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Suggested Solutions for Worked Examples 

1 a) 
Car,Truck Car,Earth Earth,Truck

-1

Car,Truck 25 30 5 m s

V V V

V

= +

= − = −
 

 
The observer in the truck observes that the car moves in the opposite direction at a constant speed 
of 5 m s-1. 
 

 b) 
Truck,Car Truck,Earth Earth,Car

-1

Truck,Car 30 25 5 m s

V V V

V

= +

= − = +
 

 
The observer in the car observes that the truck moves in the forward direction at a constant speed 
of 5 m s-1. 
 

 c)  
Car,Truck Car,Truck ( 5)(60) 300 md V t= = − = −  

 

2 
spider,Earth spider,passenger passenger,train train,Earth

-1

spider,Earth 0.5 1.2 3.1 3.8 m s

V V V V

V

= + +

= − + + =
 

 

3 a) Yes. In both Earth and reference frame M, the speeds of the carts are constant. Hence, their kinetic 
energies are constant. 
 

 b) No net external force acting on the system. Hence, no change in momentum and energy. 
Therefore, the isolated system containing only cart 1 is closed. 
 

 c) No net external force acting on the system. Hence, no change in momentum and energy. 
Therefore, the isolated system containing only cart 2 is closed. 
 

4 a) Merry-go-round: Its velocity changes, there is an acceleration towards the centre of the circle. It is 
a non-inertial reference frame. 
 

 b) Airplane taking off: The velocity must increase. There is an acceleration associated with it. It is a 
non-inertial reference frame. 
 

 c) Train at constant speed: The velocity is constant and no acceleration. It is an inertial frame of 
reference. 
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5 a)  
 
 
 
Head-on collision in the Earth frame,  
 
By RSOA = RSOS,  
 

2 1 1 2

1 2 1 20.80 0 0.80

u u v v

v v v v

− = −

− = − → = +
 

 
By PCOLM, 
 

 

1 2

2 2

-1

2

-1

1

(0.36)(0) (0.12)(0.80) (0.36) (0.12)

(0.12)(0.80) (0.36)(0.80 ) (0.12)

0.40 m s  (moves rightwards)

0.40 m s  (moves leftwards)

v v

v v

v

v

+ = +

= + +

= −

=

 

 
The relative velocity is 0.80 m s-1. 
 

-1

1 1 1

-1

2 2 2

0.40 0 0.40 m s  (leftwards)

0.40 ( 0.80) 1.20 m s  (rightwards)

V v u

V v u

 = − = − =

 = − = − − + = −
 

 

 b) -1

1 1 1

-1

2 2 2

(0.36)(0.40) 0.144 kg m s  (leftwards)

(0.12)( 1.20) 0.144 kg m s  (rightwards)

p m V

p m V

 =  = =

 =  = − = −
 

 
Please note that the total change in momentum in the cart 1 and 2 system is zero. This indicates 
that there is no net external force acting on the system. 
 

 c) 
2 2

,1

2 2

,2

1
(0.36)(0.40 0 ) 0.0288 J

2

1
(0.12)(( 0.40) 0.80 ) 0.0288 J

2

k

k

E

E

 = − =

 = − − = −

 

 
Please note that the total change in the kinetic energy of the system is zero. This indicates that 
there is no energy lost in this elastic collision. 
 

 d) Reference frame M moves at a constant speed of 0.20 m s-1 towards right (towards cart 2) 
 

-1

1, 1, ,

-1

2, 2, ,

0 0.20 0.20 m s  (leftwards)

0.80 0.20 1.00 m s  (leftwards)

M Earth Earth M

M Earth Earth M

u u u

u u u

= + = + =

= + = + =
 

 
In reference frame M, 
 
 
 
 
Head-on collision in the Earth frame, by RSOA = RSOS, 
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2, 1, 1, 2,

1, 2, 1, 2,1.00 0.20 0.80

M M M M

M M M M

u u v v

v v v v

− = −

− = − → = +
 

 
By PCOLM, 
 

1, 2,

-1

2,

-1

1,

(0.36)(0.20) (0.12)(1.00) (0.36) (0.12)

0.20 m s  (moves rightwards)

0.60 m s  (moves leftwards)

M M

M

M

v v

v

v

+ = +

= −

=

 

 
Please check that the relative velocity is 0.80 m s-1 in this reference. It was the same in the Earth 
frame as well. This shows that the relative velocity is the same in all inertial frames of reference.  
 
Change in velocity in reference frame M, 
 

-1

1, 1, 1,

-1

2, 2, 2,

0.60 0.20 0.40 m s  (leftwards)

0.20 (1.00) 1.20 m s  (rightwards)

M M M

M M M

V v u

V v u

 = − = − =

 = − = − − = −
 

 
Change in momentum in reference frame M, 
 

-1

1, 1 1,

-1

2, 2 2,

(0.36)(0.40) 0.144 kg m s  (leftwards)

(0.12)( 1.20) 0.144 kg m s  (rightwards)

M M

M M

p m V

p m V

 =  = =

 =  = − = −
 

 

2 2

,1

2 2

,2

1
(0.36)(0.60 0.20 ) 0.0576 J

2

1
(0.12)(( 0.20) 1.00 ) 0.0576 J

2

k

k

E

E

 = − =

 = − − = −

 

 
Please take note that the individual change in kinetic energy in cart 1 or cart 2 is different in this 
frame compared to the Earth frame. However, the total change in kinetic energy is still zero. 
This reinforces the fact that the total change in kinetic energy is the same in all inertial frames of 
reference regardless of the type of collision. 
 

 e) Now, the collision is elastic and the velocity of cart 1 is +0.30 m s-1 after the collision (moves 
towards left). 
 
In the Earth frame, by PCOLM, 
 

2

-1

2

(0.36)(0) (0.12)(0.80) (0.36)(0.30) (0.12)

0.10 m s  (moves rightwards)

v

v

+ = +

= −
 

 

2 2

,1

2 2

,2

1
(0.36)(0.30 0 ) 0.0162 J

2

1
(0.12)(( 0.10) 0.80 ) 0.0378 J

2

0.0162 ( 0.0378) 0.0216 J

k

k

k

E

E

E

 = − =

 = − − = −

 = + − = −
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The loss in the kinetic energy is expected as this is an inelastic collision. The loss in kinetic energy 
goes to increase the internal energy of the system. 
 
Reference frame M, 
 

-1

1, 1, ,

-1

2, 2, ,

0 0.20 0.20 m s  (leftwards)

0.80 0.20 1.00 m s  (leftwards)

M Earth Earth M

M Earth Earth M

u u u

u u u

= + = + =

= + = + =
 

 
-1

1, 1, ,

-1

2, 2, ,

0.30 0.20 0.50 m s  (leftwards)

0.10 0.20 0.10 m s  (leftwards)

M Earth Earth M

M Earth Earth M

v v v

v v v

= + = + =

= + = − + =
 

 

2 2

,1

2 2

,2

1
(0.36)(0.50 0.20 ) 0.0378 J

2

1
(0.12)(( 0.10) 1.00 ) 0.0594 J

2

0.0378 ( 0.0594) 0.0216 J

k

k

k

E

E

E

 = − =

 = − − = −

 = + − = −

 

 
Please take note that the energy loss in reference frame M is the same as that of in Earth frame. 
This indicates that the gain in internal energy is the same in all inertial frames of reference. 
 

6 a) 
-1(0.36)(0) (0.12)(0.80)

0.20 m s  (leftwards)
0.36 0.12

CMV
+

= =
+

 

 b) -1

1, 1, ,

-1

2, 2, ,

-1

1,

-1

2,

0 0.20 0.20 m s  (rightwards)

0.80 0.20 0.60 m s  (leftwards)

0.40 0.20 0.20 m s  (leftwards)

0.40 0.20 0.60 m s  (rightwards)

CM Earth Earth CM

CM Earth Earth CM

CM

CM

u u u

u u u

v

v

= + = − = −

= + = − =

= − =

= − − = −

 

 
Please take note that the velocities simply change sign after the elastic collision in this centre of 
mass frame (zero-momentum frame). This always happens for elastic collision in CM frames and 
it simplifies tedious calculations greatly. 
 

-1

1,

-1

2,

-1

1, 1 1,

-1

2, 2 2,

0.20 ( 0.20) 0.40 m s  (leftwards)

0.60 ( 0.60) 1.20 m s  (rightwards)

(0.36)(0.40) 0.144 kg m s

(0.12)( 1.20) 0.144 kg m s

CM

CM

CM CM

CM CM

V

V

p m V

p m V

 = − − =

 = − − + = −

 =  = =

 =  = − = −

 

 

2 2

,1,

2 2

,2,

1
(0.36)(0.20 ( 0.20) ) 0

2

1
(0.12)(( 0.60) 0.60 ) 0

2

k CM

k CM

E

E

 = − − =

 = − − =
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7 

 
Since it is a uniform piece of sheet metal, let the mass of each square be m. 
 

3 (15) (5) 2 (10)
11.7 cm

3 2
CM

m m m
x

m m m

+ +
= =

+ +
 

 

3 (5) (15) 2 (25)
13.3 cm

3 2
CM

m m m
y

m m m

+ +
= =

+ +
 

 
The coordinate of the CM is (11.7 cm, 13.3 cm) which is outside of the sheet metal. 
 

8 a) Since the rod is thin, we assume that it has negligible thickness. 
 

The infinitesimal mass of the rod: 
M

dm dx dx
L

= =  

 
The centre of mass along the x-direction:  
 

( )

2

0

2

1 1
( )

2

/

2 2

L

cm

cm

L
x xdm x dx xdx

M M M M

M L L L
x

M

 
= = = =

= =

  
 

 
 

 b) It is a non-uniform rod which has mass per unit length varying with x. 
 

The infinitesimal mass of the rod: dm dx xdx = =  

 

Integrating it to find the total mass of the non-uniform rod gives 

2

2

L
M


=  

 

2

3 3

2

1 1 1
( ) ( )

2

3 3
3

2

cm

cm

x xdm x dx x xdx x dx
M M M M

L L L
x

M L


 

 



= = = =

= = =
 
 
 

   

 

 

9 a) Neglecting air resistance, the only external force acting on the projectile is the gravitational force. 
Thus, if the projectile did not explode, it would continue to move along the parabolic path indicated 
by the dashed line. 
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Because the forces caused by the explosion are internal, they do not affect the motion of the center 
of mass of the system (fragments). 
 
Hence, after the explosion, the center of mass of the fragments follows the same parabolic path, 
the projectile would have followed if there had been no explosion. 
 

 b) The center of mass (CM) of the two-piece lands at a distance R from the launch point. 
 
One piece lands at a farther distance R from the landing point (2R from the launch point) of the 
CM. 
 
Both pieces have the same mass, the other piece must land at a distance R to the left of the 
landing point. This piece will be right back at the launch point. 
 

10 a) It is a head-on elastic collision. By RSOA = RSOS, 
 

2 1

2 1

1.50 ( 0.400)

1.90

v v

v v

− − = −

= −
 

 

By PCOLM, initial finalp p=   

 

1 2

1 1

-1

1

-1

2

(0.200)(1.50) (0.300)( 0.400) (0.200) (0.300)

0.180 (0.200) (0.300)(1.90 )

0.780 m s

1.12 m s

v v

v v

v

v

+ − = +

= + +

= −

=

 

 

 b) -1

,

-1

,

(0.200)(1.50) (0.300)( 0.400)
0.360 m s

0.200 0.300

(0.200)( 0.780) (0.300)(1.12)
0.360 m s

0.200 0.300

cm before

cm after

v

v

+ −
= =

+

− +
= =

+

 

 
In the center of mass frame, 

, ,cm before cm afterv v=  

 

  



Hwa Chong Institution (College) 
MOE H3 Physics 2024 

A1. Inertial Frames of Reference 

7 

 

 c) 
and 
d) 

The velocities in the CM frame (zero-momentum frame) before the collision, 
 

-1

1, 1, ,

-1

2, 2, ,

1.50 0.360 1.14 m s

0.400 0.360 0.760 m s

(0.200)(1.14) (0.300)( 0.760) 0

CM Earth Earth CM

CM Earth Earth CM

i

u u V

u u V

p

= + = − =

= + = − − = −

= + − =

 

 
The velocities in the CM frame (zero-momentum frame) after the collision, 
 

-1

1, 1, ,

-1

2, 2, ,

0.780 0.360 1.14 m s

1.12 0.360 0.760 m s

(0.200)( 1.14) (0.300)(0.760) 0

CM Earth Earth CM

CM Earth Earth CM

f

v v V

v v V

p

= + = − − = −

= + = − =

= − + =

 

 
Please take note that the velocites change their signs after the elastic collision in the CM frame 
(zero-momentum frame). This fact greatly simplifies tedious calculations in elastic collisions. 
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Suggested Solutions for Tutorial Questions 

1 a)  
 
 
 
 
 
 
 
 
 
 
 
 
 

, , ,

2 2 -1

,

,1 1

,

5.00 10.0 11.2 km h

5.00
tan tan 26.6

10.0

boat Earth boat river river Earth

boat Earth

river Earth

boat river

V V V

V

V

V
 − −

= +

= + =

   
= = =        

 

 
 

 b)  
 
 
 
 
 
 
 
 
 
 
 
 
 

, , ,

2 2 -1

,

,1 1

,

10.0 5.00 8.66 km h

5.00
tan tan 30.0

8.66

boat Earth boat river river Earth

boat Earth

river Earth

boat Earth

V V V

V

V

V
 − −

= +

= − =

   
= = =        

 

 

  

θ 

,river EarthV

,boat riverV

,boat EarthV

θ 

,river EarthV

,boat EarthV
,boat riverV
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2 Total momentum of the system (Romeo, Juliet and boat) is zero. No net external force is exerted on the 
system as Juliet moves carefully moves to the rear of the boat, hence, the principle of conservation of 
momentum can be applied. 
 

( )

( )

0

 0

2.70
77.0 55.0 80.0

(55.0)(2.70)
0.700 m

77.0 55.0 80.0

juliet juliet boat

boat
juliet

boat

p

m v m v

d
m

t t

d

=

− =

= + +

= =
+ +





 

 

3 a) By PCOLM, 

4

4

4 4

4 4

m m

m m

mv mv mv

v v v

= +

= −
 

 
By RSOA = RSOS, 
 

4 4m m m mv v v v v v= − → = +  

4 4 4 44 4 3 5 3 / 5

8 / 5

m m m m

m

v v v v v v v v

v v

+ = − → = → =

=
 

% of kinetic energy transferred to m, 

 

2

2

1 8

642 5

1 4(25)
4

2

0.64 64%

v
m

mv

 
 
 

=

= →  

 
Method II: Using zero-momentum frame (center-of-mass frame) 
 

4 0 4

5 5
cm

mv m v
v

m

+
= =  

The velocities of particle in the zero-momentum frame before the collision, 

4 , 4 , ,

, , ,

4

5 5

4 4
0

5 5

m cm m Earth Earth cm

m cm m Earth Earth cm

v v
v v v v

v v
v v v

= + = − =

= + = − = −

 

 
After the collision, the sign of velocities changes in CM frame, hence, 

' '

4 , ,

4
 and 

5 5
m CM m CM

v v
v v= − =  

Rewriting the velocities after the collision in the Earth frame, 

' '

4 , 4 , ,

' '

, , ,

4 3

5 5 5

4 4 8

5 5 5

m Earth m cm cm Earth

m Earth m cm cm Earth

v v v
v v v

v v v
v v v

= + = − + =

= + = + =

 



Hwa Chong Institution (College) 
MOE H3 Physics 2024 

A1. Inertial Frames of Reference 

10 

 

% of kinetic energy transferred to m, 

 

2

2

1 8

642 5

1 4(25)
4

2

0.64 64%

v
m

mv

 
 
 

=

= →  

 
Note: There is a high chance that students might perform calculation error in solving simultaneous 
equations in the Earth frame (first method). The zero-momentum frame does not involve such 
equations. 
 

 b)  

 
4 4

5 5
cm

mv
v v

m
= =

 
 
Using the vector diagram could help you find the direction of velocity of 4m in the 
center-of-mass frame readily. 
 

 
 
Note: The diagram may help visualize the direction of velocities in earth and zero-
momentum (CM) frames. The total momentum in the CM frame is zero. 
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 c)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 a)  
 
 
 
After the inelastic collision, 
 
 
 
 

1               head-on elastic collision

coefficient of restitution 0 1   inelastic collision

0              perfectly inelastic collision  

e e




= =  



 

 

1.50 ( 0.50)
0.5 inelastic collision

4.0 0
e

− −
= =

−
 

 

 b) Earth reference frame 
 

2 2 2 2

Earth frame

Earth frame

1 1 1 1
(3.0)(1.5) (1.0)( 0.5) (3.0)(0) (1.0)(4.0)

2 2 2 2

4.5 J

KE

KE

 
 = + − − + 

 

 = −

 

 
Reference frame M moving at -1.0 m s-1 relative to Earth. 
 

-1

1, 1, ,

-1

3, 3, ,

-1

1, 1, ,

-1

3, 3, ,

4.0 1.0 5.0 m s

0 1.0 1.0 m s

0.5 1.0 0.5 m s

1.5 1.0 2.5 m s

M E E M

M E E M

M E E M

M E E M

u u u

u u u

v v v

v v v

= + = + =

= + = + =

= + = − + =

= + = + =
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2 2 2 2

M frame

M frame

1 1 1 1
(3.0)(2.5) (1.0)(0.5) (3.0)(1.0) (1.0)(5.0)

2 2 2 2

4.5 J

KE

KE

 
 = + − + 

 

 = −

 

 
Please note that KE of the system regardless of inertial frames of reference. However, the 
change in kinetic energy of individual masses is different. 
 

5 a)  
 
 
 

-1

-1

0.100, 0.100, ,

-1

0.050, 0.050, ,

0.100(45.0) (0.050)(0)
30.0 m s

(0.100 0.050)

45.0 30.0 15.0 m s

0 30.0 30.0 m s

CM

CM Earth Earth CM

CM Earth Earth CM

u

u u u

u u u

+
= =

+

= + = − =

= + = − = −

 

 

 b) -1

0.100, 0.050, 15.0 ( 30.0) 45.0 m srel CM CMu u u= − = − − =  

 
Please note that the relative velocity in all inertial frames is the same. 
 

 c) Consider a perfectly inelastic collision. By the principle of conservation of linear momentum,  
 

-1

2 2

(0.100)(45.0) (0.100 0.050)

30.0 m s

loss in KE + gain in internal energy of the system = 0 (by PCOE)

1 1
Internal energy (0.100)(45.0) (0.100 0.050)(30.0) 33.8 J

2 2

common

common

v

v

= +

=

= − + =

 

 d) 
Kinetic energy after the collision would be 21

0.8 (0.100)(45.0) 81 J
2

 
= 

 
 

 
By PCOLM,  

1 2

2
1

(0.100)(45.0) (0.100) (0.050)

45
2

v v

v
v

= +

= −  

By PCOE, 
2

22
2

-1

2

-1

1

1 1
81 J (0.100) 45 (0.050)

2 2 2

48.97 m s

20.52 m s

v
v

v

v

 
= − + 

 

=

=

 

 
Please take note that in this collision, only 20.25 J of energy is converted to internal energy. 
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6  
 
 
 
The kinetic energy of the carts in the Earth reference frame is  
 

( )
22 21 1 1

2 5
2 2 2

K mu m u m u= + =  

 
In another inertial frame of reference, the kinetic energy must be the same. This can be achieved by 
exchanging the speeds.  
 
If we choose the inertial frame travelling towards A with a speed u then this would result in the speed of 
2u for A and u for B. Hence, their sum of kinetic energy would be K again. 
 
 
 
 
 
 

7  
 
 
 
 
 
 
 

( )

( )

3

1 1

3

2 2

3

3 3

1 2 3

1 2 3

4

3

4
2 2 2 16

3

4
3 3 3 81

3

4 9 16 (4 ) 81 (9 )
8.1

16 81

8.1  away from the starting point O.

CM

m V a m

m V a m

m V a m

m a m a m a ma m a m a
x a

m m m m m m

a

  

  

  

= = =

= = =

= = =

+ + + +
= = =

+ + + +

 

 

8 The center of mass velocity is the same before and after the collision. 
 

3,-1 -1

, 3,

3,-1 -1

, 3,

2 2 2 2 -1

3 3, 3,

3,1 1

3,

(450) (0)
300 m s 450 m s

(0) (240)
0 m s 240 m s

( 240) (450) 510 m s

450
tan tan 61.9  above th

240

y

CM y y

x

CM y x

x y

y

x

m m mV
V V

m m m

m m mV
V V

m m m

V V V

V

V
 − −

+ +
= = → =

+ +

+ +
= = → = −

+ +

= + = − + =

   
= = =        

e horizontal
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9 a) No net external force acting on the system, hence, the total momentum of the puck system is 
conserved in both vertical and horizontal directions. 
 

1 2

1 2

1 2

1 2 1 2

2 2 2

(0.200)(3.0) (0.200) cos(30.0 ) (0.200) cos(60.0 )

3.0 cos(30.0 ) cos(60.0 )

0 (0.200) sin(30.0 ) (0.200) sin(60.0 )

sin(30.0 ) sin(60.0 ) 3

3.0 3 cos(30.0 ) cos(60.0 ) 1.5 

x

y

p v v

v v

p v v

v v v v

v v v

= =  + 

=  + 

= =  − 

 =  → =

=  +  → =





-1

-1

1

m s

2.6 m sv =

 

 

 b)  
 
 
 
 
 
 

( )2 2

2 1 2 1 2 1

-1

2 1

2 cos  where 90.0

3.0 m s

v v v v v v

v v

 − = + − = 

− =
 

 

10 a)  
 
 
 
 
 
 
 
 
 
 
 

, , ,

, , ,

, ( ) 2  (upwards)

B Earth B A A Earth

B A B Earth A Earth

B A

V V V

V V V

V v v v

= +

= −

= − − =

 

 
Using PCOE for the ball A or B,  
 

21
0 0 2

2
mgh mv v gh+ = + → =  

 

, 2 8B AV v gh= =  
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 b) ( ) ( ) ( ) ( ) 1
 (upwards)

1
A B A A

CM

A B A A

m v m v m v nm v n
V v

m m m nm n

− + − + − 
= = =  

+ + + 
 

 
Before the collision, their velocities in the CM frame are 
 

, , ,

, , ,

1 2

1 1

1 2

1 1

A CM A Earth Earth CM

B CM B Earth Earth CM

n n
u u V v v v

n n

n
u u V v v v

n n

− 
= + = − − = − 

+ + 

− 
= + = + − = 

+ + 

 

 
After the collision, their velocities in the CM frame would just change their signs 
 

,

,

2

1

2

1

A CM

B CM

n
v v

n

v v
n

=
+

= −
+

 

 

 c) Using PCOE,  
 

21
0 0 2

2
A A Am v mgH v gH+ = + → =  

 
Their velocities in the Earth frame are 
 

, , ,

2

2 1 3 1

1 1 1

3 1 3 1
2 2

1 1

3 1

1

A Earth A CM CM Earth

A

n n n
v v V v v v

n n n

n n
v gH v gh

n n

H n

h n

− −   
= + = + =   

+ + +   

− −   
= = =   

+ +   

− 
=  

+ 

 

 

 d) 2 2 2 2
3 1 3 3 4 3 3 4 4

3
1 1 1 1 1

4
when ,  0

1

9

H n n n

h n n n n n

n
n

H

h

− + − +       
= = = − = −       

+ + + + +       

→  →
+

→
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Example 1 (IOAA 2007, theoretical round, questions 6 and 7) 
 
a) A sun-orbiting periodic comet is farthest from the Sun at 31.5 AU and closest to the Sun at 0.5 AU. What 

is the orbital period of this comet? 

 
b) For the comet in part (a) above, what is the area per unit time (in square AU per year) swept by the line 

joining the comet and the Sun? 

 

Note: 1 AU = 1 astronomical unit, which is given by the average Sun-Earth distance, where 

1 AU = 149.6 x 106 km. For part (b), you may use that the eccentricity of the orbit and the semi-minor axis b 

are related to the semi-major axis a by b2 = a2 (1 – e2), and that the area of an ellipse Aellipse is given by 

Aellipse = πab. Refer to Figure 1 for the eccentricity of an orbit. 

 

 

Solution 
 
a) The major axis is 31.5 + 0.5 = 32.0 AU. 

Hence, the semi-major axis is a = 32.0 / 2 = 16.0 AU. 
We use Kepler’s third law and compare the comet’s orbit to that of the Earth, so that we can keep 
everything in “solar-system units” (aEarth = 1.0 AU, the orbital period of the Earth is PEarth = 1.0 year). 
 

𝑃2 ∝ 𝑎3 ⇒ 𝑃 = 𝑎3 2⁄ = 16.03 2⁄ = 64.0 years. 
 

b) The area of an ellipse is given by Aellipse = π a b. 

The eccentricity is e = 15.5 / 16.0 = 0.969. 
Since b2 = a2 (1 – e2), the semi-minor axis b = 3.97 AU. 
Hence, the area of the ellipse is π a b = π (16.0) (3.967) = 199 AU2. 
Thus, the area swept by the line joining the comet and the Sun is 199 / 64.0 = 3.12 AU2 yr-1. 

 
 
Example 2 
 
The distance between Earth’s surface and an object of mass m is changed by an amount Δx. 

 

Show that when x ≈ RE and Δx << RE, the gravitational potential energy of the system reduces to the 

expression ΔU = mgΔx. 

 

Solution 

 

𝛥𝑈 = −
𝐺𝑀𝐸𝑚

(𝑅𝐸 + 𝛥𝑥)
− (−

𝐺𝑀𝐸𝑚

𝑅𝐸
) 

 

       = −
𝐺𝑀𝐸𝑚𝑅𝐸

𝑅𝐸(𝑅𝐸+𝛥𝑥)
+ 

𝐺𝑀𝐸𝑚𝑅𝐸

𝑅𝐸
2  

 

       = −
𝐺𝑀𝐸𝑚𝑅𝐸

𝑅𝐸
2(1+

Δ𝑥

𝑅𝐸
)

+ 𝑔𝑚𝑅𝐸 

 

       ≈ −𝑔𝑚𝑅𝐸 (1 −
Δ𝑥

𝑅𝐸
) + 𝑔𝑚𝑅𝐸 

 

   ≈ −𝑔𝑚𝑅𝐸 + 𝑔𝑚Δ𝑥 + 𝑔𝑚𝑅𝐸 
 

      ≈ 𝑚𝑔Δ𝑥 
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Example 4 (IOAA 2010, theoretical round, question 2) 
 
If the escape velocity from a solar-mass object’s surface exceeds the speed of light, what would be its radius? 
 
You may use the following values: 
 c = 299 792 458 m s-1, 
 G = 6.6726 x 10-11 N m2 kg-2, 
 MSun = 1.9891 x 1030 kg. 
 
Solution 
 
At the edge of a black hole, the escape velocity is equal to the speed of light, c. 
If an object is moving at the escape velocity, its initial speed is just enough to reach infinity with no speed (or 
kinetic energy) left. At infinity, the gravitational potential energy is also zero. Hence, the total energy is zero. 
 

kinetic energy = - gravitational potential energy 
1

2
𝑚𝑐2 = 𝐺

𝑀𝑚

𝑟
 

1

2
𝑐2 = 𝐺

𝑀

𝑟
 

𝑟 =
2𝐺𝑀

𝑐2 =
2(6.6726×10−11)(1.9891×1030)

(299 792 458)2 = 2 953.5 m. 

 
Hence, if the escape velocity exceeds the speed of light, the radius must be smaller than 2,953.5 m. Note 
that the radius of a (non-rotating, un-charged) black hole as calculated above is called the Schwarzschild 
radius, rS. (Since all numbers are given to at least five s.f., the final answer can be given to five s.f. as well.) 
 
 
Example 5 (IOAA 2011, theoretical round, question 3) 
 
On 9 March 2011, the Voyager probe was 116.406 AU from the Sun and moving at 17.062 km s-1. Determine 
the type of orbit the probe is on: (a) elliptical, (b) parabolic, or (c) hyperbolic. 
 
You may use the following values: 
 1 AU = 1.4960 x 1011 m, 
 G = 6.6726 x 10-11 N m2 kg-2, 
 MSun = 1.9891 x 1030 kg. 
 
Solution 
 
We calculate the kinetic energy KE and gravitational potential energy GPE of the probe in SI units with respect 
to the Sun. 
 
 KE = ½ m v2 = ½ m (17.062 x 103)2 = 145,556,922 m (where m is the unknown mass of the probe). 
 GPE = -GMm/r = -7,621,575 m. 
 
Since the total energy TE = KE + GPE > 0, the probe is on a hyperbolic orbit (c). 
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Example 6 
 
a) For the Hohmann transfer orbit in Figure 10, write down the expressions for v1 and v3, the velocity of the 

object in circular orbits 1 and 3. Denote the large mass as M. 

b) Write down expressions for va and vp, the velocity of the object at apoapsis and periapsis of the elliptical 

orbits in terms of v1, v3, Δv and Δv’. 

c) Using your understanding of elliptical orbits, write down an expression relating va and vp. You may use 

any suitable lengths defined in the problem. 

d) Applying energy considerations to the elliptical path, and using suitable results obtained in previous parts, 

show that Δv and Δv’ are given by Equations 30 and 31. 

 

 

Solution 
 
a) 𝐹𝑔 =  𝐹𝑐 

𝐺
𝑀𝑚

𝑟2 = 𝑚
𝑣2

𝑟
 

𝑣1 =  √
𝐺𝑀

𝑅
 and 𝑣3 =  √

𝐺𝑀

𝑅′  

b) vp = v1 + Δv 

𝑣𝑎 = 𝑣3 − Δ𝑣′ 

c) By the principle of conservation of angular momentum, 

𝑣𝑝𝑅 = 𝑣𝑎𝑅′ 

d) By the principle of conservation of energy, 

1

2
𝑚𝑣𝑝

2 −
𝐺𝑀𝑚

𝑅
=

1

2
𝑚𝑣𝑎

2 −
𝐺𝑀𝑚

𝑅′  

1

2
𝑚𝑣𝑝

2 −
1

2
𝑚𝑣𝑝

2 (
𝑅

𝑅′)
2

=
𝐺𝑀𝑚

𝑅
−

𝐺𝑀𝑚

𝑅′  

1

2
𝑣𝑝

2 (1 −
𝑅2

𝑅′2) = 𝐺𝑀 (
1

𝑅
−

1

𝑅′) 

1

2
𝑣𝑝

2 (
𝑅′2 − 𝑅2

𝑅′2 ) = 𝐺𝑀 (
𝑅′ − 𝑅

𝑅𝑅′ ) 

1

2
𝑣𝑝

2 (
𝑅′ − 𝑅

𝑅′ ) (
𝑅′ + 𝑅

𝑅′ ) = 𝐺𝑀 (
𝑅′ − 𝑅

𝑅𝑅′ ) 

𝑣𝑝
2 = 2𝐺𝑀 (

𝑅′ − 𝑅

𝑅𝑅′ ) (
𝑅

𝑅′ − 𝑅
) (

𝑅′

𝑅′ + 𝑅
) 

𝑣𝑝 = √
2𝐺𝑀

𝑅
√

𝑅′

𝑅′ + 𝑅
 

Δ𝑣 = 𝑣𝑝 − 𝑣1 = √
𝐺𝑀

𝑅
√

2𝑅′

𝑅′ + 𝑅
− √

𝐺𝑀

𝑅
 

= √
𝐺𝑀

𝑅
(√

2𝑅′

𝑅′ + 𝑅
− 1) 

Equivalently, we can derive 

Δ𝑣′ = 𝑣3 − 𝑣𝑎 = √
𝐺𝑀

𝑅′ (1 − √
2𝑅

𝑅 + 𝑅′) 
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Tutorial A3: Planetary and Satellite Motion 

 

Questions: 

1  University Physics by Young & Freedman / 12.39:  

A uniform solid 1000 kg sphere has a radius of 5.00 m.  

(a) Find the gravitational force this sphere exerts on a point mass of 2.00 kg, placed at the following 

distances from the centre of the sphere: 

(i)   5.01 m, and    (ii)    2.5 m. 

(b)  Sketch a qualitative graph of the magnitude of the gravitational force F this sphere exerts on a 

point mass as a function of the distance r from the centre of the sphere. 

 

2 University Physics by Young & Freedman / 12.41:  

Consider the ring-shaped body of mass M as shown in the figure below. A particle with a mass m  is 

placed a distance x  from the centre of the ring, along the line through the centre of the ring and 

perpendicular to its plane.  

(a) Calculate the gravitational potential energy U  of this system. 

(b) Show that your answer to part (a) reduces to the expected result when x  is much larger than the 

radius of a  of the ring. 

(c) Use 
dU

F
dx

= −  to find the magnitude and direction of the force on the particle. 

(d) Show that your answer to part (c) reduces to the expected result when x  is much larger than a . 

 
 

 

3    University Physics by Young & Freedman / 12.76: 

As Mars orbits the sun in its elliptical orbit, its distance of closest approach to the centre of the sun (at 

perihelion) is 2.067 x 1011 m, and its maximum distance from the centre of the sun (at aphelion) is 2.492 

x 1011 m. Ignoring the influence of other planets, if the orbital speed of Mars at aphelion is 2.198 x 104 m 

s-1, what is its orbital speed at perihelion? 
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4 Shown on the right is a typical elliptical orbit. 

 

The turning points rp and ra are the distances of closest 

approach and furthest recession. These points are 

usually denoted by the Greek prefixes peri (“near”) and 

apo (“away”). Thus, a planet’s point of closest 

approach to the Sun is called its perihelion, and its 

point of furthest recession is its aphelion (helios is sun 

in Greek). 

 

(a) Show that, when the satellite is at either of the turning points pr  and ar  , 

 
2

2 0
2

GMm L
r r

E mE
+ − = , 

 

where   r   is the distance between the satellite and the Earth, 

             E   is the total energy of the satellite and Earth system, 

   and    L   is the angular momentum of the satellite. 

 

(b) Since the equation above has two solutions, r = rp and r = ra. it can be written as (r – ra) (r – rp) = 0. 

Using this, show that  

 

a p

GMm
r r

E
+ = − , 

2

2
a p

L
r r

mE
= − . 

 

(c) For an ellipse, we have that ra + rp = 2a and ra rp = b2, where a is the semi-major axis of the ellipse 

and b is the semi-minor axis. Using this, show that the energy and angular momentum of the orbit in 

terms of a and b are given as 

 

2a

GMm
E = − , 

2 22L mEb= − . 

 

(d) Using that angular momentum is conserved and that the area of an ellipse is πab, show that 

 
2 3

24

T a

GM
= , 

 

where T is the period of the orbit. (Hint: check the derivation of Kepler’s Second Law!) 
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5  University Physics by Young & Freedman / 12.87 – modified: 

 

The most efficient way to send a spacecraft from the Earth to 

Mars is using a Hohmann transfer orbit. If the orbits of the Earth 

and Mars about the Sun are circular, the Hohmann transfer orbit 

is an elliptical orbit whose perihelion and aphelion are tangent 

to the orbits of the two planets. The spacecraft’s rockets are 

fired briefly at Earth to put the spacecraft into the transfer orbit, 

after which the spacecraft coasts until it reaches Mars. The 

rockets are then fired again to put the spacecraft into the same 

orbit about the Sun as that of Mars. 

 

Assume negligible gravitational forces acting on the spacecraft 

due to the Earth and Mars. 

 

 

(a) For a flight from Earth to Mars, in what direction must the rockets be fired at the Earth? 

 

(b) What is the time spent in the Hohmann transfer orbit during a one-way trip from the Earth to Mars? 

 

In order to reach Mars from the Earth, the launch must be timed so that Mars will be at the right spot 

when the spacecraft reaches Mars’ orbit around the sun. 

 

(c) At launch, what must be the angle between the Sun-Mars line and the Sun-Earth line? 

 

(d) What is the energy per unit mass supplied to or withdrawn from the spacecraft near Earth to place 

it into the transfer orbit? (Consider the force exerted by the rockets to be an external force.)  

 
(e) What is the energy per unit mass supplied to or withdrawn from the spacecraft near Mars to align 

the spacecraft’s orbit to that of Mars? 

 
You may use any or all of the data provided below, as well as the equation for the energy of an orbit. 
 

Mass of Sun = 1.99 x 1030 kg 

Mass of Earth = 5.97 x 1024 kg 

Mass of Mars = 6.42 x 1023 kg 

Radius of Earth’s orbit = 1.50 x 1011 m  

Radius of Mars’ orbit = 2.28 x 1011 m  

Period of Earth’s orbit = 365 days 

Period of Mars’s orbit = 687 days 

 
6    International Olympiad on Astronomy and Astrophysics 2008, theoretical round, question 4: 

Consider a potentially hazardous object (PHO) moving in a closed orbit under the influence of Earth’s 

gravitational force. Let u be the inverse of the distance of the object from the Earth and p the magnitude 

of its linear momentum. As the object travels through points A and B, values of u and p are noted, as 

shown in the table below. Find the mass and the total energy of the object and sketch the shape of the u 

curve as a function of p from A to B. 

 p (x 109 kg m s-1) u (x 10-8 m-1) 

A 0.052 5.15 

B 1.94 194.17 
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7 University Physics by Young & Freedman / Example 12.10 & 12.85: 

 

Suppose we drill a hole through the Earth (radius RE, mass mE) along a diameter and drop a mail 

pouch (mass m) down the hole.  

(a) Derive an expression for the gravitational force on the pouch as a function of its distance r from 

the centre. Assume that the density of the Earth is uniform (not a very realistic model). 

(b) Derive an expression for the gravitational potential energy U(r) of the object-Earth system as a function 
of the object’s distance from the centre of the Earth. Take the potential energy to be zero when the 
object is at the centre of the Earth. 

(c) If an object is released in the shaft at the Earth’s surface, what speed will it have when it reaches the 
centre of the Earth? 

 
 

8 University Physics by Young & Freedman / Example 12.89: 

 

Mass M is distributed uniformly over a disk of radius a. Find the gravitational force (magnitude and 

direction) between this disk-shaped mass and a particle with mass m located a distance x above the 

centre of the disk. Does your result reduce to the correct expression as x becomes very large?  

 

9 International Olympiad on Astronomy and Astrophysics 2013, theoretical round, question 17 – adapted: 

 

A spacecraft is orbiting the near-Earth asteroid Seneca (staying continuously very close to the 

asteroid), transmitting pulsed data to the Earth. Due to the relative motion of the two bodies (the 

asteroid and the Earth), the time it takes for a pulse to arrive at the ground station varies approximately 

between 2 and 39 minutes. Assuming that the Earth moves around the sun on a circular orbit and that 

the orbit of Seneca does not intersect the orbit of the Earth, calculate  

(a) the semi-major axis aS of Seneca’s orbit around the Sun, 

(b) the period of Seneca’s orbit TS. 
Express your answers in terms of the Earth’s orbit, that is, in astronomical units (AU) and years. 
 

10 International Olympiad on Astronomy and Astrophysics 2011, theoretical round, question 1 – fast food: 

 
Most single-appearance comets enter the inner Solar System directly from the Oort Cloud. Estimate how 
long it will take a comet to make this journey. Assume that in the Oort cloud, 35 000 AU from the Sun, the 
comet was at aphelion. 
 

 
11 International Olympiad on Astronomy and Astrophysics 2011, theoretical round, question 4 – adapted: 

 
Assume that Mars’ moon Phobos moves around Mars in a perfectly circular orbit in the equatorial plane 
of the planet, find the length of time Phobos is above the horizon for a point on the Martian equator. 
Mass of Mars MMars = 6.421 x 1023 kg; radius of Mars RMars = 3393 km; rotational period of Mars PMars = 
24.623 hours; orbital radius of Phobos aPh = 9380 km. 
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Suggested solutions:  

 

1(a)(i) 5.31 x 10-9 N (a)(ii) 2.67 x 10-9 N     

2(a) 
2 2

GMm

x a
−

+
 (c) 

( )
3

2 2 2

GMmx

x a

−

+

 
    

3 2.65 x 104 m s-1       

5(b) 259 days (c) 44° (d) 9.13 x 107 J kg-1 (e) 6.00 x 107 J kg-1 

6 5.00 x 104 kg  -1.0 x 1012 J     

7(a) 
E

3

E

Gm m
r

R
 (b) 

2E

3

E2

Gm m
r

R
 (c) 7.90 x 103 m s-1   

8 2 2 2

2
1

GMm x

a a x

 
− 

+ 
       

9(a) 2.46 AU (b) 3.87 years     

10 1.2 x 106 years       

11 4.25 hours       
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Tutorial A3: Planetary and Satellite Motion 

 

Suggested solutions: 

1 (a) (i)   For a spherically symmetric distribution of mass, the force outside the distribution 
is equal to that of a point of the same mass located at the centre. Hence, 

( )
( )( )

( )

2

11

2

9

1000 2.00
6.67 10

5.01

5.31 10  N

g

GMm
F

r

−

−

=

= 

= 

 

(ii)   For a spherically symmetric distribution of mass, the force at a point only depends 
on the mass “below” the point. Using the 1/8 of the sphere’s mass is located within 
2.5 m of the centre of the mass, 

( )
( )( )

( )

2

11

2

9

125 2.00
6.67 10

2.5

2.67 10  N

g

GMm
F

r

−

−

=

= 

= 

 

 

 (b) 

  
Inside the sphere, the force increases linearly with distance. Outside the sphere, the 
force falls of as 1/r2. The graph being negative indicates that the force is directed 
towards the centre of the sphere.  
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2 (a) Taking δM to be the mass of a small part of the ring, and λ = M/(2πa) the mass per unit 
length of the ring, so that δM = λδr is the mass contained within a section of thickness 
δr. We then have for the gravitational potential energy due to m and a section δM at a 
distance r from m, 
 

2 2

( ) ( )G M m G r m
U

r x a

 
 = − = −

+
. 

 

We need to integrate over the whole ring. However, we find that the integration is 
independent of x and a, so we find for the total potential energy due to the ring 
 

 
2

2

02 2 2 2 2 2 2 2
0

2

a
aG m G m G m GMm

U dr r a
x a x a x a x a


  

= − = − = − = −
+ + + +

 , 

 

where we used that M = 2πaλ is the total mass of the ring. 
 

 (b) Using that a << x, we can do a Maclaurin expansion in a, so that 
 

( ) ( ) ( )
1 1

2 2 2 2 12 20x a f a x x
− −

−+ =  + = , 

 

from which, 
 

( ) ( )
1 1

2 2 2 22 2

2 2
0

GMm GMm
U GMm x a GMm x

xx a

− −

= − = − +  − + = −
+

, 

 

which is indeed what we expect if the radius of the ring is much smaller than the 
distance between the rod and the mass m: from a very large distance, any object will 
look (or behave) like a point object. 
 

 (c) 
( )

1
2 2 2

2 2

GMm
U GMm x a

x a

−

= − = − +
+

 

 

( )
( )

3
2 2 2

3
2 2 2

1
2

2
g

dU GMmx
F GMm x a x

dx x a

− 
= − = − + = − 

  +

. 

 

The minus sign indicates that the force is in the direction of decreasing x, which is 
decreasing distance between the ring and m. In other words, the minus sign tells us 
that the force between the ring and m is attractive. 
 

 (d) Using that a << x, we have 
 

( ) ( )
3 3

2 2 2 2 32 20x a x x
− −

−+  + = , 

 

from which, 
 

( )
( ) ( )

3
2 2 32

3 2
2 2 2

GMmx GMm
U GMmx x a GMmx x

xx a

−
−= − = − +  − = −

+

, 

 

which is indeed what we expect if the radius of the ring is much smaller than the 
distance between the rod and the mass m: from a very large distance, any object will 
look (or behave) like a point object. 
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3  The angular momentum of Mars relative to the Sun is given by 
 

= tL mv r , 

 

where L is the angular momentum, m is the mass of Mars, vt is the velocity of Mars 
perpendicular to the line Sun-Mars and r is the distance between Mars and the Sun. 
Using subscripts p for perihelion and a for aphelion, by the principle of conservation of 
angular momentum, 
 

, ,t p p t a aL mv r mv r= =  

 

4 12.650 10  m sa a a a
p

p p

Lv r v r
v

Lr r

−= = =  , 

 

where we use that the velocity at the aphelion and the perihelion is perpendicular to 
the line Sun-Mars, so vt = v there. 

 
4 (a) This question is adapted from https://webhome.phy.duke.edu/~lee/P53/sat.pdf.  

 

21
=

2

GMm
E mv

r
− +  

 

Taking vr the radial component of the velocity and vt the tangential component, 
 

2 21 1
=

2 2
r t

GMm
E mv mv

r
− + +  

 

At the turning points, vr = 0. Using that L = m vt r, we get 
 

2

2
=

2

GMm L
E

r mr
− +  

 

Multiplying by r2/E and rearranging, 
 

2
2 + 0

2

GMm L
r r

E mE
− = . 

 

 (b) ( )( ) 0a pr r r r− − = , 

 
2 0p a a pr rr rr r r− − + = , 

 

( )2 0p a a pr r r r r r− + + = . 

 

Comparing terms [see part (a)], we have 
 

2

and
2

a p a p

GMm L
r r r r

E mE
+ = − = − . 

 (c) With the given equations, this part becomes trivial: 
 

2
2

GMm GMm
a E

E a
= −  = − , 

 
2

2 2 22
2

L
b L mEb

mE
= −  = − . 

https://webhome.phy.duke.edu/~lee/P53/sat.pdf
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 (d) Recall from the derivation of Kepler’s Second Law that 
 

2

L A

m t




= . 

 
Note that the area swept out in one period T is equal to A = πab, so that 
 

2

2

L ab m ab
L

m T T

 
=  =  

 
Squaring both sides, 
 

2 2 2 2
2

2

4m a b
L

T


=  

 
Also, from part (c) we have 
 

2 2
2 2 22 2

2

GMm GMm b
L mEb m b

a a
= − = =  

 
Comparing the two equations for L2, 
 

2 2 2 2 2 2

2

4m a b GMm b

T a


=  

 
2

2 3

4
.

GM

T a


=  
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5 (a) The spacecraft has to speed up to get into a higher orbit (larger 2a) about the Sun. By 
Newton’s Third Law, the rockets must be fired opposite to the direction of motion of the 
spacecraft. 
 

 (b) The major axis of the Hohmann orbit will be equal to the sum of the radii of Mars’ and 
Earth’s orbits, 2a = (1.50 x 1011) + (2.28 x 1011) = 3.78 x 1011 m, so a = 1.89 x 1011 m 
= 1.26 AU, where 1 AU = 1 astronomical unit is the radius of Earth’s orbit. By Kepler’s 
Third Law, 
 

3
2

Hohmann
Hohmann Earth

Earth

516 days.
a

T T
a

 
= = 
 

 

 
Hence, the spacecraft will spent 516 / 2 = 258 days in the Hohmann orbit. 
 

 (c) Referring to the figure in the question, we can assume that the Earth was “at the 
bottom” at the time beginning of the transfer, while Mars is “at the top” at the end of the 
transfer. In 258 days, Mars will have moved 258 / 365 x 360° = 135° in its orbit. Hence, 
at the beginning of the transfer, it was 135° “from the top.” As the Earth was “at the 
bottom” at the that time, the angle Earth-Sun-Mars was 180 – 135 = 45°. 
 

 (d) As the spacecraft sped up, energy was supplied to it. Given that E = -(GMm)/(2a) is 
the total energy of a system consisting of the Sun of mass M and a satellite (or 
spacecraft, or planet) of mass m in orbit about the Sun, the energy per unit mass 
supplied is 
 

7 1

Hohmann Earth Earth Earth Mars

1 1
9.13 10  J kg .

2 2 2

E GM GM
GM

m a a a a a

−     
= − − − = − =      

+     
 

 
 (e) The spacecraft has to speed up again to get into a higher orbit, since the (semi)major 

axis of Mars’ orbit is longer than that of the Hohmann transfer orbit. Hence, energy is 
again supplied. The energy per unit mass supplied is this time 

 

7 1

Mars Hohmann Earth Mars Mars

1 1
6.00 10  J kg .

2 2 2

E GM GM
GM

m a a a a a

−     
= − − − = − =      

+     
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6  The total energy TE = KE + GPE = ½ m v2 – G M m / r = p2 / 2m – G M m u. 
For point A we have TE = (0.052 x 109)2 / 2m – G M m (5.15 x 10-8)  
                                       = (1.352 x 1015) / m – (2.051 x 107) m    (in SI units)    (1) 
For point B we have TE = (1.94 x109)2 / 2m – G M m (194.17 x 10-8) 
                                       = (1.881 x 1018) / m – (7.73 x 108) m    (in SI units)    (2) 
Note that we used G = 6.67 x 10-11 N kg-2 m2 and M = Mearth = 5.972 x 1024 kg. We now 
have two equations with two unknowns, TE and the mass of the PHO m, for which we 
can solve. Subtracting (1) from (2), we get 
     (1.88 x 1018) / m – (7.525 x 1016) m 
     1.88 x 1018 = (7.525 x 108) m2 
     m = 50,000 kg. 
Plugging the value into either of the two equations (1) or (2), we get 
     TE = (1.352 x 1015) / 50,000 – (2.051 x 107) (50,000) = -1.0 x 1012 J. 
Sanity check: the PHO is on a closed orbit, so the total energy must be negative. 
 

  For the second part of the question, we have 
     TE = p2 / 2m – G M m u 
     -1.0 x 1012 = p2 / 105 – (2.0 x 1019) u 
     (2.0 x 1019) u = p2 / 105 + 1.0 x 1012 
     u = p2 (5.0 x 10-15) + (5.0 x 10-8). 
This is a parabolic function, shifted upwards from the horizontal axis, passing through 
points A and B. Note that, although the orbit of the PHO is elliptical (it is a closed orbit), 
the function u vs. p is parabolic. As the PHO orbits the Earth, it goes back and forth 
along part of the parabola. u is never zero – the PHO does not reach infinity – and p is 
never zero – the PHO never stops moving. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
Sketch: definitely not to scale! 

 

 

 
7 (a) Note that, for a spherically symmetric distribution of mass, only the sphere below the 

pouch matters. 
 

 
 
where we used M for the mass below the pouch, ρE the density of the Earth. 
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 (b) Since the magnitude of the gravitational force is the gradient of the potential with 
respect to position, the gravitational potential is the integral of the gravitational force 
with respect to position. We have to integrate from the centre of the Earth to the position 
of the pouch, a distance r from the centre. 

 

 
 

As all the variables in the equation are positive, the gravitational potential U is positive. 
This is, because the gravitational potential is set to be zero at the centre of the Earth 
in this question. 
Sanity check: if we drop a pouch into the hole, it will speed up towards the centre of 
the Earth, gaining kinetic energy and losing potential energy. Hence, the potential 
energy must be larger than zero everywhere, except at the centre of the Earth. 
 

 (c) At the Earth’s surface, 
 

 
 

Loss in gravitational potential energy = gain in kinetic energy, from which 
 

 
 

Note that we need the mass of the Earth mE and the radius of the Earth RE to solve this 
part of the question. Alternatively, we can use that g = 9.81 m s-2 at the surface of the 
Earth. However, we would still require the radius of the Earth. For homework exercises 
like these, you may look them up. In exams, any required values will be provided. 
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8  The most straightforward method, using Newton’s law of gravity for m and a small mass 
δM and integrating does not work directly. This law gives only the magnitude of the 
force and not the direction. If this is not taken into account, the force is overestimated. 
 
Let δM be the mass of a small part of the disk, and λ = M/(πa2) the mass per unit area 
of the disk, so that δM = λ (r dθ) dr. We then have for the gravitational potential energy 
due to m and a section δM at a distance s from m, 
 

2 2

( ) (   d  d )G M m G r r m
U

s x r

  
 = − = −

+
, 

 
where r is the distance of δM from the centre of the disk. To get the gravitational 
potential energy due to a ring of radius r, we have to integrate θ from 0 to 2π, so that 
 

ring 22 2 2 2 2 2 2

(  d ) 2 (  d ) 2
2 d

G r r m GM r r m GMm r
U r

ax r a x r x r





= − = − = −

+ + +
, 

 
To get the gravitational potential energy due to the whole disk, we have to integrate r 
from 0 to the radius of the disk a, 
 

2 2 2
0

2
d

a
GMm r

U r
a x r

= −
+

 . 

 
Using the substitution u = r2 + u2, so that du = 2r dr, r dr = ½ du, 
 

( )

2 2
2 2

2

2

1/2

2 2 22 2
0

2 2 2

2

2 2 1 2
d d 2

22

2
.

a a x
a x

x
x

GMm r GMm GMm
U r u u

a a aux r

GMm
a x x

a

+
+

 = − = − = −  
+

= − + −

 
. 

 

( )
1

2 2 2

disk 2 2 2 2

2 1 2
2 1 1 .

2

dU GMm GMm x
F x a x

dx a a x a

−   
= − = + − = −  

  + 
 

 
Note that Fdisk < 1, which means the force points in the direction of decreasing x, which 
is to say, decreasing distance between m and the disk: the force is attractive. Also, the 
magnitude of the force is 
 

disk 2 2 2

2
1 .

GMm x
F

a x a

 
= − 

+ 
 

  Using that a << x, we have (using a Maclaurin expansion) 
 

( )
2 21

2 2 2

2 2

1 1
1 0 1

2 2

a a
x x a

x x

−

+  + + − = − , 

 
from which, 
 

2

disk 2 2 2 22 2

2 2 1
1 1 1

2

GMm x GMm a GMm
F

a a x xx a

   
= −  − + =   

+   
. 

 
This is indeed what we expect: at a large distance, the disk will look (or behave) like a 
point mass. 
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9 (a)  
 
 
 
 
 
 

 
 
 
 
 
The signal from the satellite to the Earth travels at the speed of light. The time for it to 
travel will be 2’ when the Earth and Seneca are on the same side of the Sun and 
Seneca is at perihelion; the time will be 39’ when the Earth and Seneca are on opposite 
sides of the Sun and Seneca is at aphelion. Hence, 
 

2 aS = (2 x 60 s + 39 x 60 s) x (299 792 458 m s-1) = 7.38 x 1011 m = 4.93 AU, 
 

a2 = 4.93 / 2 = 2.47 AU. 
 

 (b) By Kepler’s Third Law, 
 

3
2

Seneca
Seneca Earth

Earth

3.87 years.
a

T T
a

 
= = 
 

 

 

 
10  Note that a true single-appearance comet will be on a hyperbolic orbit. However, in this 

question, we are told that the comet is at aphelion when it is at 35 000 AU from the 
Sun. Thus, we have to assume the comet is on an elliptical orbit. To some extent, the 
comet is still a single-appearance comet: it has visited the inner solar system at most 
once since the emergence of homo sapiens a few 100 000 years ago. 
 
 
 
 
 

  
 
 
 
 
 
As the comet enters the inner solar system, it will be at most a few astronomical units 
(AU) from the Sun. Hence, its perihelion will at most be a few AU, which is negligible 
to the distance to the aphelion. 
 

2 a ≈ 35 000 AU, 
 

a ≈ 17 500 AU, 
 

T = a3/2 = 175003/2 = 2.3 x 106 years. 
 

Hence, a one-way trip will take about (2.3 x 106) / 2 = 1.2 x 106 years. 
 

 

2’ 
39’ 

35 000 AU 
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11   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let the smaller circle be the surface of Mars and the larger circle Phobos’ orbit. If we 
are at the top of the smaller circle (at the end of the dashed line), we can only see 
Phobos when it is above the horizontal line. Otherwise, we would have to look through 
Mars itself (Phobos would be below the horizon). 
 
Mars’ angular speed about its own axis is ωMars = 360 / 24.623 = 14.6 degrees hr-1. 
 
We can use Kepler’s Third Law to obtain Phobos’ rotational period. However, we have 
to plug in M = MMars for the mass of the central object (rather than the mass of the Sun) 
and a = aPh (rather than the semi-major axis of a planet). With this, we find for the 
rotational period of Phobos TPh = 27 582 s = 7.6616 hr. From this, we find for Phobos’ 
angular speed about the centre of Mars ωPh = 360 / 7.6616 = 47.0 degrees hr-1. 
 
So Phobos “overtakes” Mars at an angular speed of 47.0 – 14.6 = 32.4 degrees hr-1. 
 
From the figure above, we find cos θ = RMars / aPh = 3393 / 9380, from which θ = 68.8°. 
Throughout each orbit, Phobos will be visible for the amount of time it takes to cover 
an angle 2θ = 137.6 degrees, that is t = 137.6 / 32.4 = 4.25 hours. 
. 
 

 

θ 
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H3 Electric and Magnetic Fields Tutorial 
There are four parts to this tutorial (A, B, C and D). Discussion questions are the sort of questions to expect in the A-

levels or Prelim papers. Challenge questions will not be discussed unless time permits, and can be safely skipped. 

Part A: Conductors in Electrostatic Equilibrium, Mathematical Preliminaries & Continuous Charge 

Distributions 

Self-Review Questions 
S1 A conductor is in electrostatic equilibrium. Explain: 
 (a) why the electric field strength inside the conductor is zero, and 
 (b) why the surface of the conductor is an equipotential surface. 

 

S2 (a) Find the total charge in a line of charge of length 𝐿, with linear charge density 𝜆 = 𝑏𝑥2, where 𝑏 is a 
positive constant and 𝑥 ranges from 0 to 𝐿. 

 (b) 

 
Find the total charge in a thin cylindrical shell of charge of radius 𝑅 and length 𝐿, with a surface charge 
density 𝜎 = 𝑘𝑧 where 𝑧 ranges from 0 to 𝐿. 
(Note: “cylindrical shell” only refers to the curved surface. The circular base and top of a cylinder are not 
considered part of a cylindrical shell.) 
 

 (c) 

 
Find the total charge in an insulating cylinder of radius 𝑅 of length 𝐿 with volume charge density 𝜌 =
𝑘(1− 𝑟), where 𝑘 is a positive constant.   
 

 (d) Find the total charge in an insulating sphere of radius 𝑅 with volume charge density 𝜌 = 𝑎(𝑏 − 𝑟2), 
where 𝑎 and 𝑏 are positive constants.  

 

  



 
2 

Discussion Questions 
D1 (2020 H3 Q6 – part) 

A uniformly charged thin disc of radius 𝑅 lies in the x-y plane as shown in Fig. 6.1. 

 
The total amount of charge on the disc is 𝑄. 
 

 (a)(i) State an expression for the surface charge density 𝜎 in terms of 𝑄 and 𝑟 [1] 
 (b) The electric field strength can be determined by superimposing the point charge fields of infinitesimal 

charge elements. This can be done by summing the fields of charged rings of width 𝑑𝑟, as shown in Fig. 
6.2. 

 
 (i) Show that the electric field at position (0,0, 𝑧) is given by:  

𝐸𝑧 =
𝜎

2𝜀0
[1 −

𝑧

√𝑧2 + 𝑅2
] 

[6] 
 (ii) Determine an expression for 𝐸𝑧  when 𝑧 ≪ 𝑅.                                                                                                     [2] 

 
 (iii) Determine an expression for 𝐸𝑧  when 𝑧 ≫ 𝑅. 

You may wish to use the approximation when 𝑥 is small:  
(1 + 𝑥)𝑛 ≈ 1 +𝑛𝑥 

[2] 
 (iv) Comment on the form of the expressions in (b)(ii) and (b)(iii)                                                                          [2] 

 

  



 
3 

D2 Two large plates with surface charge 𝜎1 and 𝜎2 are arranged parallel to each other, with separation 𝑑.  

 
Determine the magnitude of the electric field strength between the plates, and to the left/right of the plates if: 

 (a) 𝜎1 = −𝜎2  
 (b) 𝜎1 = 𝜎2  
 (c) Both plates are positively charged (but 𝜎1 ≠ 𝜎2) 

 

 

D3 A wire of length 𝐿 has a charge 𝑄. The charges are uniformly distributed across the rod with linear charge 
density 𝜆. 

 
 (a) Calculate the electric potential 𝑉 at point 𝑃 at a distance 𝑥 from the mid-point of the rod. 
 (b) Find the gradient of 𝑉, and hence show that you get the same results as Lecture Example 5. 

 

D4 The figure below shows an electric dipole, with charges –𝑞 and +𝑞, centred on the origin. 

 
 

 (a) Find expressions for the magnitude of the electric field strength 𝐸 at: 
  (i) a point A along the 𝑥-axis 
  (ii) a point B along the 𝑦-axis 
 (b) By considering what happens to your expressions in (a) when 𝑥 and 𝑦 respectively become large, show that 

the electric field of a dipole is inversely proportional to the cube of the distance from the dipole.  
You may wish to use the approximation when 𝑥 is small: (1 + 𝑥)𝑛 ≈ 1 +𝑛𝑥 
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(Optional) Challenging Questions 
These questions will not come out in the A-levels, but are good for conceptual understanding. Use of computer algebra 

software (e.g. Integral Calculator https://www.integral-calculator.com/) is advised to deal with the tedious mathematics. 

You’ll need to solve multiple integrals, so do have a look at Appendix 1 if you’re stuck. 

C1 A solid sphere of charge has volume charge density 𝜌0 as shown below. 

 
 (a) Show that the electric potential 𝑉at a distance 𝑧 from the centre of the sphere is 𝑉 =

𝑄

4𝜋𝜀0𝑧
 (where 𝑄 is the 

total charge on the sphere) when 𝑧 > 𝑅.  
You may find the cosine rule useful: 𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos𝜃 

 (b) Find the gradient of 𝑉, and hence verify that  𝐸 =
𝑄

4𝜋𝜀0𝑧
2 when 𝑧 > 𝑅 

 

 

C2 In question D1, we calculated the electric field strength due to a circular plane of charge, and then used that to 
find the electric field strength of an infinite plane.  
 
Let’s try the same thing, but using a square plane. The figure shows a square plane of positive charge, of side 𝐿. 
The charges are uniformly distributed with surface charge density 𝜎. 

 
Set up the integral (but do not perform the integration manually!) to calculate the electric field strength at 
point 𝑃 at a distance 𝑧 from the centre of the plane. Why is this integral much more difficult to perform? 

 

 

  

https://www.integral-calculator.com/
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Part B: Gauss’ Law 

Self-Review questions 
S1 The following charges are located at various places inside a submarine, 5.00𝜇𝐶, −9.00𝜇𝐶, 27.0𝜇𝐶 and −84.0𝜇𝐶. 

Calculate the net electric flux through the hull of the submarine. 
 

 

S2 A point charge Q is located just above the center of the flat face of a hemisphere of radius R. What is the electric 
flux through the curved surface? What is the electric flux through the flat face?  

 
 
 
 
 

 

Discussion Questions 
D1 (2020 H3 Q6a modified – continuation of AD1) 

A uniformly charged thin disc of radius 𝑅 lies in the x-y plane as shown in Fig. 6.1. 

 
The total amount of charge on the disc is 𝑄. 

 (i) State an expression for the surface charge density 𝜎 in terms of 𝑄 and 𝑟                                                    [1] 
 

 (ii) Use your answer in (i) and apply Gauss’s law with an appropriately chosen Gaussian surface to show that 
an approximation for the electric field at the position (0,0, 𝑧), where 𝑧 ≪ 𝑅, is given by 

𝐸𝑧 = 2𝜋𝑘𝜎 
where 𝑘 is a constant you will need to determine. 
 
You may wish to draw a diagram to help your answer.                                                                                     [6] 
 

 (iii) Determine an expression for the electric potential at the point (0,0, 𝑧) relative to the origin.                 [2]  
                                                                                                       

 (iv) Why is your answer in (ii) only an approximation? (Hint: The actual expression is found in Part A, D1) 
 

 

D2 (Griffiths, Introduction to Electrodynamics) 
A long cylinder of radius 𝑅 carries a volume charge density that is proportional to the distance 𝑟 from the axis: 
𝜌 = 𝑘𝑟, for some constant 𝑘.  

 (a) Find the electric field strength inside and outside the cylinder. 
 (b) Hence, find the electric potential inside and outside the cylinder. 

 

 

• Q 
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D3 (a) Using Gauss’ Law, find expressions for the electric field strength 𝐸 at a distance 𝑟 from the centre of a 
sphere of charge of radius 𝑅 with a constant volume charge density 𝜌0 

 (b) Hence, calculate the electric potential 𝑉 inside and outside the sphere. 
 (c) Plot a graph of 𝐸 against 𝑟 and 𝑉 against 𝑟 on the same axes 
 (d) Optional, additional exercise: 

Repeat (a), (b), and (c) in the case where the volume charge density is instead given by 𝜌 = 𝑘𝑟, where 𝑘 is 
a constant. 

 

 

D4 An insulating sphere of radius 2𝑅 has a uniform charge density 𝜌. A spherical cavity of radius 𝑅 is carved out as 
shown below: 

 
Find the magnitude and direction of the electric field strength 𝐸 at points 𝐴 and 𝐵. 

 

D5 A long, high, rectangular slab of insulating material of thickness d is placed at the origin. It has a uniform positive 

charge density . The diagram below shows the side view: 

 
 (a) Find the magnitude of the electric field strength 𝐸 inside the slab for points along the 𝑥-axis. 
 (b) Suppose an electron of charge -e and mass me is released along the 𝑥-axis somewhere inside the slab, and 

can move freely within the slab. Show that it exhibits simple harmonic motion with frequency 𝑓 =
1

2𝜋
√

𝜌𝑒

𝑚𝑒𝜖0
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Part C: Ampere’s Law 

Self-Review Questions 
S1 (2019 H3 Q2) 
 (a) State Gauss’ Law for magnetic fields. [1] 
 (b) Explain why magnetic field lines always form closed loops. [2] 
 (c) Explain why the existence of magnetic monopoles would be inconsistent with Gauss’ Law for magnetic 

fields. [2] 
 

Discussion Questions 
D1 (2019 H3 Q3) 
 (a) State the line integral form of Ampere’s Law. Define the symbols used. [3] 
 (b) A long straight copper wire of radius 𝑅 carries a constant current 𝐼. 
  (i) Use Ampere’s law to show that the magnetic flux density 𝐵 at a distance 𝑑 from the wire is: [2] 

𝐵 =
𝜇0𝐼

2𝜋𝑑
 

  (ii) Sketch the magnetic flux density as a function of distance from the centre of the wire. [3] 

 
 

 

D2 A long cylindrical copper wire of radius 𝑅 carries a current 𝐼 as shown. The current density 𝐽 varies according to 
radial distance 𝑟 from the centre of the wire, given by 𝐽 = 𝑏𝑟 where 𝑏 is a constant.  
 

 
 (a) Find the magnitude of the magnetic flux density 𝐵 at a distance 𝑟1 < 𝑅 and 𝑟2 > 𝑅. 
 (b) Sketch a graph of 𝐵 against 𝑟. 

 

  



 
8 

D3 (HCI Prelim 2020 Q7a) 
 Consider a cylindrical segment of a long straight wire carrying a current that is uniformly distributed across the 

cross-section of the wire of radius R. 
 (i) Derive expressions for the magnetic field at a distance r from the axis of the wire for 𝑟 ≤ 𝑅 and 𝑟 ≥ 𝑅, in 

terms of current density 𝐽, 𝑟 and 𝑅. [4] 
 (ii) On Fig. 7.1, sketch the variation of the magnetic field B with the distance r from the center of the wire. [2] 

 
 (iii) In a particular segment of the wire carrying a uniform current I, it is discovered that there is a cylindrical 

cavity of radius 0.1 R centered at a point that is 0.5 R away from the axis of the wire, as shown in Fig. 7.2 

 
Fig 7.2 

Show that the current density J is given by J = 0.322
I

 R2        [2] 

 (iv) With reference to Fig. 7.2, derive an expression for the magnetic field at the point P in terms of 𝜇0, I and 
R.  
Point P is on the edge of the cavity nearest to the axis of the wire.  [7] 

 

D4 (a) A wide, long insulating belt has a uniform positive charge per unit area 𝜎 on its upper surface. Rollers at 
each end move the belt to the right at a constant speed 𝑣.  
 
 
 
 
 
Calculate the magnitude and direction of the magnetic field produced by the moving belt at points near 
its surface. 

 (b) A metal sheet oriented as the one above has a uniform surface current 𝐾 flowing through it from left to 
right. Calculate the magnitude and direction of the magnetic field near the surface of the sheet. 

 

 

B 

r 

Fig. 7.1 

0.5 R 

P 

• 

𝜎 𝑣 



 
9 

D5 (HCI CT 2023 Q4b) 
 A coaxial cable is used for the transmission of high frequency electrical signals such as television signals. 

Fig. 4.2 shows the typical construction of a coaxial cable and the radii of the different layers. 

 
Fig 4.2 

When there is a current 𝐼 in the conductor in one direction, there is a current 𝐼 in the metal braid in the opposite 

direction. 

 (a) State Ampere’s Law in integral form, defining all terms. [2] 
 

 The current per unit cross-sectional area is a quantity known as the current density 𝐽. The current density in the 
conductor is 𝐽1 and the current density in the metal braid is 𝐽2. Assume that 𝐽1 and 𝐽2 are both constant. 

 (b) Show that: 

𝐽2 =
𝑟1
2

𝑟3
2 − 𝑟2

2 

[2] 
 (c) Showing your working clearly, derive expressions for the magnetic flux density B in terms of 𝐽1 and distance 

𝑟 from the centre of the coaxial cable for: 
  (i) 0 ≤ 𝑟 ≤ 𝑟1,              [1] 
  (ii) 𝑟1 ≤ 𝑟 ≤ 𝑟2,             [1] 
  (iii) and 𝑟3 ≤ 𝑟 ≤ 𝑟4.     [1] 
 (d) Use Fig. 4.3 to sketch how the magnetic flux density 𝐵varies between zero and a maximum value 𝐵𝑚𝑎𝑥  

with distance 𝑟 from the centre of the coaxial cable, for 0 ≤ 𝑥 ≤ 𝑟4. 

            [3]  
r1 r2 r3 r4 

conductor insulator plastic jacket metal 

braid 

B 

x 

0 

0 

Bmax 
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 (e) Standard transmission cables are made of two insulated wires, as shown in Fig. 4.4. 

 
Fig. 4.4 

Standard transmission cables are less expensive than coaxial cables.  

Suggest why standard transmission cables are not used for high frequency electrical signals. [1] 
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(Optional) Challenging Questions 
These questions will not come out in the A-levels, but are good for conceptual understanding.  

C1 (modified from Griffiths, Introduction to Electrodynamics) 
 In calculating the current enclosed by an Amperian loop, one must consider the total current 𝐼𝑒𝑛𝑐 flowing through 

a surface bounded by the Amperian loop. The trouble is, there are infinitely many surfaces that share the same 
boundary line – the figure below shows two of them. 𝒮1 is a hemisphere, and 𝒮2 is a “chef’s hat” shape that 
bulges outwards near the top: 

 
Of the infinite number of possible surfaces, which one(s) are we supposed to use? Explain. 

 

C2 (Adapted from Griffiths, Introduction to Electrodynamics) 
 In Lecture Example 10, we derived the expression for the magnetic flux density 𝐵 inside a long solenoid by 

assuming (correctly) that: 

• 𝐵⃗ = 0 everywhere outside the solenoid 

• 𝐵⃗  inside the solenoid is a constant and points along the axis of the solenoid  
Let’s prove these assertions using Ampere’s Law! Consider the following (long, tightly-wound) solenoid carrying 
current 𝐼. Draw two rectangular Amperian loops, 1 and 2; and a circular Amperian loop 3. 

 
 (a) Argue that 𝐵⃗  does not have a radial component. (Hint: use cylindrical symmetry and consider the effect 

of changing the direction of the current) 
 (b) Using Amperian loop 3, show that 𝐵⃗  does not have a “circumferential” component. 
 (c) Using Amperian loop 1 and the result of (a), show that 𝐵⃗ = 0 everywhere outside the solenoid. 
 (d) Using Amperian loop 2 and the result of (c), show that everywhere inside the solenoid, 𝐵 = 𝜇0𝑛𝐼 and 

that it points along the axis of the solenoid 

  

3 
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Part D: Dipoles in Fields 

Self-Review Questions 
S1 A rectangular coil consists of 100 closely wrapped turns has a length of 0.400 m and width of 0.300m. The coil is 

hinged along the y-axis and its plane makes an angle of 30.0 with the x-axis.  

 
What is the magnitude of a torque exerted on the coil by a uniform magnetic field of 0.800 T directed along the 
x-axis when the current is 1.20 A clockwise as shown in the diagram? What is the expected direction of rotation 
of the coil? 

 

S2 (a) The SI unit for magnetic moments is ampere square metres (A m2), but it can also be expressed in joules 
per tesla (J T−1). Convert 1 A m2 into J T−1. 
 

 (b) The magnetic moment of Earth is approximately 8.00 × 1022 A m2.  

The magnetic dipole moment of a single unpaired electron (also known as the Bohr magneton µB) is 𝜇
𝐵
=

9.27 × 10−24 J T−1. 
  (i) If the magnetic moment of the Earth were caused by the complete magnetization of a huge iron 

deposit, how many unpaired electrons would this correspond to?   
  (ii) At two unpaired electrons per iron atom, how many kilograms of iron would this correspond to?  

(The density of iron is 7900 kg/m3 so there are approximately 8.50 × 1028iron atoms/m3) 
 

 

Discussion Questions 
D1 (H3 Specimen Paper Q7) – part (c) deals with dipoles 
 (a) Fig 7.1 shows the cross section of a solid, egg-shaped object made out of a conducting material. 

 
 

 
The object is charged negatively. 

  (i) On Fig 7.1, sketch the electric field lines due to the conductor. [2] 
  (ii) State how the charge is distributed. [1] 
 (b) Fig 7.2 shows a uniformly positively-charged solid sphere of radius 𝑅 made of an insulating material. 

y 

x 

z 

1.20 A 

0.400m 

0.300m 
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The sphere has a constant charge density of 𝜌 throughout its volume.  
(The unit for charge density is C m-3.) 

  (i) Using Gauss’ Law, derive an expression for the electric field strength at a distance 𝑟 from the centre 
of the sphere for the case where 𝑟 ≥ 𝑅. [4] 

  (ii) Derive an expression for the electric field strength as a function of 𝑟 for the case where 𝑟 ≤ 𝑅. [2] 
  

  (iii) On Fig 7.3, sketch the electric field strength as a function of  the distance 𝑟 in the range 𝑟 = 0 to 𝑟 =
3𝑅. [3] 

 
 (c) The positively-charged sphere in Fig 7.2 is attached, via an insulating rod of length 𝐿, to a sphere identical 

in material and dimensions but uniformly negatively charged with a charge density of –𝜌 throughout its 
volume. 
 
An electric dipole is thus formed. 
 

  (i) Find an expression for the magnitude of the electric dipole moment 𝑝. [2] 
  (ii) Suppose that the electric dipole is placed in an external uniform electric field 𝐸 at an angle 𝜃 of 45° 

with respect to the lines of 𝐸. 
 
Sketch this arrangement and include on your diagram arrows to show the force acting on each of the 
two charged spheres. [2] 

  (iii) State the torque 𝜏 on the system in terms of 𝐸, 𝜌 and 𝜃. [1] 
  (iv) There are two orientations of the dipole within the field where the dipole experiences zero torque. 

Describe what these orientations are and explain how an oscillating dipole is most likely to settle 
within the field. [3] 
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D2 A square loop of wire carrying current 𝐼 = 2.00 A is in a uniform magnetic field 𝐵 = 0.830 T. The normal to the 
plane of the loop makes an angle 𝜙 with the field, as shown below. The loop is free to rotate. Each side of the 
loop has length 5.00 cm and mass 20.0 g. 

 
 (a) The loop is released from rest when 𝜙 = 5°.  
  (i) Calculate the magnitude and direction of net torque on the loop. 
  (ii) Show that the oscillation is simple harmonic, and find the period of the oscillation. 
 (b) Sketch a graph to show how magnetic potential energy 𝑈 varies with 𝜙 as the loop is rotated through 𝜙 =

0° to 360°. 
 (c) Find all equilibrium points, and discuss their stability. 

 

D3 Two 1.0 g balls are connected by a 2.0 cm rod of negligible mass. One ball has a charge of +10 nC, the other has 
a charge of -10 nC. The rod is held in a 1.0 × 104 N C-1 uniform electric field at an angle of 30° with respect to the 
field, then released. Calculate its initial angular acceleration. 

 
 

D4 A dipole with charges ±𝑞 and separation 𝑑 is located at a distance 𝑟 from a point charge 𝑄, oriented as shown.  

 
It is known that 𝑟 ≫ 𝑑.  

 (i) Without calculation, deduce the directions of the net torque and the net force on the dipole. Explain your 
reasoning. 
 

 The rest of this question is an optional challenge.  
You may wish to use the approximation when 𝑥 is small: (1 + 𝑥)𝑛 ≈ 1 +𝑛𝑥 

 (ii) Show that the magnitude of the torque 𝜏 on the dipole is 𝜏 =
𝑞𝑄𝑑

4𝜋𝜀0𝑟
2 and determine its direction. 

 (iii) Show that the magnitude of the net force 𝐹 on the dipole is 𝐹 =
𝑞𝑄𝑑

4𝜋𝜀0𝑟
3 and determine its direction. 

 B 

• 

x 

F 

F 

5.0 cm 

 

𝑟 
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Answers to selected problems 

A Continuous Charge Distributions 

Self-Review Questions 

S2 (a) 
𝑄 =

𝑏𝐿3

3
 

 (b) 𝑄 = 𝜋𝑘𝑅𝐿2 
 (c) 𝑄 = 2𝜋𝑘𝐿(𝑅 −𝑅2) 
 (d) 

𝑄 = 4𝜋𝑎 (
𝑏𝑅3

3
−
𝑅5

5
) 

 

Discussion Questions 

D1 (a)(i) 
𝜎 =

𝑄

𝜋𝑅2
 

 (b)(ii) 𝐸 =
𝜎

2𝜀0
 

 (b)(iii) 
𝐸 =

𝜎𝑅2

4𝜀0𝑧2
 

D2 (a) Between: 𝐸 =
𝜎1

𝜀0
=

𝜎2

𝜀0
 

Outside: 𝐸 = 0 

 (b) Between: 0 

Outside: 𝐸 =
𝜎1

𝜀0
=

𝜎2

𝜀0
 

 (c) Between: 𝐸 =
|𝜎1−𝜎2|

2𝜀0
 

Outside: 𝐸 =
𝜎1+𝜎2

2𝜀0
 

D3 (a) 
𝑉 =

𝜆

4𝜋𝜀0
ln
√𝑥2 + 𝐿2/4+ 𝐿/2

√𝑥2 + 𝐿2/4− 𝐿/2
 

D4 (a)(i) 

𝐸𝐴 =
𝑞

4𝜋𝜀0
(

1

(𝑥 −
𝑑
2
)
2 −

1

(𝑥 +
𝑑
2
)
2) 

 (a)(ii) 
𝐸𝐵 =

𝑞𝑑

4𝜋𝜀0 (𝑦2 + (
𝑑
2
)
2

)

3/2 

 (b) 
𝐸𝐴 ≈

2𝑞𝑑

4𝜋𝜀0𝑥3
, 𝐸𝐵 ≈

𝑞𝑑

4𝜋𝜀0𝑦3
 

 

(Optional) Challenging Questions 

C2  
𝐸𝑧 = ∫ ∫

1

4𝜋𝜀0

𝜎 𝑧 𝑑𝑥 𝑑𝑦

(𝑥2 + 𝑦2 + 𝑧2)3/2

𝑦=𝐿/2

𝑦=−𝐿/2

𝑥=𝐿/2

𝑥=−𝐿/2

 

OR 

𝐸𝑧 =
𝜎𝑧

4𝜋𝜀0
∫

𝐿

(𝑦2 + 𝑧2)√𝑦2 + 𝐿2/4 + 𝑧2
 𝑑𝑦

𝑦=𝐿/2

𝑦=−𝐿/2
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B Gauss’ Law 

Self-Review Questions 

S1  Φ𝐸 = −6.89 × 10
6 N m2 C−1 

S2  
Φ𝑐𝑢𝑟𝑣𝑒𝑑 =

𝑄

2𝜀0
 

Φ𝑓𝑙𝑎𝑡 = −
𝑄

2𝜀0
 

 

Discussion Questions 

D1 (a)(i) 𝜎 = 𝑄/𝜋𝑅2 

 (a)(ii) 𝑘 = 1/4𝜋𝜀0  

 (a)(iii) 𝑉𝑧 = −𝐸𝑧 

D2 (a) 

𝐸 =

{
 
 

 
 1

3𝜀0
𝑘𝑟2     𝑟 ≤ 𝑅

𝑘𝑅3

3𝜀0𝑟
         𝑟 ≥ 𝑅

 

 (b) 

∴ 𝑉 =

{
 
 

 
 −

𝑘𝑅3

3𝜀0
ln
𝑟

𝑎
                                      𝑟 ≥ 𝑅

−
𝑘𝑅3

3𝜀0
ln
𝑅

𝑎
−
𝑘

9𝜀0
(𝑟3 −𝑅3)       𝑟 ≤ 𝑅

 

where 𝑅 < 𝑎 < ∞ is an arbitrary point of reference 

D3 (a) 

𝐸 =

{
 

 
𝜌𝑟

3𝜀0
        𝑟 ≤ 𝑅

𝜌𝑅3

3𝜀0𝑟2
    𝑟 ≥ 𝑅

 

 (b) 

𝑉 =

{
 
 

 
 𝜌𝑅

3

3𝜀0𝑟
                       𝑟 ≥ 𝑅

𝜌(3𝑅2 − 𝑟2)

6𝜀0
       𝑟 ≤ 𝑅

 

 (d) 

∴ 𝐸 =

{
 
 

 
 𝑘𝑟

2

4𝜀0
        𝑟 ≤ 𝑅

𝑘𝑅4

4𝜀0𝑟2
    𝑟 ≥ 𝑅

, 𝑉 =

{
 
 

 
 𝑘𝑅

4

4𝜀0𝑟
                    𝑟 ≥ 𝑅

𝑘(4𝑅3 − 𝑟3)

12𝜀0
    𝑟 ≤ 𝑅

 

 

D4  
𝐸𝐴 =

𝜌𝑅

3𝜀0
   upwards, 𝐸𝐵 =

17𝜌𝑅

27𝜀0
   downwards 

D5 (a) 𝐸 =
𝜌𝑥

𝜀0
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C Ampere’s Law 

Discussion Questions 
D2 (a) 

𝐵 =

{
 

 
𝜇0𝑏𝑟

2

3
        𝑟 ≤ 𝑅

𝜇0𝑏𝑅
3

3𝑟
    𝑟 ≥ 𝑅

 

D3 (i) 

𝐵 = {

𝜇0𝐽𝑟

2
        𝑟 ≤ 𝑅

𝜇0𝐽𝑅
2

2𝑟
    𝑟 ≥ 𝑅

 

 (iv) 
𝐵 =

0.0805𝜇0𝐼

𝑅
 

D4 (a) 

𝐵 = {

𝜇0𝜎𝑣

2
  out of the paper      (above the sheet)

𝜇0𝜎𝑣

2
  into of the paper      (below the sheet)

 

 (b) 

𝐵 = {

𝜇0𝐾

2
  out of the paper      (above the sheet)

𝜇0𝐾

2
  into of the paper      (below the sheet)

 

D5 (c)(i) 
𝐵 =

1

2
𝜇0𝐽1𝑟 

 (c)(ii) 
𝐵 =

𝜇0𝐽1𝑟1
2

2𝑟
 

 (c)(iii) 𝐵 = 0 

 

D Dipoles in Fields 

Self-Review Questions 

S1  𝜏 = 9.98 N m 
S2 (a) 1 Am2 = 1 J T−1 
 (b)(i) 8.63 × 1045 
 (b)(ii) 4.01 × 1020 kg 

 

Discussion Questions 

D1 (b)(i) 
𝐸 =

𝑅3𝜌

3𝜀0𝑟2
 

 (b)(ii) 𝐸 =
𝜌𝑟

3𝜀0
 

 (c)(i) 
𝑝 =

4

3
𝜋𝑅3𝜌(2𝑅 + 𝐿) 

 (c)(iii) 𝜏 = 𝐸𝑝 sin𝜃 

D2 (a)(i) 𝜏 = 3.62 × 10−4 N m clockwise 

 (a)(ii) 𝑇 = 0.563 s 
D3  𝛼 = 5.0 rad s−2 

 



Tutorial solutions 

Part A: Conductors in Electrostatic Equilibrium, Mathematical Preliminaries & Continuous Charge 

Distributions 

Self-Review Questions 
S1  

(a) If the electric field strength inside the conductor is not zero, free charges will experience an electric force, and 
thus move. Then the conductor would not in electrostatic equilibrium. 

(b) The electric field at the surface of the conductor is normal to the surface. Therefore, there is no component of 
the electric field along the surface. (Otherwise, there would be a component of electric force acting on 
charges along the surface of the conductor, causing them to flow) 
 
The potential difference between any two points along the surface is therefore zero as 𝑉 = ∫𝐸 𝑑ℓ. Thus the 
surface is an equipotential surface. 

 

S2  
(a) 

𝑄 = ∫ 𝜆 𝑑𝑥
𝐿

0

= ∫ 𝑏𝑥2 𝑑𝑥
𝐿

0

= [
𝑏𝑥3

3
]
0

𝐿

=
𝑏𝐿3

3
 

(b) Single integral method: 

𝑄 = ∫𝜎 𝑑𝐴 

We need to replace 𝑑𝐴 with some variable to integrate over. Since 𝜎 only depends on 𝑧, slice the cylinder into 
thin strips of width 𝑑𝑧. Then the area of each slice 𝑑𝐴 = 2𝜋𝑅 𝑑𝑧. 

∴ 𝑄 = ∫ 𝑘𝑧 (2𝜋𝑅 𝑑𝑧)
𝐿

0

= 2𝜋𝑘𝑅∫ 𝑧 𝑑𝑧
𝐿

0

= 𝜋𝑘𝑅𝐿2 

Double integral method: 

𝑄 = ∫𝜎 𝑑𝐴 

Since area element 𝑑𝐴 = 𝑅 𝑑𝜃 𝑑𝑧, 

𝑄 = ∫ ∫ 𝑘𝑧 (𝑅 𝑑𝜃 𝑑𝑧)
𝜃=2𝜋

𝜃=0

𝑧=𝐿

𝑧=0

 

= ∫ 2𝜋𝑘𝑧𝑅 𝑑𝑧
𝑧=𝐿

𝑧=0

 

= 𝜋𝑘𝑅𝐿2 
 
(Note: Our solution is proportional to 𝐿2, just like Lecture Example 1(b), so our answer is likely to be correct) 
 

(c) Single integral method: 

𝑄 = ∫𝜌 𝑑𝑉 

We need to replace 𝑑𝑉 with some variable to integrate over. Since 𝜌 only depends on 𝑟, referring to lecture 
example 3, slice the cylinder into thin cylindrical shells of radius 𝑟 and thickness 𝑑𝑟.  
Then 𝑑𝑉 = 𝜋(𝑟 + 𝑑𝑟)2𝐿 − 𝜋𝑟2𝐿 = 𝜋𝐿[(𝑟 + 𝑑𝑟)2 − 𝑟2] = 𝜋𝐿[𝑟2 + 2𝑟 𝑑𝑟 + (𝑑𝑟)2 − 𝑟2] = 2𝜋𝑟𝐿 𝑑𝑟 (we drop 
the (𝑑𝑟)2 term as it is negligible). 

∴ 𝑄 = ∫ 𝑘(1 − 𝑟) × (2𝜋𝑟𝐿 𝑑𝑟)
𝑅

0

= 2𝜋𝑘𝐿∫ (𝑟 − 𝑟2) 𝑑𝑟
𝑅

0

= 2𝜋𝑘𝐿 (
𝑅2

2
−

𝑅3

3
) 

 
Triple integral method: 

𝑄 = ∫𝜌 𝑑𝑉 



Since volume element 𝑑𝑉 = 𝑟 𝑑𝜃 𝑑𝑟 𝑑𝑧, 

𝑄 = ∫ ∫ ∫ 𝑘(1 − 𝑟) 𝑟 𝑑𝜃 𝑑𝑟 𝑑𝑧
𝑧=𝐿

𝑧=0

𝑟=𝑅

𝑟=0

𝜃=2𝜋

𝜃=0

 

= ∫ ∫ 2𝜋𝑘(𝑟 − 𝑟2) 𝑑𝑟 𝑑𝑧
𝑧=𝐿

𝑧=0

𝑟=𝑅

𝑟=0

 

= ∫ 2𝜋𝑘𝐿(𝑟 − 𝑟2) 𝑑𝑟
𝑟=𝑅

𝑟=0

 

= 2𝜋𝑘𝐿 (
𝑅2

2
−

𝑅3

3
) 

 
(d) Single integral method 

𝑄 = ∫𝜌 𝑑𝑉 , 𝜌 = 𝑎(𝑏 − 𝑟2) 

We need to replace 𝑑𝑉 with some variable to integrate over. Since 𝜌 only depends on 𝑟, referring to lecture 
example 3, cut the sphere into thin spherical shells of radius 𝑟 and thickness 𝑑𝑟.  

Then 𝑑𝑉 =
4

3
𝜋(𝑟 + 𝑑𝑟)3 −

4

3
𝜋𝑟3 =

4

3
𝜋(𝑟3 + 3𝑟2(𝑑𝑟) + 3𝑟(𝑑𝑟)2 + (𝑑𝑟)3 − 𝑟3) = 4𝜋𝑟2 𝑑𝑟. (The (𝑑𝑟)2 and 

(𝑑𝑟)3 terms are negligible).  

∴ 𝑄 = ∫ 𝑎(𝑏 − 𝑟2) (4𝜋𝑟2)𝑑𝑟
𝑅

0

= 4𝜋𝑎∫ 𝑏𝑟2 − 𝑟4 𝑑𝑟
𝑅

0

= 4𝜋𝑎 (
𝑏𝑅3

3
−

𝑅5

5
) 

 
Triple integral method 

𝑄 = ∫𝜌 𝑑𝑉 , 𝜌 = 𝑎(𝑏 − 𝑟2) 

Since volume element 𝑑𝑉 = (𝑟 𝑑𝜃)(𝑟 sin𝜃  𝑑𝜙)(𝑑𝑟), 

𝑄 = ∫ ∫ ∫ 𝑎(𝑏 − 𝑟2) 𝑟2 sin 𝜃  𝑑𝜃 𝑑𝑟 𝑑𝜙
𝜙=2𝜋

𝜙=0

𝑟=𝑅

𝑟=0

𝜃=𝜋

𝜃=0

 

= ∫ ∫ ∫ 𝑎 sin𝜃 (𝑏𝑟2 − 𝑟4) 𝑑𝜃 𝑑𝑟 𝑑𝜙
𝜙=2𝜋

𝜙=0

𝑟=𝑅

𝑟=0

𝜃=𝜋

𝜃=0

 

= ∫ ∫ 2𝜋𝑎 sin𝜃 (𝑏𝑟2 − 𝑟4) sin 𝜃  𝑑𝜃 𝑑𝑟
𝑟=𝑅

𝑟=0

𝜃=𝜋

𝜃=0

 

= ∫ 4𝜋𝑎(𝑏𝑟2 − 𝑟4) 𝑑𝑟
𝑟=𝑅

𝑟=0

 

= 4𝜋𝑎 (
𝑏𝑅3

3
−

𝑅5

5
) 

(Note: ∫ sin𝜃  𝑑𝜃
𝜋

0
= 2) 

 
 

 

 

B Gauss’ Law 

Self-Review questions 

S1 The total charge inside the submarine, 𝑄 = 5.00 μC− 9.00 μC+ 27.0 μC− 84.0 μC = −61.0 μC 
Take the surface of the submarine as a Gaussian surface. Using Gauss’ Law, 

∯𝐸⃗ ∙ 𝑑𝐴 =
𝑄𝑒𝑛𝑐

𝜀0
 

(where ∯𝐸⃗ ∙ 𝑑𝐴 = Φ𝐸, the net electric flux through the surface) 

∴ Φ𝐸 =
−61.0 μC

8.85 × 10−12 F m−1
=

−61.0 × 10−6

8.85 × 10−12
= −6.89 × 106 N m2 C−1 



 

S2 From Gauss’ Law, the total flux through a surface that completely encloses the point charge is Φ =
𝑄

𝜀0
 

Then, the total flux through the bottom hemisphere is half of that: Φ𝑐𝑢𝑟𝑣𝑒𝑑 =
𝑄

2𝜀0
 

As the closed surface does not contain any charge, the net flux through it is zero. Therefore, the flux through 

the flat surface is Φ𝑓𝑙𝑎𝑡 = −
𝑄

2𝜀0
 

 
 

C Ampere’s Law 

Self-Review Questions 

S1  

(a) Gauss’s Law for magnetic fields states that the total magnetic flux through a closed surface is zero 
(b) A magnetic field line that does not form an open loop will imply the presence of magnetic monopoles at the 

ends of the field line. As magnetic monopoles do not exist, magnetic field lines will always form a closed loop. 
(c) If a magnetic monopole exist, the magnetic flux calculated based on a closed surface that enclose the 

magnetic monopole will be non-zero which is inconsistent with Gauss’s Law for magnetic fields. 

 

D Dipoles in Fields 

Self-Review Questions 

S1  
 The magnetic dipole moment of all 𝑁 turns is 𝜇 = 𝑁𝐼𝐴  

The torque is 𝜏 = 𝜇 × 𝐵⃗ , which is in the clockwise direction. 
The magnitude of the torque is 𝜏 = 𝜇𝐵 sin𝜙 

∴ 𝜏 = 𝑁𝐼𝐴𝐵sin𝜙 
= (100)(1.20)(0.400× 0.300)(0.800)sin 60° 
= 9.98 N m 

(the coil will rotate clockwise) 
 
 
 

 

S2  
(a) Since 𝑊 = 𝐹𝑑 , we have J = N m 

Since 𝐹 = 𝐵𝐼𝐿 ⟹ 𝐵 =
𝐹

𝐼𝐿
,  we have T =

N

A m
 

∴ 1 
J

T
= 1 

N m

N
A m

= 1 Am2 

 

(b)(i) The number of unpaired electrons 𝑁 =
8.00×1022

9.27×10−24 = 8.63 × 1045 

 
(b)(ii) Number of iron atoms required is  

𝑁

2
= 4.31 × 1045 atoms 

 

The iron atoms occupy a volume of  𝑉 =
4.31×1045

8.50×1028 = 5.07 × 1016  m3 

 
Mass of the iron is thus 𝑀 = 𝑉𝜌 = 4.01 × 1020 kg 
 

 

µ 

B 

 

 



Tutorial solutions (Part A - Conductors in Electrostatic Equilibrium, Mathematical 

Preliminaries & Continuous Charge Distributions) 
Discussion Questions 

D1  

(a)(i) Surface charge density  = charge per unit area 

Hence Q =  (R2)  

 
2

Q

R



 =  

 

(b)(i) 

 
 
Consider infinitesimal charge element 𝑑𝑞 = 𝜎 𝑑𝐴 = 𝜎(2𝜋𝑟 𝑑𝑟). At (0, 0, z), the electric field 𝐸 due to 
charge element 𝑑𝑞 is  

𝑑𝐸 =
𝑑𝑞

4𝜋𝜀0(√𝑧2 + 𝑟2)
2 =

2𝜋𝜎𝑟 𝑑𝑟

4𝜋𝜀0(𝑧2 + 𝑟2)
 

 
By symmetry, the radial components of 𝐸 cancel out, so we only consider the z-component. 

𝑑𝐸𝑧 = 𝑑𝐸 cos𝜃 =
𝜎𝑟 𝑑𝑟

2𝜀0(𝑧2 + 𝑟2)

𝑧

√𝑧2 + 𝑟2
 

𝐸𝑧 = ∫
𝜎𝑟𝑧

2𝜀0(𝑧2 + 𝑟2)
3
2

𝑅

0

 𝑑𝑟 

=
𝜎𝑧

2𝜀0
∫

𝑟

(𝑧2 + 𝑟2)
3
2

 𝑑𝑟
𝑅

0

 

=
𝜎𝑧

2𝜀0
∫

1

2

2𝑟

(𝑧2 + 𝑟2)
3
2

 𝑑𝑟
𝑅

0

 

=
𝜎𝑧

2𝜀0
[
1

2

1

(−
1
2
)√𝑧2 + 𝑟2

]

0

𝑅

 

=
𝜎𝑧

2𝜀0
(
1

𝑧
−

1

√𝑧2 + 𝑅2
) 

=
𝜎

2𝜀0
(1 −

𝑧

√𝑧2 + 𝑅2
) 

 

 
cos𝜃 =

𝑧

√𝑧2 + 𝑟2
 

dq 

√𝑧2 + 𝑟2 



(b)(ii) When z  R,  2 2z R+   2R  

 

2 2 2
1 1

2 2

1 1 0
2 2 2

z

o o

o o o

z z
E

z R R

z

R

 

 

  

  

   
= − = −   

+   

 
= −  − = 

 

 

Marker’s Comment: The simplification of the expression and the approximation to be made must be 
clearly shown in the working. 
 

(b)(iii) When 𝑧 ≫ 𝑅, 
𝑅

𝑧
 is small 

𝐸𝑧 =
𝜎

2𝜀0
[1 −

𝑧

√𝑧2 + 𝑅2
] =

𝜎

2𝜀0

[
 
 
 

1 −
𝑧

𝑧√1 +
𝑅2

𝑧2 ]
 
 
 

 

Since (1 +
𝑅2

𝑧2
)
−1/2

≈ 1 −
1

2

𝑅2

𝑧2
 

𝐸𝑧 ≈
𝜎

2𝜀0
(1 − [1 −

1

2

𝑅2

𝑧2
]) =

𝜎𝑅2

4𝜀0𝑧2
 

 
Marker’s Comment: The binomial expansion must be used in the simplification of the expression. 
 

(b)(iv) 
When z  R,   

2
z

o

E



=  

The electric field at (0.0.z) is independent of z, equivalent to the case for an infinite charged sheet, the 

electric field lines are parallel lines emerging from the surface and constant everywhere (R is ). 
 

When z  R,  
2

1
zE

z
 . The electric field at (0,0,z) of the disc is equivalent to the electric field of a point 

charge when R = 0. 
 
Marker’s Comment: Comments on the physical significance and recognition of the common scenarios 
that led to the expressions are expected. 

 

D2  

(a) Between: the fields point in the same direction and have the same magnitude 

𝐸 = 𝐸+𝜎 + 𝐸−𝜎 =
𝜎1

𝜀0
=

𝜎2

𝜀0
 

Outside: the fields point in opposite directions and have the same magnitude 
𝐸 = 𝐸+𝜎 − 𝐸−𝜎 = 0 

(b) Between: the fields point in opposite directions and have the same magnitude 
∴ 𝐸 = 0 

Outside: the fields point in the same direction and have the same magnitude 

𝐸 = 𝐸+𝜎 + 𝐸−𝜎 =
𝜎1

𝜀0
=

𝜎2

𝜀0
 

(c) Between: the fields point in opposite directions but have different magnitudes 

𝐸 =
|𝜎1 − 𝜎2|

2𝜀0
 

Outside: the fields point in the same direction 

𝐸 =
𝜎1 + 𝜎2

2𝜀0
 

  



D3  

(a) 

 
The magnitude of the electric potential 𝑑𝑉 due to the small charge 𝑑𝑞 is given by: 

𝑑𝑉 =
1

4𝜋𝜀0

𝑑𝑞

𝑟
=

1

4𝜋𝜀0

𝑑𝑞

√𝑥2 + 𝑦2
 

Let the linear charge density be 𝜆 = 𝑄/𝐿. Since 𝑑𝑞 = 𝜆 𝑑𝑦, 

𝑑𝑉 =
1

4𝜋𝜀0

𝜆 𝑑𝑦

√𝑥2 + 𝑦2
 

∴ 𝑉 = ∫
1

4𝜋𝜀0

𝜆 𝑑𝑦

√𝑥2 + 𝑦2

𝑦=𝐿/2

𝑦=−𝐿/2

 

=
𝜆

4𝜋𝜀0
ln

√𝑥2 + 𝐿2/4 + 𝐿/2

√𝑥2 + 𝐿2/4 − 𝐿/2
 

 
(b) 𝑑𝑉

𝑑𝑥
=

𝜆

4𝜋𝜀0
(−

𝐿

𝑥√𝑥2 + 𝐿2/4
) = −

𝜆

4𝜋𝜀0

2𝐿

𝑥√4𝑥2 + 𝐿2
 

−
𝑑𝑉

𝑑𝑥
=

𝜆

4𝜋𝜀0

2𝐿

𝑥√4𝑥2 + 𝐿2
= 𝐸 

Which matches our answer in Lecture Example 5 

 

D4  
(a)(i) Take right as positive. At 𝐴(𝑥, 0), 

𝐸⃗ 𝑛𝑒𝑡,𝐴 = 𝐸⃗ +𝑞 + 𝐸⃗ −𝑞 =
𝑞

4𝜋𝜀0 (𝑥 −
𝑑
2
)
2 −

𝑞

4𝜋𝜀0 (𝑥 +
𝑑
2
)
2 =

𝑞

4𝜋𝜀0
(

1

(𝑥 −
𝑑
2
)
2 −

1

(𝑥 +
𝑑
2
)
2) 

(a)(ii) 

 

𝐸⃗ +𝑞 

𝐸⃗ −𝑞 

𝐸⃗ 𝑛𝑒𝑡  



By symmetry, the vertical components 𝐸⃗ +𝑞 and 𝐸⃗ −𝑞  cancel out and the horizontal components sum, pointing 

to the left.  

𝐸+𝑞 =
𝑞

4𝜋𝜀0 (𝑦2 + (
𝑑
2
)
2

)

 

Take right as positive. The net electric field strength at 𝐵(0, 𝑦) is twice the 𝑥-component of 𝐸 due to the 
positive charge. Let 𝜃 be the acute angle with the 𝑦-axis: 

𝐸𝑛𝑒𝑡,𝐵 = 2𝐸+𝑞,𝑥 = 2
𝑞

4𝜋𝜀0 (𝑦2 + (
𝑑
2
)
2

)

sin𝜃 

By geometry, sin 𝜃 =
𝑑/2

√𝑦2+(
𝑑

2
)
2
 

𝐸𝑛𝑒𝑡,𝐵 =
2𝑞

4𝜋𝜀0 (𝑦2 + (
𝑑
2
)
2

)

𝑑/2

√𝑦2 + (
𝑑
2
)
2

=
𝑞𝑑

4𝜋𝜀0 (𝑦2 + (
𝑑
2
)
2

)

3/2 

(b) From (a)(i): 

𝐸𝐴 =
𝑞

4𝜋𝜀0𝑥2
(

1

(1 −
𝑑
2𝑥

)
2 −

1

(1 +
𝑑
2𝑥

)
2) 

As 𝑥 becomes large, 
𝑑

𝑥
 becomes small.  

(1 −
𝑑

2𝑥
)
−2

≈ 1 − 2(−
𝑑

2𝑥
) = 1 +

𝑑

𝑥
 

(1 +
𝑑

2𝑥
)
−2

≈ 1 − 2(
𝑑

2𝑥
) = 1 −

𝑑

𝑥
 

∴ 𝐸𝐴 ≈
𝑞

4𝜋𝜀0𝑥2
(1 +

𝑑

𝑥
− (1 −

𝑑

𝑥
)) =

𝑞

4𝜋𝜀0𝑥2

2𝑑

𝑥
=

2𝑞𝑑

4𝜋𝜀0𝑥3
∝

1

𝑥3
 

 
From (a)(ii): 

𝐸𝑛𝑒𝑡,𝐵 =
𝑞𝑑

4𝜋𝜀0𝑦3 (1 + (
𝑑
2𝑦

)
2

)

3/2 

As 𝑦 becomes large, 
𝑑

𝑦
 becomes small, and (

𝑑

𝑦
)
2
 becomes negligibly small. 

(1 + (
𝑑

2𝑦
)
2

)

−3/2

≈ 1 −
3

2
(

𝑑

2𝑦
)
2

≈ 1 

∴ 𝐸𝑛𝑒𝑡,𝐵 ≈
𝑞𝑑

4𝜋𝜀0𝑦3
∝

1

𝑦3
 

Therefore, 𝐸 ∝ 1/𝑟3 

 

(Optional) Challenging Questions 
Note: these questions are mathematically tedious, and therefore will not come out in exams. However, the ideas are the 

same as whatever will come out. For details on multiple integrals, read Appendix 1. 

C1  

 Using the cosine rule, the distance between 𝑑𝑞 in the sphere and a point along the 𝑧-axis is 

√𝑧2 + 𝑟2 − 2𝑧𝑟 cos𝜃 
The electric potential due to charge element 𝑑𝑞 at a distance 𝑟 > 𝑅 is therefore: 



𝑑𝑉 =
𝑑𝑞

4𝜋𝜀0√𝑧2 + 𝑟2 − 2𝑧𝑟 cos𝜃
 

 
The volume element in spherical coordinates is 𝑑𝑉 = (𝑟 𝑑𝜃)(𝑟 sin𝜃  𝑑𝜙)(𝑑𝑟). Since the volume charge 
density is uniform, 𝑑𝑞 = 𝜌0  𝑑𝑉′ 

∴ 𝑉 = ∫ ∫ ∫
𝜌0 𝑟

2 sin 𝜃  𝑑𝑟 𝑑𝜃 𝑑𝜙

4𝜋𝜀0√𝑧2 + 𝑟2 − 2𝑧𝑟 cos𝜃

𝜙=2𝜋

𝜙=0

𝜃=𝜋

𝜃=0

𝑟=𝑅

𝑟=0

 

This looks scary, but let’s do one integral at a time. Notice that 𝜙 does not appear in the expression, so 

∫ 𝑑𝜙
2𝜋

0
= 2𝜋. We factor that out in front: 

𝑉 =
2𝜋𝜌0

4𝜋𝜀0
∫ ∫

𝑟2 sin 𝜃  𝑑𝑟 𝑑𝜃

√𝑧2 + 𝑟2 − 2𝑧𝑟 cos𝜃

𝜃=𝜋

𝜃=0

𝑟=𝑅

𝑟=0

 

 

Now let’s try integrating to get 𝜃. Let 𝑢(𝜃) = 𝑧2 + 𝑟2 − 2𝑧𝑟 cos𝜃, then 𝑑𝑢 = 2𝑧𝑟 sin𝜃. Then we force the 
numerator so that it looks like 𝑑𝑦: 

𝑉 =
𝜌0

2𝜀0
∫ ∫

𝑟

2𝑧
 

2𝑧𝑟 sin𝜃  𝑑𝑟 𝑑𝜃

√𝑧2 + 𝑟2 − 2𝑧𝑟 cos𝜃

𝜃=𝜋

𝜃=0

𝑟=𝑅

𝑟=0

 

Since ∫
𝑑𝑦

√𝑦
= 2√𝑦, 

𝑉 =
𝜌0

2𝜀0
∫ [

𝑟

2𝑧
 2√𝑧2 + 𝑟2 − 2𝑧𝑟 cos𝜃]

𝜃=0

𝜃=𝜋

𝑑𝑟
𝑟=𝑅

𝑟=0

=
𝜌0

2𝜀0
∫

𝑟

𝑧
(√𝑧2 + 𝑟2 + 2𝑧𝑟 − √𝑧2 + 𝑟2 − 2𝑧𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

=
𝜌0

2𝜀0
∫

𝑟

𝑧
(𝑧 + 𝑟 − (𝑧 − 𝑟))𝑑𝑟

𝑟=𝑅

𝑟=0

=
𝜌0

2𝜀0
∫

𝑟

𝑧
2𝑟 𝑑𝑟

𝑟=𝑅

𝑟=0

=
𝜌0

𝜀0𝑧
∫ 𝑟2 𝑑𝑟

𝑟=𝑅

𝑟=0

 

Phew! Now the last integral is easy. 

𝑉 =
𝜌0

𝜀0𝑧
∫ 𝑟2 𝑑𝑟

𝑟=𝑅

𝑟=0

=
𝜌0

𝜀0𝑧

𝑅3

3
=

(
𝑄

4
3

𝜋𝑅3
)𝑅3

3𝜀0𝑧
=

𝑄

4𝜋𝜀0𝑧
 

 Which is what we’d expect. 

(b) 𝑑𝑉

𝑑𝑧
= −

𝑄

4𝜋𝜀0𝑧2
 

𝐸 = −
𝑑𝑉

𝑑𝑧
=

𝑄

4𝜋𝜀0𝑧2
 

Again, as expected. 
 

  



 

C2  

 Set the coordinate origin in the middle of the plane. 

 
The magnitude of the electric field 𝑑𝐸 due to a small patch of charge 𝑑𝑞 at (𝑥, 𝑦) is 

𝑑𝐸 =
1

4𝜋𝜀0

𝑑𝑞

𝑥2 + 𝑦2 + 𝑧2
 

Since 𝑃 is directly above the middle of the plane, the 𝑥- and 𝑦- components of the electric field cancel out and 
the net field is only in the positive 𝑧-direction, so we only need to find 𝑑𝐸𝑧  due to 𝑑𝑞. 

𝑑𝐸𝑧 = 𝑑𝐸 cos𝜃 =
1

4𝜋𝜀0

𝑑𝑞

𝑥2 + 𝑦2 + 𝑧2

𝑧

√𝑥2 + 𝑦2 + 𝑧2
=

1

4𝜋𝜀0

𝑧 𝑑𝑞

(𝑥2 + 𝑦2 + 𝑧2)3/2
 

Since 𝑑𝑞 = 𝜎 𝑑𝐴 = 𝜎 𝑑𝑥 𝑑𝑦, 

𝑑𝐸𝑧 =
1

4𝜋𝜀0

𝜎 𝑧 𝑑𝑥 𝑑𝑦

(𝑥2 + 𝑦2 + 𝑧2)3/2
 

∴ 𝐸𝑧 = ∫ ∫
1

4𝜋𝜀0

𝜎 𝑧 𝑑𝑥 𝑑𝑦

(𝑥2 + 𝑦2 + 𝑧2)3/2

𝑦=𝐿/2

𝑦=−𝐿/2

𝑥=𝐿/2

𝑥=−𝐿/2

 

This is a rather painful integral to evaluate, because there isn’t enough symmetry for us to get rid of more of 
the variables. 
 
However, if you’re one of those people who insist on trying painful things, here’s how it could be done. You 
solve a double integral by first integrating over one variable, then the other (the order doesn’t matter – the 
second one will be extremely painful regardless): 

𝐸𝑧 =
1

4𝜋𝜀0
∫ ∫

𝜎 𝑧 𝑑𝑥 𝑑𝑦

(𝑥2 + 𝑦2 + 𝑧2)3/2

𝑦=𝐿/2

𝑦=−𝐿/2

𝑥=𝐿/2

𝑥=−𝐿/2

 

=
𝜎𝑧

4𝜋𝜀0
∫ [

𝑦

(𝑥2 + 𝑧2)√𝑥2 + 𝑦2 + 𝑧2
]

𝑦=−𝐿/2

𝑦=𝐿/2

𝑑𝑥
𝑥=𝐿/2

𝑥=−𝐿/2

 

=
𝜎𝑧

4𝜋𝜀0
∫

𝐿

(𝑥2 + 𝑧2)√𝑥2 + 𝐿2/4 + 𝑧2
 𝑑𝑥

𝑥=𝐿/2

𝑥=−𝐿/2

 

=
𝜎𝑧

4𝜋𝜀0
[
2

𝑧
tan−1 (

𝐿𝑥

𝑧√4(𝑥2 + 𝑧2) + 𝐿2
)]

𝑥=−𝐿/2

𝑥=𝐿/2

 

=
𝜎

2𝜋𝜀0
(tan−1 (

𝐿 ∙ 𝐿/2

𝑧√4(𝐿2/4+ 𝑧2) + 𝐿2
) − tan−1 (

𝐿 ∙ (−𝐿/2)

𝑧√4(𝐿2/4 + 𝑧2) + 𝐿2
)) 

=
𝜎

2𝜋𝜀0
(tan−1 (

𝐿2

2𝑧√5𝐿2 + 4𝑧2
)− tan−1 (−

𝐿2

2𝑧√5𝐿2 + 4𝑧2
)) 

Since tan−1(−𝑎) = −tan−1 𝑎, 

𝐸𝑧 =
𝜎

𝜋𝜀0
tan−1 (

𝐿2

2𝑧√5𝐿2 + 4𝑧2
) 

 

----------------------(1) 

For an alternative 

method utilising the 

result of 𝐸 due to a line 

charge, see below. 



Let’s check that this is correct. As we’re checking the field near the plane, 𝑧 ≪ 𝐿,
𝑧

𝐿
→ 0 and 

𝐿

𝑧
→ ∞ 

𝐸𝑧 =
𝜎

𝜋𝜀0
tan−1

(

 
𝐿2

2𝑧𝐿√5 +
4𝑧2

𝐿2 )

 =
𝜎

𝜋𝜀0
tan−1

(

 
𝐿

𝑧

1

2√5 +
4𝑧2

𝐿2 )

 ≈
𝜎

𝜋𝜀0
tan−1 (

𝐿

𝑧

1

2√5
) 

Since lim
𝑥→∞

tan−1 𝑥 =
𝜋

2
 

𝐸𝑧 ≈
𝜎

𝜋𝜀0

𝜋

2
=

𝜎

2𝜀0
 

Phew! That’s the answer we wanted. 
 

 Alternatively, you could have sliced the plane of charge into many lines of charge: 

 
In Lecture Example 5(a), we found that the electric field at a distance 𝑟 due to one line of charge of length 𝐿 is: 

𝐸𝑙𝑖𝑛𝑒 =
𝜆

4𝜋𝜀0

2𝐿

𝑟√4𝑟2 + 𝐿2
 

So, the electric field due to a rectangular strip of charge of length 𝐿 of width 𝑑𝑦 is: 

𝑑𝐸 = 𝐸𝑙𝑖𝑛𝑒  𝑑𝑦 =
𝜆

4𝜋𝜀0

2𝐿

𝑟√4𝑟2 + 𝐿2
𝑑𝑦 

Since 𝑟 = √𝑦2 + 𝑧2, 

𝑑𝐸𝑧 = 𝑑𝐸 cos𝜃 =
𝜎𝐿 𝑑𝑦

2𝜋𝜀0√𝑦2 + 𝑧2√4𝑥2 + 4𝑦2 + 𝐿2

𝑧

√𝑦2 + 𝑧2
=

𝜎𝐿𝑧 𝑑𝑦

4𝜋𝜀0(𝑦2 + 𝑧2)√𝑦2 + 𝐿2/4 + 𝑧2
 

 

∴ 𝐸𝑧 =
𝜎𝑧

4𝜋𝜀0
∫

𝐿

(𝑦2 + 𝑧2)√𝑦2 + 𝐿2/4 + 𝑧2
 𝑑𝑦

𝑦=𝐿/2

𝑦=−𝐿/2

 

Which is the line marked (1) in the previous solution, swapping 𝑥 for 𝑦. The rest of the solution works out the 
same. 

 



Tutorial solutions (Part B - Gauss’ Law) 
Discussion Questions 

D1  
(a)(i) Surface charge density  = charge per unit area 

Hence Q =  (R2)  

 
2

Q

R



 =  

 

(a)(ii) Assume the circular thin disc to be an infinitely large uniformly charged circular sheet and by symmetry 
we say that the field at 'z' is a uniform outgoing field Ez and solve it by taking a gaussian cylinder with 

the top and bottom above and below the disc with z  R. 
 

 
 

Applying Gauss’s Law, let electric field at position (0,0,z) be Ez 

 

∯𝐸𝑧 ⋅ ⅆ𝐴 =
𝑄

𝜀0
 

             𝐸𝑧∯ ⅆ𝐴 =
𝜎𝐴

𝜀0
 

 

 

9 3 2
= where 

2

1
2 ( )

2 4

2

1
( ) 9.0 10 kg m C
4

z

o

z

o o

o

k

A
AE

E

k








 

 



−

=

= =

=

= 

 

 
 
Marker’s Comment: All necessary steps must be shown since this is a “show” question. It is necessary 
to include a diagram with the Gaussian surface drawn with the E field lines drawn 

(iii) Let 𝑉0 be the potential at the origin, and 𝑉𝑧 be the potential at (0, 0, z). 

𝑉𝑧 −𝑉0 = −∫ 𝐸 ⅆ𝑟
𝑧

0

= −∫
𝜎

2𝜀0
 ⅆ𝑟

𝑧

0

= −[
𝜎𝑟

2𝜀0
]
0

𝑧

= −
𝜎𝑧

2𝜀0
+0 

Comparing terms, we see that 𝑉0 = 0 as we expect. 

∴ 𝑉 = −
𝜎𝑧

2𝜀0
 

 
Marker’s Comment: The minus sign should not be omitted as it signifies the relationship between V 
and E. 
 



(iv) In our calculation of Gauss’ Law, we assumed that the electric flux is normal to the Gaussian surface that is 
parallel to the plane. This is only true near to the centre of the plane when ⅆ is small enough that edge effects 
can be ignored. 

 

D2 (Griffiths pg 73-74) 
(a) Draw a cylindrical Gaussian surface of radius 𝑟 and length 𝑙: 

  
 
 
 
For 𝑟 < 𝑅, using Gauss’ Law, 

∯𝐸⃗ 𝑖𝑛 ∙ ⅆ𝐴 =
𝑄𝑒𝑛𝑐
𝜀0

 

=
1

𝜀0
∫𝜌 ⅆ𝑉 

=
1

𝜀0
∫ (𝑘𝑟′)(2𝜋𝑟′𝑙 ⅆ𝑟′)
𝑟

0

 

=
2𝜋𝑘𝑙

𝜀0
∫ 𝑟′2 ⅆ𝑟′
𝑟

0

=
2𝜋𝑘𝑙

3𝜀0
𝑟3 

𝐸(2𝜋𝑟𝑙) =
2𝜋𝑘𝑙

3𝜀0
𝑟3 

𝐸 =
𝑘𝑟2

3𝜀0
 

For 𝑟 > 𝑅, using Gauss’ Law, 

∯𝐸⃗ 𝑖𝑛 ∙ ⅆ𝐴 =
𝑄𝑒𝑛𝑐
𝜀0

=
1

𝜀0
∫𝜌 ⅆ𝑉 =

1

𝜀0
∫ (𝑘𝑟)(2𝜋𝑟𝑙 ⅆ𝑟)
𝑅

0

=
2𝜋𝑘𝑙

3𝜀0
𝑅3 

𝐸(2𝜋𝑟𝑙) =
2𝜋𝑘𝑙𝑅3

3𝜀0
 

𝐸 =
𝑘𝑅3

3𝜀0𝑟
 

 

𝐸 =

{
 
 

 
 1

3𝜀0
𝑘𝑟2     𝑟 ≤ 𝑅

𝑘𝑅3

3𝜀0𝑟
         𝑟 ≥ 𝑅

 

 
 
 
 
 
 
 
 

Mathematically, 𝑟  cannot 

both be in the limits of the 

integral as well as be a 

variable to be integrated, so 

relabel the variable as 𝑟′ and 

leave 𝑟 in the limit. 

The electric field points radially 

away from the axis. Thus the 

electric flux through the 

circular ends of the cylinder is 

zero, and we only need to 

consider the flux through the 

curved cylindrical area. 

Check: the two expressions 

should be equal at 𝑟 = 𝑅, and 

from Appendix 3, outside the 

cylinder (wire) 𝐸 ∝ 1/𝑟. 

r 



(b) As the cylinder is infinitely long, 𝑉 ≠ 0 at infinity. So we choose a reference point 𝑟 = 𝑎 > 𝑅 as our reference 
(i.e. 𝑉 = 0 when 𝑟 = 𝑎). 
If 𝑟 ≥ 𝑅, 

𝑉 = −∫ 𝐸 ⅆ𝑟′
𝑟

𝑎

= −∫
𝑘𝑅3

3𝜀0𝑟′
 ⅆ𝑟′

𝑟

𝑎

= −
𝑘𝑅3

3𝜀0
ln
𝑟

𝑎
 

(Note that if 𝑎 → ∞, ln
𝑟

𝑎
→ −∞) 

If 𝑟 ≤ 𝑅, 

𝑉 = −∫ 𝐸 ⅆ𝑟′
𝑟

𝑎

 

= −∫
𝑘𝑅3

3𝜀0𝑟′
 ⅆ𝑟′

𝑅

𝑎

−∫
1

3𝜀0
𝑘𝑟2 ⅆ𝑟′

𝑟

𝑅

 

= −
𝑘𝑅3

3𝜀0
ln
𝑅

𝑎
−
𝑘

9𝜀0
(𝑟3− 𝑅3) 

∴ 𝑉 =

{
 
 

 
 −

𝑘𝑅3

3𝜀0
ln
𝑟

𝑎
                                      𝑟 ≥ 𝑅

−
𝑘𝑅3

3𝜀0
ln
𝑅

𝑎
−

𝑘

9𝜀0
(𝑟3 − 𝑅3)       𝑟 ≤ 𝑅

 

If the 𝑎 bothers you, try differentiating 𝑉 – you’ll see that it disappears, so that 𝐸 is independent of 𝑎, as we’d 
want. This pesky extra term only crops up when you have an infinite amount of charge, because then the 
electric potential at infinite will no longer be zero.  

 

D3  

(a) Draw a spherical Gaussian surface: 

  
For 𝑟 > 𝑅, using Gauss’ Law, 

∯𝐸⃗ 𝑜𝑢𝑡 ∙ ⅆ𝐴 =
𝑄𝑒𝑛𝑐
𝜀0

=
1

𝜀0
 𝜌𝑉 

𝐸𝑜𝑢𝑡(4𝜋𝑟
2) =

1

𝜀0
 𝜌 (

4

3
𝜋𝑅3) 

𝐸𝑜𝑢𝑡 =
𝜌𝑅3

3𝜀0𝑟2
 

For 𝑟 < 𝑅, using Gauss’ Law, 

∯𝐸⃗ 𝑖𝑛 ∙ ⅆ𝐴 =
𝑄𝑒𝑛𝑐
𝜀0

=
1

𝜀0
∫𝜌 ⅆ𝑉 =

1

𝜀0
∫4𝜋𝑟2 𝜌 ⅆ𝑟 

𝐸𝑖𝑛(4𝜋𝑟
2) =

1

𝜀0
 𝜌 (

4

3
𝜋𝑟3) 

𝐸𝑖𝑛 =
𝜌𝑟

3𝜀0
 

As 𝐸 is a piecewise function, we 

need to split the integral at 𝑟′ =

𝑅  and perform the integrals 

separately. 



∴ 𝐸 =

{
 

 
𝜌𝑟

3𝜀0
        𝑟 ≤ 𝑅

𝜌𝑅3

3𝜀0𝑟2
    𝑟 ≥ 𝑅

 

(b) Since there is a finite amount of charge, we can safely choose infinity as the reference point1 because 𝑉∞ = 0. 
If 𝑟 ≥ 𝑅, 

𝑉 = −∫ 𝐸 ⅆ𝑟′
𝑟

∞

= −∫
𝜌𝑅3

3𝜀0𝑟′
2
ⅆ𝑟′

𝑟

∞

=
𝜌𝑅3

3𝜀0𝑟
 

If 𝑟 ≤ 𝑅, 

𝑉 = −∫ 𝐸 ⅆ𝑟′
𝑟

∞

= −∫
𝜌𝑅3

3𝜀0𝑟′
2ⅆ𝑟

′
𝑅

∞

−∫
𝜌𝑟′

3𝜀0
 ⅆ𝑟′

𝑟

𝑅

=
𝜌𝑅3

3𝜀0𝑅
− [
𝜌𝑟′2

6𝜀0
]
𝑅

𝑟

=
𝜌𝑅2

3𝜀0
−
𝜌𝑟2

6𝜀0
+
𝜌𝑅2

6𝜀0
=
𝜌(3𝑅2 − 𝑟2)

6𝜀0
 

∴ 𝑉 =

{
 
 

 
 𝜌𝑅

3

3𝜀0𝑟
                       𝑟 ≥ 𝑅

𝜌(3𝑅2 − 𝑟2)

6𝜀0
       𝑟 ≤ 𝑅

 

 
(c)  

 
(d) If 𝜌 = 𝑘𝑟, repeating the same calculations and the same Gaussian surfaces, 

 
 

  
 
 
 
Using Gauss Law for 𝑟 > 𝑅, 

∯𝐸⃗ 𝑜𝑢𝑡 ∙ ⅆ𝐴 =
𝑄𝑒𝑛𝑐
𝜀0

=
1

𝜀0
 ∫ 𝜌 ⅆ𝑉 =

1

𝜀0
∫ 𝑘𝑟 (4𝜋𝑟2 ⅆ𝑟)
𝑅

0

=
4𝜋𝑘

𝜀0
∫ 𝑟3 ⅆ𝑟
𝑅

0

=
4𝜋𝑘

𝜀0

𝑅4

4
 

𝐸𝑜𝑢𝑡(4𝜋𝑟
2) =

𝜋𝑘𝑅4

𝜀0
 

𝐸𝑜𝑢𝑡 =
𝑘𝑅4

4𝜀0𝑟2
 

 
1 See solution to B2(b). 

𝑉 

𝑟 
𝑅 

𝐸 



Using Gauss Law for 𝑟 < 𝑅, 

∯𝐸⃗ 𝑖𝑛 ∙ ⅆ𝐴 =
𝑄𝑒𝑛𝑐
𝜀0

=
1

𝜀0
 ∫𝜌 ⅆ𝑉 =

1

𝜀0
∫ 𝑘𝑟′ (4𝜋𝑟′

2 ⅆ𝑟′)
𝑟

0

=
4𝜋𝑘

𝜀0

𝑟4

4
 

𝐸𝑖𝑛(4𝜋𝑟
2) =

𝜋𝑘𝑟4

𝜀0
 

𝐸𝑖𝑛 =
𝑘𝑟2

4𝜀0
 

∴ 𝐸 =

{
 
 

 
 𝑘𝑟

2

4𝜀0
        𝑟 ≤ 𝑅

𝑘𝑅4

4𝜀0𝑟2
    𝑟 ≥ 𝑅

 

Since there is a finite amount of charge, we can safely choose infinity as the reference point because 𝑉∞ = 0. 
If 𝑟 ≥ 𝑅, 

𝑉 = −∫ 𝐸 ⅆ𝑟′
𝑟

∞

= −∫
𝑘𝑅4

4𝜀0𝑟′
2ⅆ𝑟

′
𝑟

∞

=
𝑘𝑅4

4𝜀0𝑟
 

If 𝑟 ≤ 𝑅, 

𝑉 = −∫ 𝐸 ⅆ𝑟′
𝑟

∞

= −∫
𝑘𝑅4

4𝜀0𝑟′
2
ⅆ𝑟′

𝑅

∞

−∫
𝑘𝑟2

4𝜀0
 ⅆ𝑟′

𝑟

𝑅

=
𝑘𝑅4

4𝜀0𝑅
− [

𝑘𝑟′3

12𝜀0
]
𝑅

𝑟

=
𝑘𝑅3

4𝜀0𝑟
−
𝑘𝑟3

12𝜀0
+
𝑘𝑅3

12𝜀0
=
𝑘(4𝑅3 − 𝑟3)

12𝜀0
 

∴ 𝑉 =

{
 
 

 
 𝑘𝑅

4

4𝜀0𝑟
                       𝑟 ≥ 𝑅

𝑘(4𝑅3 − 𝑟3)

12𝜀0
       𝑟 ≤ 𝑅

 

 

 
 

 

 

D4 We can achieve the same effect of carving out the spherical hole by superposing a sphere of radius 𝑅 with a 
uniform charge density –𝜌 where the hole is. This corresponds to a charge of –𝑄. 
 
Consider the large sphere of radius 2𝑅 before the cavity was carved. Repeating the calculations we did in D3, 
we get: 

𝐸2𝑅 =

{
 

 
𝜌(2𝑅)3

3𝜀0𝑟2
, 𝑟 ≥ 2𝑅

𝜌𝑟

3𝜀0
, 𝑟 ≤ 2𝑅

 

For the small negatively-charged sphere of radius 𝑅 we get: 

𝐸𝑅 =

{
 

 
𝜌𝑅3

3𝜀0𝑟2
, 𝑟 ≥ 𝑅

𝜌𝑟

3𝜀0
, 𝑟 ≤ 𝑅

 

 

𝑉 

𝑟 
𝑅 

𝐸 



At A, 𝐸2𝑅 = 0 and 𝐸𝑅 =
𝜌𝑅

3𝜀0
, so: 

𝐸𝐴 =
𝜌𝑅

3𝜀0
   upwards 

At B, 𝐸2𝑅 =
𝜌(2𝑅)

3𝜀0
 downwards and 𝐸𝑅 =

𝜌𝑅3

3𝜀0(3𝑅)
2 =

𝜌

27𝜀0𝑅
 upwards, so: 

𝐸𝐵 =
2𝜌𝑅

3𝜀0
−

𝜌

27𝜀0𝑅
=
17𝜌𝑅

27𝜀0
   downwards 

 

D5  
(a) Consider a Gaussian cuboid centered at the origin, with a thickness 2𝑥. By Gauss’s Law, 

∯𝐸⃗ ∙ ⅆ𝐴 =
𝑄𝑒𝑛𝑐
𝜀0

 

Since the electric field of the slab inside the Gaussian surface points to the left and right parallel to the 𝑥-axis, 
only the left and right surfaces with area 𝐴 contribute to the flux, 

∯𝐸⃗ ∙ ⅆ𝐴 = 2𝐸𝐴 

Since 𝑄𝑒𝑛𝑐 = 𝜌𝑉 = 𝜌𝐴(2𝑥), 

2𝐸𝐴 =
𝜌𝐴2𝑥

𝜀0
 

∴ 𝐸 =
𝜌𝑥

𝜀0
 

 
OR 
Slice the slab into many large planes of infinitesimal thickness. Each of these slices sets up an electric field 
with field strength: 

ⅆ𝐸 =
𝜎

2𝜀0
=
𝜌 ⅆ𝑥

2𝜀0
 

Take right as positive. At a point −
𝑑

2
< 𝑥 <

𝑑

2
 the electric field will be: 

𝐸 = ∫
𝜌 ⅆ𝑥′

2𝜀0

𝑥

−
𝑑
2

−∫
𝜌 ⅆ𝑥′

2𝜀0
 ⅆ𝑥′

𝑑
2

𝑥

= [
𝜌𝑥′

2𝜀0
]
−
𝑑
2

𝑥

− [
𝜌𝑥′

2𝜀0
]
𝑥

𝑑
2

=
𝜌𝑥

𝜀0
 

 

(b) The force that acts on the electron in the slab when it is at a distance x from the center is given by 

𝑚𝑒𝑎 = 𝑞𝐸 = −𝑒
𝜌𝑥

𝜀0
 

Hence comparing with characteristic equation of simple harmonic motion 𝑎 = −𝜔2𝑥 

We have 𝑓 =
𝜔

2𝜋
=

1

2𝜋
√

𝜌𝑒

𝑚𝑒𝜀0
 

 
 

 

 



Tutorial solutions (Part C - Ampere’s Law) 
Discussion Questions 

D1  
(a) Ampere’s Law states that ∮ 𝐵⃗ ∙ 𝑑ℓ⃗ = 𝜇0𝐼𝑒𝑛𝑐  

 

where 𝐵⃗  is the magnetic flux density, 𝑑ℓ⃗  is a line element along the integration path, 𝜇0 is the magnetic 
permeability of free space and 𝐼𝑒𝑛𝑐 is the current passing through the area enclosed by the integration path. 
 
OR 
 

where ∮ 𝐵⃗⃗ ∙ 𝑑ℓ⃗  is the net magnetic flux along the loop, 𝜇
0
 is the magnetic permeability of free space and 𝐼𝑒𝑛𝑐 

is the enclosed current. 
 

Note: ∮ 𝐵⃗ ∙ 𝑑ℓ⃗  is the magnetic flux along the loop, not through or of the loop. 
Do not confuse permeability (𝜇) with permittivity (𝜀)! 

(b)(i) Draw a circular Amperian loop of radius 𝑑 centred on the wire. When 𝑑 > 𝑅: 

∮𝐵⃗ ∙ 𝑑ℓ⃗ = 𝜇0𝐼𝑒𝑛𝑐 

𝐵(2𝜋𝑑) = 𝜇0𝐼 

𝐵 =
𝜇0𝐼

2𝜋𝑑
 

 

(b)(ii) Let the current density be 𝐽, and assuming that it is uniform across the cross-section of the wire:  
 

𝐽 =
𝐼

𝜋𝑅2
= constant 

When 𝑑 < 𝑅,  

∮𝐵⃗ ∙ 𝑑ℓ⃗ = 𝜇0𝐼𝑒𝑛𝑐 = 𝜇0𝐽(𝜋𝑑
2) 

𝐵(2𝜋𝑑) = 𝜇0
𝐼𝑑2

𝜋𝑅2
 

𝐵 =
𝜇0𝐼

2𝜋𝑅2
𝑑 

i.e. 𝐵 ∝ 𝑑 when 𝑑 < 𝑅. 
 

 
 

(b)(iii) A magnetic field exists inside the wire as the current flows through all parts of the cross section of the wire, 
hence when we apply Ampere’s Law over a circular path inside the wire, the path will enclose a fraction of 
the current that flows in the wire resulting in a non-zero magnetic field in the wire. 
 
 

 

As 𝐽 = constant, no integration 

is needed: we can simply take 

𝐼𝑒𝑛𝑐 = 𝐽 × 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑙𝑜𝑜𝑝 



D2  

(a) Draw a circular Amperian loop of radius r centred on the axis of the wire. The magnetic field is constant along 
this loop.  
Applying Ampere’s Law, within the conductor, 𝑟 < 𝑅,  

∮𝐵⃗ ∙ 𝑑ℓ⃗ = 𝜇0𝐼𝑒𝑛𝑐 = 𝜇0∫ 𝐽(2𝜋𝑟′)𝑑𝑟′
𝑟

0

 

𝐵(2𝜋𝑟) = 2𝜋𝜇0∫ (𝑏𝑟′)𝑟′𝑑𝑟′
𝑟

0

 

𝐵 =
𝜇0𝑏

𝑟
∫ 𝑟′2𝑑𝑟′
𝑟

0

=
𝜇0𝑏𝑟

2

3
 

Outside the conductor, 𝑟 > 𝑅, 

∮𝐵⃗ ∙ 𝑑ℓ⃗ = 𝜇0𝐼𝑒𝑛𝑐 = 𝜇0∫ 𝐽(2𝜋𝑟′)𝑑𝑟′
𝑟

0

 

𝐵(2𝜋𝑟) = 2𝜋𝜇0∫ (𝑏𝑟)𝑟 𝑑𝑟
𝑅

0

 

𝐵 =
𝜇0𝑏𝑅

3

3𝑟
 

∴ 𝐵 =

{
 

 
𝜇0𝑏𝑟

2

3
        𝑟 ≤ 𝑅

𝜇0𝑏𝑅
3

3𝑟
    𝑟 ≥ 𝑅

 

(b) 

 
 

D3  
(i) Inside the wire, consider an Amperian circular loop of radius r centered around the axis of the wire. Due to 

symmetry, the magnetic field on this loop is constant. 
Using Ampere’s Law, 

∮𝐵⃗ ∙ 𝑑ℓ⃗ = 𝜇0𝐼𝑒𝑛𝑐 

 

 

𝐵 

𝑟 
𝑅 

As 𝐽 varies with 𝑟, integration is 

needed: 𝐼𝑒𝑛𝑐 = ∫𝐽 𝑑𝐴 over the 

cross-sectional area of the loop. 
𝑑𝐴

𝑑𝑟′
= 2𝜋𝑟′ so 𝑑𝐴 = 2𝜋𝑟′𝑑𝑟′ 



(ii) 

 
(iii) 

 
(iv) 

 
 

  
 
 
 

𝐵𝑃 = 𝐵𝑃0 + 𝐵𝑃1 = 0.0805 𝜇0𝐼/𝑅 
 

D4  
(a) Consider a rectangular Amperian loop of width 𝑦 across the belt as shown in the diagram,  

 
 
In time 𝑑𝑡, 𝑑𝑞 of charge moves a distance 𝑑𝑥. The enclosed current is thus given by: 

𝐼𝑒𝑛𝑐 =
𝑑𝑞

𝑑𝑡
=
𝜆 𝑑𝑥

𝑑𝑡
=
𝜎𝑦 𝑑𝑥

𝑑𝑡
= 𝜎𝑦𝑣 

y 

B 

B 

Amperian Loop A 

Amperian Loop B 

Assume the positive current to mean current flows into 

page and negative current to mean current flows out of 

page.  

Using right hand grip rule, the positive current flowing 

within the Amperian loop A will cause a clockwise B-field 

along the Amperian loop. Hence direction of BP0 is 

vertically down. 

Using right hand rule, the negative current flowing within 

the Amperian loop B will cause an anti-clockwise B-field 

along the Amperian Loop. Hence direction of BP1 is also 

vertically down. 

 



Apply Ampere’s Law to the loop, 

∮𝐵⃗ ∙ 𝑑ℓ⃗ = 𝜇0𝐼𝑒𝑛𝑐 

2𝐵𝑦 = 𝜇0𝜎𝑦𝑣 
 

∴ 𝐵 =
𝜇0𝜎𝑣

2
 

 

𝐵 = {

𝜇0𝜎𝑣

2
  out of the paper      (above the sheet)

𝜇0𝜎𝑣

2
  into of the paper      (below the sheet)

 

(b) 

 
𝐼𝑒𝑛𝑐 = 𝐾𝑦 

Using Ampere’s Law, 

∮𝐵⃗ ∙ 𝑑ℓ⃗ = 𝜇0𝐼𝑒𝑛𝑐 

2𝐵𝑦 = 𝜇0𝐾𝑦 
 

𝐵 = {

𝜇0𝐾

2
  out of the paper      (above the sheet)

𝜇0𝐾

2
  into of the paper      (below the sheet)

 

 

D5  

(a) 
∮𝐵⃗ ∙ 𝑑ℓ⃗ = 𝜇0𝐼𝑒𝑛𝑐 

Where ∮ 𝐵⃗⃗ ∙ 𝑑ℓ⃗  is the net magnetic flux along the loop, 𝜇
0
 is the magnetic permeability of free space and 𝐼𝑒𝑛𝑐 

is the enclosed current. 

(b) Since 𝐼1 = 𝐼2, 

∫ 𝐽1 𝑑𝐴 = ∫ 𝐽2 𝑑𝐴 

∫ 𝐽1 (2𝜋𝑟 𝑑𝑟)
𝑟1

0

= ∫ 𝐽2 (2𝜋𝑟 𝑑𝑟)
𝑟3

𝑟2

 

𝜋𝑟1
2𝐽1 = 𝜋(𝑟3

2 − 𝑟2
2)𝐽2 

𝐽2 =
𝑟1
2

𝑟3
2 − 𝑟2

2 𝐽1       (shown) 

(c)(i) Draw a circular Amperian loop of radius 𝑟 centred on the axis of the wire, where 0 ≤ 𝑟 ≤ 𝑟1 

∮𝐵⃗ ∙ 𝑑ℓ⃗ = 𝜇0𝐼𝑒𝑛𝑐 = 𝜇0𝐼1,𝑒𝑛𝑐 = 𝜇0𝜋𝑟
2𝐽1 

𝐵(2𝜋𝑟) = 𝜇0𝜋𝑟
2𝐽1 

𝐵 =
1

2
𝜇0𝐽1𝑟 

(c)(ii) Draw a circular Amperian loop of radius 𝑟 centred on the axis of the wire, where 𝑟1 ≤ 𝑟 ≤ 𝑟2 

∮𝐵⃗ ∙ 𝑑ℓ⃗ = 𝜇0𝐼𝑒𝑛𝑐 = 𝜇0𝐼1 = 𝜇0𝜋𝑟1
2𝐽1 

𝐵(2𝜋𝑟) = 𝜇0𝜋𝑟1
2𝐽1 

y 

B 

B 



𝐵 =
𝜇0𝐽1𝑟1

2

2𝑟
 

(c)(iii) Draw a circular Amperian loop of radius 𝑟 centred on the axis of the wire, where 𝑟3 ≤ 𝑟 ≤ 𝑟4 

∮𝐵⃗ ∙ 𝑑ℓ⃗ = 𝜇0𝐼𝑒𝑛𝑐 = 𝜇0(𝐼1 − 𝐼2) 

Since 𝐼1 = 𝐼2 = 𝐼, 
𝐵(2𝜋𝑟) = 0 
∴ 𝐵 = 0 

(d) 

 

Marker’s Comment: From r2 to r3, B takes the form 
a

B br
r

= − , where the first term initially dominantes, 

followed by the second term. Hence the first part of the graph is an inverse graph, followed by a linear graph. 
However, simply drawing a curve will suffice. 

(e) The magnetic field outside a standard transmission cable, unlike that of a coaxial cable, is not zero when a 
current is flowing through it. A high frequency signal will mean that energy will be dissipated in metal 
components in the surroundings through electromagnetic induction. 

 

(Optional) Challenging Questions 

C1 They are all equivalent! 
 
Intuitively, all the current that flows through the flat circular area, also flows though any other open surface 
you can draw, so the current enclosed by the loop is the same. 
 
And any current that doesn't flow through the flat circular area, but happens to flow through one of the other 
surfaces (e.g. S2), also flows out again, so there’s zero net contribution. 
 
There is one notable problem though (which is explicitly not in the H3 syllabus, so fret not): what happens 
when you have a current flowing in and out of a pair of parallel plates (i.e. a capacitor)?  

 
Choosing the flat circular area (left), you get a current as expected. But choosing a surface that encompasses 
the plate (right), apparently no current flows through it. But Maxwell noticed that something is changing 
through the surface, even though there is no current: the electric field! 

r1 r2 r3 r4 

conductor insulator plastic jacket metal 

braid 

B 

x 
0 

0 

Bmax 



 
So he simply added a term to the RHS of Ampere’s Law that accounts to the change in electric flux, and all was 
well. 

∮𝐵⃗ ∙ 𝑑ℓ⃗ = 𝜇0𝐼𝑒𝑛𝑐 +𝜇0𝐼𝑑  

This is known as Maxwell’s correction to Ampere’s Law (the correction term is the “displacement current”), 
and the H3 syllabus explicitly states that you don’t need to know this. So this situation will not come out in 
the A-level exam, nor any school prelim papers. But you took H3 to learn new physics, not just to get an “A”, 
so now you are smarter! :) 

 

 

C2 (This can be found in Griffiths, page 236-237) 

(a) The system is cylindrically symmetric, so the magnetic field must also be cylindrically symmetric. 
 

Suppose 𝐵⃗  has a radial component, 𝐵⃗ 𝑟 . 
 

When the current were flowing in one direction, suppose 𝐵⃗ 𝑟  is positive (e.g. radially away from the axis). If the 

current direction is reversed, the direction of 𝐵⃗ 𝑟  would be reversed too. 
 
Changing the direction of the current is physically equivalent to turning the solenoid upside down, but we 
know in real life that that does not affect the direction of the magnetic field. 
 

Therefore, 𝐵⃗ 𝑟 = 0. 

(b) Let the circumferential component be 𝐵⃗ 𝜙. If it exists, it will be tangential to Amperian Loop 3 (which is a 

circle) 
Applying Ampere’s Law to Amperian Loop 3, 

∮ 𝐵⃗ ∙ 𝑑ℓ⃗ 
𝒞3

= 𝐵𝜙(2𝜋𝑠) = 𝜇0𝐼𝑒𝑛𝑐 

But 𝐼𝑒𝑛𝑐 = 0 because the loop encloses no current (the current is parallel to the plane of the loop) 
∴ 𝐵𝜙 = 0 

(c) In cylindrical coordinates, 𝐵⃗ = 𝐵⃗ 𝑟 + 𝐵⃗ 𝜙 + 𝐵⃗ 𝑧  (just like how in Cartesian coordinates we can write 𝐵⃗ = 𝐵⃗ 𝑥 +

𝐵⃗ 𝑦 + 𝐵⃗ 𝑧). But from (a) and (b), we’ve seen that 𝐵⃗ 𝑟 = 0 and 𝐵⃗ 𝜙 = 0. Thus 𝐵⃗  points only upwards or 

downwards.  
 
In general, we expect that value of 𝐵𝑧  may depend on how far it is from the axis of the solenoid, i.e. 𝐵𝑧 =

𝐵𝑧(𝑟). Furthermore, we expect that inside the solenoid, 𝐵⃗  points in one direction (e.g. upwards), and outside 
the solenoid it points in the other direction (e.g. downwards).  
 



Applying Ampere’s Law to Amperian Loop 1, 

∮ 𝐵⃗ ∙ 𝑑ℓ⃗ 
𝒞1

= 𝐵𝑧(𝑎)𝐿 + 0 − 𝐵𝑧(𝑏)𝐿 + 0 = 𝐵𝑧(𝑎) − 𝐵𝑧(𝑏) =
𝜇0𝐼𝑒𝑛𝑐
𝐿

 

(Note that the two zeroes are because 𝐵𝑧 ⊥ 𝑑ℓ⃗ , and the negative sign on the third term is because of the 

direction we are traversing the loop: on one side of the rectangle we are moving in the same direction as 𝐵𝑧⃗⃗⃗⃗ , 
at the other side we are moving in the opposite direction) 
But 𝐼𝑒𝑛𝑐 = 0 for any 𝑏 > 𝑎 > 𝑅. 

∴ 𝐵⃗ = 0 everywhere outside the solenoid 
(d) Applying Ampere’s Law to Amperian Loop 1, 

∮ 𝐵⃗ ∙ 𝑑ℓ⃗ 
𝒞1

= 𝐵𝐿 + 0 + 0 + 0 = 𝜇0𝐼𝑒𝑛𝑐 

(where two of the zeroes are because 𝐵𝑧 ⊥ 𝑑ℓ⃗ , and the third zero is because 𝐵⃗ = 0 outside the solenoid.) 
If the loop encloses 𝑁 turns of wire, then 𝐼𝑒𝑛𝑐 = 𝑁𝐼. If 𝑛 = 𝑁/𝐿, then 𝐼𝑒𝑛𝑐 = 𝜇0𝑛𝐿 

∴ 𝐵𝐿 = 𝜇0𝑛𝐿𝐼 
∴ 𝐵 = 𝜇0𝑛𝐼 

 

 

 



Tutorial solutions (Part D - Dipoles in Fields) 
Discussion Questions 

D1  
(a)(i) 

 
(a)(ii) 

 
(b)(i) 

 
(b)(ii) 

 
(b)(iii) 

 
(c)(i) 

 
(c)(ii) 

 
(c)(iii) 

 
(c)(iv) 

 
 

D2 Sketch of the system: 

 
 

(a)(i) 𝜇 = 𝐼𝐴 = (2.00)(0.05)2 = 0.0050 A m2 
𝜏 = 𝜇𝐵 sin𝜙 = (0.0050)(0.830)sin 5° = 0.000361696 ≈ 3.62 × 10−4 N m clockwise 

 B 

• 

x 

F 

F 

5.0 cm 

 



(a)(ii) To show that the oscillation is simple harmonic, we need to show that 𝛼 ∝ −𝜙. 
Let the moment of inertia of the loop be 𝑖. By Newton’s 2nd Law (𝜏 = 𝑖𝛼): 

𝜏 = 𝜇𝐵 sin𝜙 = 𝑖𝛼 

∴ 𝛼 =
𝜇𝐵

𝑖
sin𝜙 

Since 𝜙 = 5° is small, sin𝜙 ≈ 𝜙 

∴ 𝛼 ≈
𝜇𝐵

𝑖
𝜙 ⟹ 𝛼 ∝ 𝜙 

The torque acts in the opposite direction to the angular displacement. ∴ this is a simple harmonic oscillation. 

Since 𝛼 = −𝜔2𝜙, 

𝜔 = √
𝜇𝐵

𝑖
 

2𝜋

𝑇
= √

𝜇𝐵

𝑖
 

𝑇 = 2𝜋√
𝑖

𝜇𝐵
 

(moment of inertia of rod about the centre: 
1

12
𝑚𝐿2. Moment of inertia of point mass at distance 𝑟 is 𝑚𝑟2) 

The moment of inertia of the square loop is: 

𝑖 = 2(𝑚(
𝐿

2
)
2

) + 2(
1

12
𝑚𝐿2) = 2𝑚𝐿2 (

1

4
+
1

12
) = 2(0.020)(0.0500)2

1

3
= 3.33 × 10−5 kg m2 

∴ 𝑇 = 2𝜋√
3.33 × 10−5

(0.0050)(0.830)
= 0.563 s 

(b) 
Δ𝑈 = ∫ 𝜏 𝑑𝜙

𝜙2

𝜙1

= ∫ 𝜇𝐵 sin𝜙  𝑑𝜙
𝜙2

𝜙1

= −𝜇𝐵 cos𝜙2 − (−𝜇𝐵cos𝜙1) 

∴ 𝑈 = −𝜇𝐵cos𝜙 
Plot a 𝑦 = −cos 𝑥 curve, with minima at 𝜙 = 0° and 360° and maxima at 𝜙 = 180° 
Here’s a Desmos plot (in radians): 

 
(note that the horizontal axis is in radians.) 
 
Alternatively, if you decided to pick 𝜙 = 0° as the reference (zero) potential: (this is similar to choosing a 
different reference height to be ℎ = 0 in the formula 𝐺𝑃𝐸 = 𝑚𝑔ℎ) 



 
(c)  There are equilibrium points at 𝜙 = 0° (or 360°) and 180° because at those points, |𝜏| = |

𝑑𝑈

𝑑𝜙
| = 0 

 
There is a stable equilibrium point at 0°/360°. A small displacement to the left or right will result in a restoring 
torque back to the equilibrium point.  
 
There is an unstable equilibrium point at 180°. A small displacement to the left or right will result in a torque 
pushing the loop further from the equilibrium point.  
 

 

D3 

 
  



 

D4  

(i)  
 

 
 

Direction of net torque must be clockwise as 𝐹⃗+𝑞 and 𝐹⃗−𝑞 both give clockwise torques. 

Direction of net force is upwards, because both 𝐹⃗+𝑞 and 𝐹⃗−𝑞 have a component in the upwards direction, and 

their left and right components cancel out. 
 

(ii)  
 

 
 
 

𝜏 = 𝑝 × 𝐸⃗⃗ 

𝑝 = 𝑞 ∙ 𝑑 
At +𝑞 and at – 𝑞, the magnitude of the electric field due to 𝑄 is: 

𝐸 =
𝑄

4𝜋𝜀0

1

𝑟2 + (
𝑑
2
)
2 =

𝑄

4𝜋𝜀0

1

𝑟2 (1+ (
𝑑
2𝑟
)
2

)

 

Since 𝑟 ≫ 𝑑,
𝑑

𝑟
≈ 0 (we completely neglect even higher powers of 𝑑/𝑟) and 𝜃 ≈ 0 (the direction of 𝐸⃗⃗ is 

approximately parallel to the horizontal). So: 

𝐸 ≈
𝑄

4𝜋𝜀0

1

𝑟2
 

Since 𝐸⃗⃗ ⊥ 𝑝,  

|𝜏| = |𝑝 × 𝐸⃗⃗| = 𝑝𝐸 = (𝑞𝑑)
𝑄

4𝜋𝜀0𝑟2
 

From the right hand rule for cross products, 𝜏 is directed into the page (i.e. clockwise torque) 

∴ 𝜏 =
𝑞𝑄𝑑

4𝜋𝜀0𝑟2
 (clockwise) 

(iii) As drawn in (i), the net force on the dipole is 𝐹⃗+𝑞 + 𝐹⃗−𝑞 

By symmetry, the horizontal components cancel out. Both vertical components are identical and point 
upwards. Let 𝜃 be the angle with the horizontal. Take upwards as positive. 

𝐸⃗⃗ 

𝐸⃗⃗ 

√𝑟2 + (
𝑑

2
)
2

 

𝜃 

𝜃 

𝐹⃗−𝑞 

𝐹⃗+𝑞 



𝐹𝑛𝑒𝑡 = 2𝐹+𝑞,𝑥 = 2
𝑄𝑞

4𝜋𝜀0

1

𝑟2(1+ (
𝑑
2𝑟
)
2

)

sin𝜃 

Since sin 𝜃 =
𝑑/2

√𝑟2+(
𝑑

2
)
2
 

𝐹𝑛𝑒𝑡 = 2
𝑄𝑞

4𝜋𝜀0

1

𝑟2 + (
𝑑
2
)
2

(

 
𝑑/2

√𝑟2 + (
𝑑
2
)
2

)

 =
𝑄𝑞

4𝜋𝜀0

𝑑

(𝑟2 + (
𝑑
2
)
2

)

3/2
=
𝑄𝑞

4𝜋𝜀0

𝑑

𝑟3(1 + (
𝑑
2𝑟
)
2

)

3/2
 

Since 𝑟 ≫ 𝑑, (1 + (
𝑑

2𝑟
)
2
)
−3/2

≈ 1 −
3

2
(
𝑑

2𝑟
)
2
≈ 1 (we neglect powers of 𝑑/𝑟 greater than 1 because 𝑑/𝑟 is 

small) 

𝐹𝑛𝑒𝑡 ≈
𝑄𝑞

4𝜋𝜀0

𝑑

𝑟3
(1) =

𝑞𝑄𝑑

4𝜋𝜀0𝑟3
  upwards 
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Case study: The parallel plate capacitor 

 From Gauss’ Law, 𝐸 =
𝜎

𝜖0
=

𝑄

𝜖0𝐴
 

 Where  is surface charge density, A is the surface area 

Also, for parallel plates, 𝐸 =
𝑉

𝑑
 

 Hence 𝑉 =
𝑑

𝜖0𝐴
𝑄 

 The capacitance of a parallel plate capacitor is thus 𝐶 =
𝜖0𝐴

𝑑
 

 

Similarly, by considering the electric field between the two conductors of 
a capacitor, we can also find that the capacitance of a spherical capacitor 
comprising two concentric spherical conducting shells separated by a 
vacuum with inner radius 𝑟𝑎 (positive charge) and outer radius 𝑟𝑏 

(negative charge) as  𝐶 = 4𝜋𝜖0
𝑟𝑎𝑟𝑏

𝑟𝑏−𝑟𝑎
.  

 

 

 

From Gauss’ Law,   𝐸 = 𝑄/(4𝜖0𝑟2) is ‘emitted’ from positively charged inner sphere, 

                     −
𝑑𝑉

𝑑𝑟
= 𝑄/(4𝜖0 𝑟2)             ,                     𝑉 = 𝑄/(4𝜖0𝑟) ⬚ 

By performing integration,   Vb – Va   = (Q / 4𝜖0)(
1 

𝑟𝑏
 - 

1 

𝑟𝑎
) = (Q / 4𝜖0)(ra – rb)/ (rb ra) 

Since  Va > Vb      ,       𝐶 = 𝑄/( Va – Vb )  = 4𝜋𝜖0
𝑟𝑎𝑟𝑏

𝑟𝑏−𝑟𝑎
  .  

Also, the capacitance of a cylindrical capacitor of inner radius 𝑟𝑎  
(positive charge) and outer radius 𝑟𝑏 (negative charge) and 

length 𝑙 is 𝐶 =
2𝜋𝜖0𝑙

𝑙𝑛(𝑟𝑏/𝑟𝑎)
 

 

 
 
 
 
 
 
 
 

From Gauss’ Law,   𝐸 = 𝑄/(2𝜖0𝑟𝑙)⬚ is ‘emitted’ from positively charged inner tube, 

−
𝑑𝑉

𝑑𝑟
= 𝑄/(2𝜖0𝑟𝑙)             ,                   𝑉 = −𝑄 (ln ⬚ 𝑟 )/(2𝜖0𝑙) ⬚ 

By performing integration,   Vb – Va   = (- Q (ln 𝑟𝑏  −ln 𝑟𝑎 ) / 2𝜖0𝑙)          = (Q (ln
𝑟𝑎 

𝑟𝑏
 ) / 2𝜖0𝑙)  

Since  Va > Vb      ,       𝐶 = 𝑄/( Va – Vb )  = (2𝜋𝜖0𝑙 )/ln (
𝑟𝑏

𝑟𝑎
)  .  

 

 +  +   +   +   +   +   +   + 
Gaussian 

surface 

𝑟𝑏 

𝑟𝑎 

𝑟𝑏 

𝑟𝑎 

𝑙 
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Solutions to Self Review Questions 

1. Applying Gauss’s Law over a Gaussian surface 

of radius r, that just covers the sphere of radius 

R, 

𝐸(4𝜋𝑟2) =
𝜎(4𝜋𝑅2)

𝜖0
 

Hence the surface charge density is given by 

𝜎 = 𝐸𝜖0 (
𝑟

𝑅
)

2

= 1.33 𝜇𝐶/𝑚2 

Capacitance is given by 

𝐶 =
𝑄

𝑉
= 4𝜋𝜖0𝑅 = 13.3 𝑝𝐹 

 

2. Consider a Gaussian surface as shown in the 

diagram below, 

 

 

 

Applying Gauss’s Law yields 

𝐸𝐴 =
𝜎𝐴

𝜖0
= (

𝑉

𝑑
) 𝐴 

Hence the separation between the plates, 

𝑑 =
𝜖0𝑉

𝜎
= 4.42 𝜇𝑚 

 

3. Combining the 15 µF and 3.0 µF capacitors in 

series gives an effective capacitance of 2.5 µF.  

Combining the 2.5 µF and 6.0 µF capacitors in 

parallel gives an effective capacitance of 8.5 µF.  

Combining the 8.5 µF and 20 µF capacitors in 

series gives an effective capacitance of 5.96 µF. 

When 15 V is applied across the arrangement, 

Total charge is 

𝑄 = 𝐶𝑉 = (5.96 × 10−6)(15) = 89.4 𝜇𝐶 

This is also the charge on the 20.0 µF capacitor. 

The potential difference across the 20.0 µF 

capacitor is thus 𝑉 =
𝑄

𝐶
=

89.4

20
= 4.47 V. 

Hence the potential difference across the 

parallel arrangement is 10.53 V. This is also the 

potential difference across the 6.0 µF capacitor 

which gives it a charge of 63.2 µC. 

That leaves only a charge of 26.2 µC for the 

other parallel branch and that is also the charge 

on each of the two capacitors in series in that 

branch.  

4. Energy stored in the capacitor is given by 

 𝜉 =
1

2
𝐶𝑉2 =

1

2
(450 × 10−6)(295)2 = 19.6 𝐽 

 

5. The electric field due to charges on the 

surfaces of the dielectric is given by 

𝐸𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = 𝐸 − 𝐸′ = 0.70 × 105 V/m 

Hence the charge density on the surfaces of the 

dielectric can be determined from 

𝐸𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 =
𝜎𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐

𝜖0
 

𝜎𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = (0.70 × 105)(8.854 × 10−12)

= 6.20 × 10−7𝐶/𝑚2 

Dielectric constant, 𝐾 =
𝐸

𝐸′
= 1.28 

 

 

6. The circuit can be described by the equation 

𝜉 = 𝑖𝑅 + 𝐿
𝑑𝑖

𝑑𝑡
 

Solving yields 

𝑖 =
𝜉

𝑅
(1 − 𝑒−(𝑅/𝐿)𝑡) 

𝑖 = 1.2(1 − 𝑒−5𝑡) 

Final steady value of current is 1.2A and 
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Time needed for current to reach 50.0% ; i.e. 

0.60 A is given by 𝑡 = 0.139 s. 

7. a) Mutual inductance is the ratio of the 

magnetic flux linkage in one coil due to current 

flowing in the other, 

𝑀21 =
𝑁2Φ2

𝑖1
=

400 × 0.032

6.52
= 1.96 𝐻 

b) Similarly, for the other coil, since 𝑀12 = 𝑀21, 

𝑀12 =
𝑁1Φ1

𝑖2
= 𝑀21 

Φ1 =
(2.54)(1.96)

700
= 7.12 × 10−3 𝑊𝑏 

 

8. For a solenoid of length l, the inductance is 

given by 𝐿 =
𝜇0𝑁2𝐴

𝑙
 

Thus the energy stored in the solenoid is given 

by 

𝑈 =
1

2
𝐿𝐼2 =

𝜇0𝑁2𝐴𝐼2

2𝑙
= 2.44 × 10−6 𝐽 

 

9. Resonance frequency 𝑓 =
1

2𝜋
√

1

𝐿𝐶
= 711 Hz 

10. At steady state, there is no p.d. across the 

inductor. Both resistors are connected in 

parallel to the cell and has the same p.d. 

𝐼1 =
18

6000
= 3 mA      𝐼2 =

18

2000
= 9 mA 

(a) At 𝑡 = 0, the switch is opened and the cell 

is no longer part of the circuit. The current 

in the inductor is initially 9 mA (clockwise) 

and this will be the current in the outer 

loop through both resistors. The p.d. 

across both resistors is thus 72 V, hence 

the induced emf at the inductor is 72 V. 

Since the current is initially clockwise, the 

point b will be at a higher potential than a. 

 

 

 

 

(b)  

 

 

 

  

I1 

t 

I2 

t 
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Solutions to Tutorial Questions 

1. Consider a Gaussian cylindrical surface 

(radius r) in the region between the two 

conductors in the co-axial cable. 

Applying Gauss’s Law yields 

𝐸(2𝜋𝑟𝐿) =
𝑄𝑖𝑛𝑛𝑒𝑟

𝜖0
 

The potential difference between the inner 

conductor surface (radius a) and the inner 

surface of the outer conductor (radius b) is 

given by 

𝑉 = ∫ 𝐸𝑑𝑟
𝑏

𝑎

=
𝑄𝑖𝑛𝑛𝑒𝑟

2𝜋𝐿𝜖0
∫

𝑑𝑟

𝑟

𝑏

𝑎

=
𝑄𝑖𝑛𝑛𝑒𝑟

2𝜋𝐿𝜖0
𝑙𝑛 (

𝑏

𝑎
) 

Hence capacitance is given by 

𝐶 =
𝑄

𝑉
=

2𝜋𝐿𝜖0

𝑙𝑛(𝑏/𝑎)
= 2.68 × 10−9 𝐹 

2. When fully charged, potential difference 

across capacitor C1 is the same as the cell. The 

amount of charge on it is given by 𝑄 = 𝐶𝑉 =

120 𝜇𝐶. 

When switch S1 is now open and S2 closed, 

charges redistribute between the two 

capacitors until the potential difference across 

each are the same. Hence we can write 

𝑄1

𝐶1
=

𝑄 − 𝑄1

𝐶2
 

Solving yields 𝑄1 = 80.0 𝜇𝐶 and 𝑄2 = 40.0 𝜇𝐶. 

3. For a parallel plate capacitor, 𝐸. 𝐴 =
𝑄

𝜖0
 

Hence the energy stored in the capacitor is 

given by 𝜉 =
𝑄𝑉

2
=

𝑄2

2𝜖0𝐴
𝑥 

Change in energy stored is given by 

𝑑𝜉 =
𝑄2

2𝜖0𝐴
(𝑑𝑥) 

Hence the force between the plates is given by 

𝐹 =
𝑑𝜉

𝑑𝑥
=

𝑄2

2𝜖0𝐴
 

 

4. a) The dielectric constant is given by  

𝐾 =
𝐸0

𝐸
=

𝑉0

𝑉
=

45

11.5
= 3.91 

b) We can model this as two capacitors 

connected in parallel with the charges split 

between them such that the same potential 

difference exist across the plates of both 

capacitors. 

For the one-third part with dielectric, 

𝑄1 = 𝐶𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑉 = 𝐾
𝐶0

3
𝑉 

For the two-third part with vacuum, 

𝑄2 =
2𝐶0

3
𝑉 

Hence  

𝐶0𝑉0 = 𝑄 = 𝑄1 + 𝑄2 = (
2

3
+

𝐾

3
) 𝐶0𝑉 

𝑉 =
3𝑉0

2 + 𝐾
=

3 × 45

2 + 3.91
= 22.8 𝑉 

 

5. The potential difference across each slab of 

dielectric is given by 

𝑉1 =
𝑄

𝐶1
=

𝑄

𝐾12𝐶0
     and       𝑉2 =

𝑄

𝐶2
=

𝑄

𝐾22𝐶0
 

where 𝐶0 =
𝜖0𝐴

𝑑
  is the capacitance across the 

two parallel plates in vacuum of separation d. 

Total potential difference, 

𝑉 =
𝑄

2𝐶0
(

𝐾1 + 𝐾2

𝐾1𝐾2
) 

𝐶 =
𝑄

𝑉
= (2𝐶0) (

𝐾1𝐾2

𝐾1 + 𝐾2
) =

2𝜖0𝐴

𝑑
(

𝐾1𝐾2

𝐾1 + 𝐾2
) 
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6. The magnetic field at the center of the 

solenoid is given by  

𝐵 = 𝜇0𝑛𝐼 = (4𝜋 × 10−7) (
400

0.25
) (80)

= 0.161 𝑇 

The magnetic energy density is given by 

𝑢 =
𝐵2

2𝜇0
= 1.03 × 104 𝐽/𝑚3 

Total energy stored is given by 

𝜉 = 𝑢. 𝐴𝑙 = 0.129 𝐽 

Since energy 𝜉 stored in the magnetic field is 

given by 

𝜉 =
1

2
𝐿𝐼2 = 0.129 

Inductance is thus given by 

𝐿 =
2(0.129)

802
= 4.02 × 10−5 𝐻 

 

7. (a) The circuit can be described by the 

equation 

𝜉 = 𝑖𝑅 + 𝐿
𝑑𝑖

𝑑𝑡
 

Solving yields 

𝑖 =
𝜉

𝑅
(1 − 𝑒−(𝑅/𝐿)𝑡) 

0.22 =
6.00

4.90
(1 − 𝑒−(4.90/0.140)𝑡) 

Hence 𝑡 = 5.66 ms. 

(b) Using the same equation, 

𝑖 =
6.00

4.90
(1 − 𝑒−(4.90/0.140)10) = 1.22 𝐴 

(c) When current is decreasing, the equation is 

given by 

−𝐿
𝑑𝑖

𝑑𝑡
= 𝑖𝑅 

Solving yields 

𝑖 =
𝜉

𝑅
𝑒− 

𝑅
𝐿

𝑡 

0.16 = 1.22𝑒− 
4.90
0.14

𝑡 

Hence 𝑡 = 0.058 s. 

 

8. In an LC circuit, the charges oscillate with a 

frequency of 𝑓 =
1

2𝜋
𝜔 =

1

2𝜋
√

1

𝐿𝐶
 

Hence if the circuit oscillations are in tune with 

the radio signal of frequency 𝑓𝑠𝑖𝑔𝑛𝑎𝑙 = 6.3 ×

1012 𝐻𝑧 

The capacitance can be found by 

𝐶 =
1

𝐿
(

1

2𝜋𝑓
)

2

= 608 × 10−12 𝐹 

 

9. For the LC circuit consisting of a fully charged 

capacitor and inductor connected in series, 

𝑞

𝐶
= −𝐿

𝑑2𝑞

𝑑𝑡2
 

We can see that it is of the same form as the 

characteristic equation of SHM where the 

resonant frequency can be determined by 

comparison, ie, 

𝜔0 =
1

√𝐿𝐶
= 4472 rad.s-1 

With the addition of a resistor, 

𝑞

𝐶
= −𝐿

𝑑2𝑞

𝑑𝑡2
− 𝑅

𝑑𝑞

𝑑𝑡
 

𝑑2𝑞

𝑑𝑡2
+

𝑅

𝐿

𝑑𝑞

𝑑𝑡
+

𝑞

𝐿𝐶
= 0 

Auxiliary equation is of the form 

𝑦2 +
𝑅

𝐿
𝑦 +

1

𝐿𝐶
= 0 

This has complex roots of 
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𝑦1,2 = −
𝑅

2𝐿
± 𝑖√

1

𝐿𝐶
−

𝑅2

4𝐿2
 

Hence solution is of the form 

𝑞 = 𝑒−𝑅/2𝐿 (𝐴𝑐𝑜𝑠 (𝑡√
1

𝐿𝐶
−

𝑅2

4𝐿2
)

+ 𝐵𝑠𝑖𝑛 (𝑡√
1

𝐿𝐶
−

𝑅2

4𝐿2
)) 

With frequency 

𝜔 = √
1

𝐿𝐶
−

𝑅2

4𝐿2 = 4360 rad.s-1 

 


