arrived at your answer.

Calcium carbonate. This is because calcium is a more reactive metal than lead, and hence will form more stable compounds. Thus calcium carbonate is more difficult to decompose than lead(II) carbonate.

(b) From the above table, what conclusion can you draw about Group I carbonates and their ease of thermal decomposition?

Group I carbonates are unable to undergo thermal decomposition.

# 8. Obtaining Metals from Ores

Many metals do not exist naturally as elements. Most of them **occur naturally as compounds such as oxides and sulfides**, e.g. iron(III) oxide and calcium carbonate. These compounds are obviously not pure either, and they often contain other rocks and particles within them. We refer to these materials are **ores** (e.g. impure zinc sulfide).

After refining, the purified compound is known as **minerals** (e.g. pure zinc sulfide). These minerals then undergo various reduction processes to obtain the **pure metal**.



We can observe a relationship between reactivity and the ease of reduction of a metal ore:

| The more reactive the metal, the more stable       | a compound it forms. Therefore, it is |
|----------------------------------------------------|---------------------------------------|
| more difficult / requires more energy toreduce_the | e ore to become a metal               |



# 9. **Review Questions**

(a) Zinc ore and iron ore can both be obtained reduced by heating with carbon. Which of these two ores will require a higher temperature for extraction? Explain your answer.

Zinc ore. Zinc is a more reactive metal than iron, and hence zinc ore is more stable

than iron ore and requires a greater amount of energy for reduction.

(b) Small samples of three metal ores, **X**, **Y** and **Z**, are heated strongly with carbon until globules of liquid metal were formed. The time taken for the ore to be completely reduced is shown:

| Ore | Time Taken for Reduction (min)     |
|-----|------------------------------------|
| X   | Completely reduced in 25 min       |
| Y   | Completely reduced in 10 min       |
| Z   | No reduction at all after an hour. |

(i) Arrange the three ores in decreasing order of stability.

Ζ, Χ, Ϋ

(ii) Suggest a possible identity for ore **Z**.

potassium/sodium/calcium/magnesium ore

- (c) Calcium metal is industrially obtained from electrolysis of its molten ore, gypsum.
  - (i) In terms of structure and bonding, explain why the ore needs to be molten, and not solid, in order to be extracted by electrolysis.

The minerals in gypsum are ionic compounds. When solid, the ions are held in

fixed positions and hence unable to conduct an electric current. When molten,

the ions are free to move and hence can conduct an electric current.

(ii) Zinc metal can also be obtained by electrolysis of its molten ore, sphalerite. However, industrially, this is done by reduction by carbon instead. Explain why this is so.

Electrolysis is a far more expensive process as a large amount of energy is

required, not only in terms of electricity, but also to keep the ore molten.

(d) Gold is a precious metal which is below silver in the reactivity series. Suggest why, in the extraction of gold from its ore, there is no need for reduction.

Gold is highly unreactive and already occurs naturally as an element, hence only

purification of the ore is necessary, and not reduction.

(e) Under bright sunlight, silver chloride can decompose into its elements as shown:

$$2 \operatorname{AgCl}(s) \longrightarrow 2 \operatorname{Ag}(s) + \operatorname{Cl}_2(g)$$

Do you expect sodium chloride to behave the same way under sunlight? Why or why not?

No. Sodium is a very reactive metal and hence forms very stable compounds. Thus

sodium chloride is unlikely to be decomposed by light.

(f) The carbonates of three metals, **P**, **Q** and **R**, are heated strongly over a bunsen burner. The products of the decomposition are shown below.

| Carbonate                             | Products of Decomposition                                              |
|---------------------------------------|------------------------------------------------------------------------|
| <b>P</b> <sub>2</sub> CO <sub>3</sub> | decomposes to become $\mathbf{P}_2O$ and $CO_2$                        |
| <b>Q</b> <sub>2</sub> CO <sub>3</sub> | does not decompose                                                     |
| <b>R</b> <sub>2</sub> CO <sub>3</sub> | decomposes to become $\mathbf{R}$ , CO <sub>2</sub> and O <sub>2</sub> |

(i) Arrange the three metals in increasing order of reactivity.

# R, P, Q

(ii) Suggest a possible identity for metal **Q**.

potassium or sodium

(g) The table below shows the results of heating the sulfates of three metals and the reaction of the same metal oxides with hot carbon.

| Metal | Effect of Placing Metal in<br>Dilute Hydrochloric Acid | Effect of Heating Metal<br>Oxide with Carbon |
|-------|--------------------------------------------------------|----------------------------------------------|
| S     | moderate effervescence                                 | reduced to the metal                         |
| Т     | vigorous effervescence                                 | no reaction                                  |
| U     | no visible change                                      | reduced to the metal                         |

(i) Hence arrange the three metals, **S**, **T** and **U**, in increasing order of reactivity.

U, S, T

(ii) Suggest the identity of metal **S**, citing your reasons clearly.

Zinc/iron/lead. The metal can react with dilute hydrochloric acid, showing it is above copper in the reactivity series; while the metal oxide may be reduced by heating with carbon, showing it is below magnesium in the reactivity series.

(iii) State how, industrially, **T** should be obtained from its ore.

By electrolysis of the molten ore

# 10. Iron: An Overview

Iron is the most abundant metal in the world. As it also has a high density and high strength, iron is industrially very useful in building construction and the manufacture of many tools and equipment.

The concept map below explores the various properties of iron:



(a) Explain, in terms of its structure, why iron is soft when it is pure.

In pure iron, the atoms are arranged in an orderly manner. Hence when a force is applied, layers of iron atoms are able to slide over each other easily.

(b) Suggest how the addition of carbon helps to strengthen the iron.

The presence of foreign carbon atoms disrupts the orderly arrangement of iron atoms, hence inhibiting the iron atoms from sliding over each other as easily.

# 11. Iron: Extraction in Blast Furnace

Iron metal is extracted industrially from its ore, **haematite**. This process is carried out in a large chimney-like structure known as a **blast furnace**. The blast furnace is made up of refractory brick in order to withstand high temperatures.



The reactions that occur in the blast furnace can be categorised into three parts – the production of carbon monoxide, the reduction of iron(III) oxide and the removal of the sand impurities.

# **PRODUCTION OF CARBON MONOXIDE**

Coke, which consists of <u>carbon</u>, is allowed to combust in air to form <u>carbon dioxide</u>. This combustion provides the heat which is necessary for the subsequent steps to occur.

Equation:  $C(s) + O_2(g) \longrightarrow CO_2(g)$ 

The carbon dioxide then reacts with more coke to form <u>carbon monoxide</u>. This reaction can only take place if <u>coke</u> is in excess, causing <u>incomplete combustion</u> to occur.

Equation:  $CO_2$  (s) + C (s)  $\rightarrow$  2 CO (g)

Due to the sulfur impurities in coke, traces of **sulfur dioxide** may be produced and released as a waste gas, leading to air pollution.

# **REDUCTION OF IRON(III) OXIDE**

The carbon monoxide produced above reacts with **iron(III)** oxide in haematite, hence reducing the ore to form molten iron, which settles as a liquid at the bottom of blast furnace

Equation:  $Fe_2O_3$  (s) + 3 CO (g)  $\longrightarrow$  2 Fe (l) + 3 CO<sub>2</sub> (g)

The molten iron formed contains impurities such as carbon and sulfur. However, it is good enough for industrial use and may be tapped off from the blast furnace to manufacture alloys.

# **REMOVAL OF SAND IMPURITIES**

Due to the heat in the blast furnace, limestone (CaCO<sub>3</sub>) undergoes <u>thermal decomposition</u> to form quicklime (CaO). <u>Carbon dioxide</u> gas is evolved.

Equation:  $CaCO_3$  (s)  $\rightarrow CaO$  (s) +  $CO_2$  (g)

The quicklime then reacts with acidic impurities such as <u>sand (SiO<sub>2</sub>)</u> to form <u>molten</u> <u>calcium silicate</u>, otherwise known as slag. Slag may be used to <u>make roads</u>.

Equation:  $CaO(s) + SiO_2(s) \longrightarrow CaSiO_3(l)$ 

# 12. Review Questions

(a) Indicate if the following statements describing the blast furnace are **true** or **false**.

| The combustion of coke produces carbon dioxide and a lot of heat.     | true  |
|-----------------------------------------------------------------------|-------|
| Excess air must be present to allow the formation of carbon monoxide. | false |
| Traces of sulfur dioxide are present in the waste gases.              | true  |
| The main component of the waste gases is carbon dioxide.              | false |
| Iron(III) oxide is directly reduced by carbon in the blast furnace.   | false |
| The iron formed in the blast furnace is in the liquid state.          | true  |
| The iron formed in the blast furnace is still impure.                 | true  |
| One mole of iron is produced for every mole of carbon monoxide.       | false |
| Limestone is added to the blast furnace to act as a reducing agent.   | false |
| Limestone is added to the blast furnace to remove basic impurities.   | false |

(b) The formation of slag can be represented by the chemical equation below:

 $CaO(s) + SiO_2(s) \longrightarrow CaSiO_3(l)$ 

(i) Briefly explain why this reaction can be considered to be 'neutralisation'.

It can be considered to be neutralisation because a basic oxide, CaO, and an acidic oxide,  $SiO_2$ , to form a salt.

(ii) Has the silicon atom in silicon dioxide been oxidised, reduced or neither? Explain.

Neither. Its oxidation state remains the same: +4 in  $SiO_2$  and +4 in  $CaSiO_3$ .

(iii) State one way in which the slag produced can be used.

Used to make roads.

- (c) At the bottom of the blast furnace, two molten substances are obtained slag and iron.
  - (i) Briefly explain why these two substances are easily separated.

The two liquids are immiscible, and hence settle at the bottom of the blast

furnace in different layers.

(ii) Which substance will be found at the bottom - slag or iron?

Iron

# 13. Iron: Conditions for Rusting

The term 'rusting' is used to refer to the **corrosion of iron**. Rust, the reddish-brown deposits coating the corroded metal, is hydrated iron(III) oxide. Its striking colour and uneven texture gives the corroded iron a very unsightly appearance.

Rusting may only occur when iron is exposed to **both oxygen and water** :

 $\begin{array}{c} 2 \ \text{Fe} \ (\text{s}) + 3 \ \text{O}_2 \ (\text{g}) + 2n \ \text{H}_2 \text{O} \ (\text{l}) \rightarrow 2 \ \text{Fe}_2 \text{O}_3.n \text{H}_2 \text{O} \ (\text{s}) \\ \hline \text{iron} \quad \text{oxygen} \quad \text{water} \quad \text{rust} \end{array}$ 

Do note that the term 'rusting' may **not** be used to describe the corrosion or oxidation of any other metals – it is used for iron and its alloys only.

- (a) One method to prevent an iron object from rusting is by painting it.
  - (i) Explain how this method prevents an iron object from rusting.

It prevents the iron object from coming in contact with oxygen and water,

which are the conditions necessary for rusting to occur.

(ii) Suggest other similar ways in which an iron object can be protected against rusting.

Greasing, plastic-coating, tin-plating, gold-plating

(b) In an experiment, iron nails were placed in various conditions as shown below. For each of the diagrams, indicate whether they "<u>will rust</u>" or "<u>will not rust</u>".



# 14. Recycling of Metals

Besides mining for ores, another way to obtain metals for industrial use is by recycling scrap metal. This has both its advantages and its disadvantages.

| Recycling of metals refers to the | collecting , | sorting | and | melting down |
|-----------------------------------|--------------|---------|-----|--------------|
| of scrap metal and putting them   | to new uses  |         |     |              |

The **most important reason** why we should recycle metals is because <u>metals are a finite</u> resource, and recycling enables us to conserve this finite resource for future use

In the table below, discuss the various advantages and disadvantages of recycling, as compared to mining for new metals.

|                                   | Advantages of<br>Recycling Metals                                                                                                                                                                                                                                                  | Disadvantages of<br>Recycling Metals                                                                                                                                                                                                                                   |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resources                         | Recycling increases the<br>availability of metals, which are<br>a finite resource.                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |
| Costs                             | Recycling saves costs and time required to mine for new metals.                                                                                                                                                                                                                    | Recycling requires costs and time<br>to collect/sort scrap metal.                                                                                                                                                                                                      |
| Usage of Fuels<br>& Air Pollution | Extraction of new metals from<br>their ores requires large amounts<br>of fossil fuels, straining the<br>availability of fossil fuels.<br>Extraction of new metals also<br>produces air pollution, due to<br>either intentional or unintentional<br>combustion, e.g. blast furnace. | Recycling involves melting down<br>of scrap metal, using a large<br>amount of fossil fuels, straining<br>the availability of fossil fuels.<br>The melting down of scrap<br>metals during recycling may also<br>cause air pollution due to<br>poisonous gases released. |
| Land Use                          | Recycling reduces the land<br>required for disposal of scrap<br>metal by dumping, hence<br>reducing land pollution.<br>Recycling also reduces the land<br>required for mining, increasing<br>availability of land for other<br>uses such as agriculture.                           |                                                                                                                                                                                                                                                                        |

# Self-Designed Summary



# Supplementary Questions

- 1. For each of the following reactions, construct a balanced chemical equation including state symbols. If there is no reaction, write "no reaction".
  - (a) potassium + cold water
  - (b) sodium + cold water
  - (c) calcium + cold water
  - (d) magnesium + cold water
  - (e) zinc + cold water

- (f) iron + cold water
- (q) lead + cold water
- (h) copper + cold water
- (i) silver + cold water
- 2. For each of the following reactions, construct a balanced chemical equation including state symbols. If there is no reaction, write "no reaction".
  - (a) potassium + steam
  - (b) sodium + steam
  - (c) calcium + steam
  - (d) magnesium + steam
  - (e) zinc + steam

- (f) iron + steam
- (q) lead + steam
- (h) copper + steam
- (i) silver + steam
- 3. For each of the following reactions, construct a balanced chemical equation including state symbols. If there is no reaction, write "no reaction".
  - (a) potassium + nitric acid
  - (b) sodium + nitric acid
  - (c) calcium + nitric acid
  - (d) magnesium + nitric acid
  - (e) zinc + nitric acid

- (f) iron + nitric acid (q) lead + nitric acid
- (h) copper + nitric acid
- (i) silver + nitric acid
- 4. For each of the following reactions, construct a balanced chemical equation including state symbols. If there is no reaction, write "no reaction".
  - (a) potassium + sulfuric acid
  - (b) sodium + sulfuric acid
  - (c) calcium + sulfuric acid
  - (d) magnesium + sulfuric acid
  - (e) zinc + sulfuric acid

- (f) iron + sulfuric acid
- (g) lead + sulfuric acid
- (h) copper + sulfuric acid
- (i) silver + sulfuric acid
- 5. Below shows several metals. Use this list to answer the following questions. Each metal may be used once, more than once, or not at all.

| Aluminium | Copper | Iron | Magnesium | Sodium | Zinc |  |
|-----------|--------|------|-----------|--------|------|--|
| ,         | eeppe. |      |           |        |      |  |

- (a) Which metal reacts quickly with cold water?
- (b) Which metal reacts slowly with cold water, but decomposes with steam at red heat?
- (c) Which metal does not react with steam?
- (d) Name one metal that forms an ion with an oxidation state of +1.
- (e) Name two metals that form coloured ions.
- (f) Name two metals that form amphoteric oxides.
- (q) Which two metals form oxides which can be reduced by carbon?
- 6. The questions below refer to the extraction of iron in the blast furnace.
  - (a) Name the reducing agent that reacts with haematite. Construct a chemical equation, including state symbols, for the reduction of haematite by this reducing agent.
  - (b) What is the main impurity in haematite? Describe in detail how this impurity is removed. Write down two chemical equations, including state symbols, for the removal of the impurity.
  - (c) What is the chemical formula of slag? State one use of the slag formed.
  - (d) Suggest why air, and not pure oxygen, is used in the blast furnace.
  - (e) Name two gases, other than nitrogen, present in large proportions in the waste gases.

| 7.  | Wh<br>A         | ich diagram below b                                                  | est r<br>B         | epresents the struct                     | ure<br>C      | of an alloy?                                      | D           |                                        |
|-----|-----------------|----------------------------------------------------------------------|--------------------|------------------------------------------|---------------|---------------------------------------------------|-------------|----------------------------------------|
| 8.  | Wh<br>A         | ich of the following r<br>magnesium                                  | meta<br><b>B</b>   | lls will not produce h<br>copper         | vdro<br>C     | ogen when added to<br>iron                        | dilu<br>D   | te hydrochloric acid?<br>calcium       |
| 9.  | Wh<br>A         | ich of the following o<br>sodium                                     | does<br>B          | not react with cold copper               | wate<br>C     | er but will react with<br>magnesium               | stea<br>D   | am?<br>calcium                         |
| 10. | A r             | netal water storage                                                  | tank               | k is ideal for storing                   | col           | d water but dissolve                              | s av        | way rapidly if used to                 |
|     | sto<br><b>A</b> | aluminium.                                                           | INK 19<br><b>B</b> | s made of copper.                        | С             | lead.                                             | D           | zinc.                                  |
| 12. | Wh<br>A         | ich of the following e<br>sodium                                     | elem<br>B          | ents has a melting p<br>iron             | oint<br>C     | of 98 °C and a dens<br>zinc                       | ity o<br>D  | of 0.97 g/dm <sup>3</sup> ?<br>calcium |
| 13. | An<br>A<br>B    | alloy consists of<br>a mixture of two or<br>a special type of me     | mor<br>etal        | e metals                                 | C<br>D        | a compound of two<br>metals joined toget          | or i<br>her | more metals<br>chemically              |
| 14. | Wh<br>A         | ich of the following h<br>calcium                                    | nas t<br><b>B</b>  | he <i>least</i> tendency to<br>aluminium | for<br>C      | m positive ions?<br>iron                          | D           | sodium                                 |
| 15. | An<br>A         | netal <b>M</b> with a proto<br><b>M</b> OH                           | n nu<br>B          | mber 11 reacts with $M_2(OH)_3$          | wat<br>C      | er to form a hydroxic<br><b>M</b> <sub>2</sub> OH | de o<br>D   | f formula<br>M(OH) <sub>2</sub>        |
| 16. | Wh<br>A<br>B    | ich statement best ir<br>It is a good conduct<br>It floats on water. | ndica<br>tor c     | ates that lithium is a f electricity.    | met<br>C<br>D | al?<br>It burns readily in a<br>It is soft.       | ir.         |                                        |

17. Information comparing elements **X**, **Y** and **Z** is given in the table below. All three elements are in the same group of the Periodic Table.

| Element | Reaction with dilute acid   | Formula of chloride |
|---------|-----------------------------|---------------------|
| X       | hydrogen forms slowly       | XCl <sub>2</sub>    |
| Y       | hydrogen forms quickly      | YCl <sub>2</sub>    |
| Ζ       | hydrogen forms very quickly | ZCl <sub>2</sub>    |

Which statement about the elements could be correct?

- A X is above Z in Group II.
  B Z is below X in Group III.
- **C Y** is at the top of Group II.
- **B Z** is below **X** in Group III.

- **D X**, **Y** and **Z** are non-metals.
- 18. The table shows the results of some reactions of three metals.

| Metal | Reaction with HCl (aq) | Reaction with ZnO (s) |
|-------|------------------------|-----------------------|
| X     | slow                   | violent               |
| Y     | slow                   | none                  |
| Z     | none                   | none                  |

Arrange the three metals in decreasing order of reactivity. A X, Y, Z B Y, Z, X C Y, X, Z D X, Z, Y

- 19. What are the conditions necessary for rusting to occur?

  - A Only water needs to be present.B Only oxygen needs to be present.C Both water and oxygen need to be present.D Either water or oxygen needs to be present.

ANGLO-CHINESE SCHOOL (BARKER ROAD)

# **Supplementary Questions (Answers)**

Question 1

(a) 2 K (s) + 2 H<sub>2</sub>O (l)  $\longrightarrow$  2 KOH (aq) + H<sub>2</sub> (g) (b) 2 Na (s) + 2 H<sub>2</sub>O (l)  $\longrightarrow$  2 NaOH (aq) + H<sub>2</sub> (g) (c) Ca (s) + 2 H<sub>2</sub>O (l)  $\longrightarrow$  Ca(OH)<sub>2</sub> (s) + H<sub>2</sub> (g) (d) Mg (s) + 2 H<sub>2</sub>O (l)  $\longrightarrow$  Mg(OH)<sub>2</sub> (s) + H<sub>2</sub> (g) (e) to (i) – no reaction **Ouestion 2** (a) 2 K (s) + H<sub>2</sub>O (g)  $\longrightarrow$  K<sub>2</sub>O (s) + H<sub>2</sub> (g) [explosive] (b) 2 Na (s) +  $H_2O(g) \longrightarrow Na_2O(s) + H_2(g)$  [explosive] (c) Ca (s) +  $H_2O(g) \longrightarrow CaO(s) + H_2(g)$  [explosive] (d) Mg (s) + H<sub>2</sub>O (g)  $\longrightarrow$  MgO (s) + H<sub>2</sub> (g) (e)  $Zn(s) + H_2O(g) \longrightarrow ZnO(s) + H_2(g)$ (f) Fe (s) + H<sub>2</sub>O (g)  $\longrightarrow$  FeO (s) + H<sub>2</sub> (g) (g) to (i) – no reaction **Ouestion 3** (a) 2 K (s) + 2 HNO<sub>3</sub> (aq)  $\longrightarrow$  2 KNO<sub>3</sub> (aq) + H<sub>2</sub> (g) [explosive] (b) 2 Na (s) + 2 HNO<sub>3</sub> (aq)  $\longrightarrow$  2 NaNO<sub>3</sub> (aq) + H<sub>2</sub> (g) [explosive] (c) Ca (s) + 2 HNO<sub>3</sub> (aq)  $\longrightarrow$  Ca(NO<sub>3</sub>)<sub>2</sub> (aq) + H<sub>2</sub> (g) [explosive] (d) Mg (s) + 2 HNO<sub>3</sub> (aq)  $\longrightarrow$  Mg(NO<sub>3</sub>)<sub>2</sub> (aq) + H<sub>2</sub> (g) (e)  $Zn(s) + 2 HNO_3 (aq) \longrightarrow Zn(NO_3)_2 (aq) + H_2 (g)$ (f) Fe (s) + 2 HNO<sub>3</sub> (aq)  $\longrightarrow$  Fe(NO<sub>3</sub>)<sub>2</sub> (aq) + H<sub>2</sub> (g) (g) Pb (s) + 2 HNO<sub>3</sub> (aq)  $\longrightarrow$  Pb(NO<sub>3</sub>)<sub>2</sub> (aq) + H<sub>2</sub> (g) (h) to (i) – no reaction **Ouestion 4** (a) 2 K (s) + H<sub>2</sub>SO<sub>4</sub> (aq)  $\longrightarrow$  K<sub>2</sub>SO<sub>4</sub> (aq) + H<sub>2</sub> (g) [explosive] (b) 2 Na (s) +  $H_2SO_4$  (aq)  $\longrightarrow$  Na<sub>2</sub>SO<sub>4</sub> (aq) +  $H_2$  (g) [explosive] (c) Ca (s) +  $H_2SO_4$  (aq)  $\longrightarrow$  CaSO<sub>4</sub> (s) +  $H_2$  (g) [explosive] (d) Mg (s) +  $H_2SO_4$  (aq)  $\longrightarrow$  MgSO<sub>4</sub> (aq) +  $H_2$  (g) (e)  $Zn(s) + H_2SO_4(aq) \longrightarrow ZnSO_4(aq) + H_2(g)$ (f) Fe (s) +  $H_2SO_4$  (aq)  $\longrightarrow$  FeSO<sub>4</sub> (aq) +  $H_2$  (g) (g) Pb (s) +  $H_2SO_4$  (aq)  $\longrightarrow$  PbSO<sub>4</sub> (s) +  $H_2$  (g) (h) to (i) – no reaction Question 5 (a) sodium (c) copper (e) copper, iron (g) zinc, iron (copper) (b) magnesium (d) sodium (copper) (f) aluminium, zinc

# Question 6

(a) carbon monoxide;  $Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(l) + 3 CO_2(g)$ 

- (b) silica/silicon dioxide/sand; It is removed by adding limestone to the blast furnace.
   First, the limestone decomposes under heat to form quicklime; CaCO<sub>3</sub> (s) → CaO (s) + CO<sub>2</sub> (g)
   Next, the quicklime reactions with the silica to form slag; CaO (s) + SiO<sub>2</sub> (s) → CaSiO<sub>3</sub> (l)
   The slag settles at the bottom of the blast furnace and is subsequently tapped off.
- (c) CaSiO<sub>3</sub>; Used to make roads.
- (d) Pure oxygen will cause an explosive reaction; air is cheaper; excess oxygen will inhibit the formation of carbon monoxide necessary as a reducing agent.
- (e) carbon dioxide, carbon monoxide

| Mu | Itiple-0 | Choice | Ques | stions |   |      |      |      |      |      |
|----|----------|--------|------|--------|---|------|------|------|------|------|
| 7  | В        | 8      | В    | 9      | С | 10 D | 11 A | 12 A | 13 C | 14 A |

# **Lecture Slides**



# chemistry metals

# Chapter Overview

## In This Chapter, We Will Learn ...

- 1. Structure & Properties of Metals
- 2. Alloys: Examples, Properties and Uses
- 3. Reactivity Series of Metals
- 4. Relating Stability of Salts to the Reactivity Series
- 5. Extraction of Metals
- 6. Iron: Extraction in a Blast Furnace
- 7. Iron: Rusting
- 8. Recycling of Metals

prepared by alex lee anglo-chinese school (barker road





# Alloys: A Mixture An alloy is a mixture of a metal and another element, e.g. bronze is a mixture of copper and tin. It is not necessary for the other element to be a metal, e.g. steel is a mixture of iron and carbon.

• Since the chemical properties of the constituents remain the same, and that the composition of an alloy may vary, alloys are considered to be mixtures.

prepared by alex lee anglo-chinese school (barker road)



# chemistry metals Alloys: A Mixture Alloys share many similar properties with pure metals – high melting points, high boiling points, good electrical conductivity, good heat conductivity. However, one key difference is that alloys are less malleable and ductile than pure metals. We can hence describe alloys as being relatively 'brittle', i.e. more likely to shatter/break upon impact.

red by alex lee anglo-chinese school (barker road)



| Alloys: A Mixture         Some advantages of using alloys:         • Harder, stronger texture         e.g. Steel, Cast Aluminium         • More resistant to corrosion |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Some advantages of using alloys: <ul> <li>Harder, stronger texture</li> <li>e.g. Steel, Cast Aluminium</li> </ul>                                                      |
| Harder, stronger texture     e.g. Steel, Cast Aluminium                                                                                                                |
| • More resistant to corrosion                                                                                                                                          |
| · More resistant to contosion                                                                                                                                          |
| Alter melting and boiling points e.g. Solder, Superalloys                                                                                                              |
| Aesthetic appeal     e.g. Bronze, White Gold                                                                                                                           |
|                                                                                                                                                                        |
| prepared by alex lee analo-chinese school (barker road) 9                                                                                                              |

| chemistry metals                                                                                                         |    |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| Reactivity Series of Metals                                                                                              |    |  |  |  |  |
| <ul> <li>Metals may lose electrons (i.e. get oxidised) to form<br/>metal compounds such as salts or bases.</li> </ul>    |    |  |  |  |  |
| <ul> <li>The ease in which a metal is oxidised / loses electrons is<br/>known as the reactivity of the metal.</li> </ul> |    |  |  |  |  |
| Different metals have different reactivity!                                                                              |    |  |  |  |  |
|                                                                                                                          |    |  |  |  |  |
|                                                                                                                          |    |  |  |  |  |
| prepared by alex lee anglo-chinese school (barker road)                                                                  | 15 |  |  |  |  |





# **Reactivity Series of Metals**

 We shall study the reactivity series of these nine metals in relation of their oxidation reactions with – cold water

prepared by alex lee anglo-chinese school (barker road)

- hot steam
- dilute hydrochloric acid
- oxygen

**Reactivity Series of Metals** Hot Steam (6) Cold Water (4) owever, it is dangerous to conduct this experiment with potassium, sodium or calcium.) Potassium Reacts to form a hydroxide and hydrogen. Sodium Calcium  $2 \text{ K} + 2 \text{ H}_2 \text{O} \rightarrow 2 \text{ KOH} + \text{H}_2$ Reacts to form an **oxide** and **hydrogen**. Magnesium (Magnesium reacts very slowly.) Zinc  $Zn + H_2O \rightarrow ZnO + H_2$ Iron Lead Copper Silver alex lee anglo-chinese school (barker road)









61

# Thermal Stability of Metal Compounds

- The thermal stability of a salt affects whether it can be prepared by evaporation to dryness.
- Thermally stable salts, such as sodium chloride, can be obtained from its solution by evaporation till dryness. This is because it is unlikely to be decomposed by heat.
- Thermally unstable salts, such as copper(II) sulfate, should be obtained from its solution by crystallisation.

anglo-chinese school (barker road)





| che                        | emistry | metals          |            |                                               |    |
|----------------------------|---------|-----------------|------------|-----------------------------------------------|----|
| Obtaining Metals from Ores |         |                 |            |                                               |    |
| So                         | me cc   | mmon or         | es         |                                               |    |
|                            | N       | ame of O        | re         | Main Constituent                              |    |
|                            |         | Haematite       | e          | Iron Ore, Fe <sub>2</sub> O <sub>3</sub>      |    |
|                            |         | Sphalerite      | e          | Zinc Ore, ZnS                                 |    |
|                            |         | Barite          |            | Barium Ore, BaSO <sub>4</sub>                 |    |
|                            |         | Gypsum          |            | Calcium Ore, CaSO <sub>4</sub>                |    |
|                            |         | Galena          |            | Lead Ore, PbS                                 |    |
|                            |         | Bauxite         |            | Aluminium Ore, Al <sub>2</sub> O <sub>3</sub> |    |
|                            |         |                 |            |                                               |    |
|                            |         |                 |            |                                               |    |
|                            | prepa   | red by alex lee | anglo-chin | nese school (barker road)                     | 38 |





# Obtaining Metals from Ores

- However, electrolysis is a very expensive process as a large amount of energy is needed, not only in terms of electricity, but also to keep the ore molten.
- Hence, whenever possible, carbon reduction is the preferred method of extracting a metal from its ore.
- Only reactive metals, such as potassium, sodium, calcium and magnesium, are extracted by electrolysis of its molten ore.

prepared by alex lee anglo-chinese school (barker road)









# Iron: Blast Furnace Extraction

- Iron is extracted from its ore, haematite, which largely consists of iron(III) oxide, Fe<sub>2</sub>O<sub>3</sub>.
- This is done by reduction with carbon monoxide, in a large chimney-like structure known as a **blast furnace**.



• The raw materials are used in the blast furnace are **haematite**, **limestone** and **coke**.

Images: http://www.corusgroup.com/en/responsibility/education/picture<u>llge</u>/ironmakin ared by alex lee anglo-chinese school (barker road) 58





| chemistry metals                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Iron: Blast Furnace Extraction                                                                                                                                                                                                            |
| <ul> <li>The reactions that occur in the blast furnace can be categorised into three parts:</li> <li>production of carbon monoxide</li> <li>reduction of iron(III) oxide</li> <li>removal of sand (SiO<sub>2</sub>) impurities</li> </ul> |
| prepared by alex lee anglo-chinese school (barker road) 61                                                                                                                                                                                |

## chemistry metals

# Iron: Blast Furnace Extraction

Production of Carbon Monoxide (1)

• Coke, which consists of carbon, is allowed to combust in air form carbon dioxide.

# $C(s) + O_2(g) \longrightarrow CO_2(g)$

• This combustion provides the **heat** which is necessary for the subsequent steps to occur.

d by alex lee anglo-chinese school (barker road)

# Chemistry metals Iron: Blast Furnace Extraction Production of Carbon Monoxide (2) • Carbon dioxide then reacts with more coke to form carbon monoxide. • This reaction can only take place if coke is in excess, causing incomplete combustion to occur. CO2 (g) + C (s) → 2 CO (g) • Due to the sulfur impurities in coke, traces of sulfur dioxide may be produced, leading to air pollution.

# Iron: Blast Furnace Extraction

# Reduction of Iron(III) Oxide

• The carbon monoxide produced in the previous stage reacts with iron(III) oxide in haematite, hence reducing the ore to form molten iron.

 $Fe_2O_3$  (s) + 3 CO (g)  $\rightarrow$  2 Fe (l) + 3 CO<sub>2</sub> (g)

- Molten iron settles at the bottom of the blast furnace.
- The iron **still contains impurities** such as carbon and sulfur, but is good enough for industrial use.

prepared by alex lee anglo-chinese school (barker road)









# Iron: Rusting

# Rate In Which Rusting Occurs ...

- Affected by the availability of oxygen and water; e.g. an iron object in a humid atmosphere (more water vapour) will rust faster.
- Presence of dissolved salts will also accelerate the rate in which rusting occurs.
- A lower pH (acidic medium) increases the rate of rusting, a higher pH (alkaline medium) slows down the rate of rusting.

red by alex lee analo-chinese school (barker road)

# Chemistry metais Iron: Rusting Prevention By Coating ... One method to protect an iron or steel object from rusting is by painting it. • This protects the iron by preventing the object from coming in contact with oxygen and water, which are the conditions necessary for rusting to occur. • Other similar methods of rust-prevention include greasing, plastic-coating and tin-plating.





### chemistry metal

# **Recycling of Metals**

- There are two main ways to obtain metal for use: - mine for new ores
  - recycling existing scrap metal
- We shall examine the advantages and disadvantages of each of the above two methods.

lex lee anglo-chinese school (barker road)



| chemistry me | tals                                                                               |                                                                      |    |
|--------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------|----|
| Recyclin     | g of Metals                                                                        |                                                                      | ]  |
|              | Advantages of<br>Recycling Metals                                                  | Disadvantages of<br>Recycling Metals                                 |    |
| Resources    | Recycling increases the<br>availability of metals, which<br>are a finite resource. |                                                                      |    |
| Costs        | Recycling saves costs<br>and time required to<br>mine for new metals.              | Recycling requires costs<br>and time to collect/sort<br>scrap metal. |    |
| prepared b   | oy alex lee anglo-chinese school (bark                                             | er road)                                                             | 80 |

| Recycling of Metals Advantages of Disadvantages of |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                            |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | Recycling Metals                                                                                                                                                                                                                | Recycling Metals                                                                                                                                                                                                                           |
| Usage of<br>Fuels & Air<br>Pollution               | Extraction of metals from their<br>ores requires large amounts<br>of fossil fuels, straining the<br>availability of fossil fuels.<br>Extraction of metals causes<br>air pollution, due to<br>combustion, e.g. blast<br>furnace. | Recycling uses a large<br>amount of fossil fuels,<br>straining availability of<br>already-scarce fossil fuels.<br>The melting down of scrap<br>metals during recycling may<br>also cause air pollution due<br>to poisonous gases released. |
| prepared b                                         | oy alex lee anglo-chinese school (bark                                                                                                                                                                                          | er road)                                                                                                                                                                                                                                   |

| Recycling of Metals |                                                                                                                                                                                                                                                             |                                      |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                     | Advantages of<br>Recycling Metals                                                                                                                                                                                                                           | Disadvantages of<br>Recycling Metals |
| Land Use            | Recycling reduces the land<br>required for disposal of scrap<br>metal by dumping, hence<br>reducing land pollution.<br>Recycling also reduces the<br>land required for mining,<br>increasing availability of land<br>for other uses such as<br>agriculture. |                                      |

