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Suggested Solutions for Worked Examples

1 a) VCar,Truck = Car,Earth +VEarth,Truck
VCar,Truck =25-30=-5m S-l
The observer in the truck observes that the car moves in the opposite direction at a constant speed
of 5ms™.
b) VTruck,Car :VTruck,Earth +VEarth,Car
-1
Viekcar =30-25=+5ms
The observer in the car observes that the truck moves in the forward direction at a constant speed
of 5ms™,
c) d(:ar,Tru(:k :VCar,Truckt =(-5)(60)=-300 m
2 spider,Earth :Vspider,passenger +Vpassenger,train +Vtrain,Eanh
Vipigergan = —0.5+1.2+3.1=3.8 ms™
3 |a) Yes. In both Earth and reference frame M, the speeds of the carts are constant. Hence, their kinetic
energies are constant.
b) No net external force acting on the system. Hence, no change in momentum and energy.
Therefore, the isolated system containing only cart 1 is closed.
C) No net external force acting on the system. Hence, no change in momentum and energy.
Therefore, the isolated system containing only cart 2 is closed.
4 | a) Merry-go-round: Its velocity changes, there is an acceleration towards the centre of the circle. It is
a non-inertial reference frame.
b) Airplane taking off: The velocity must increase. There is an acceleration associated with it. It is a
non-inertial reference frame.
c) Train at constant speed: The velocity is constant and no acceleration. It is an inertial frame of
reference.
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o V—
cact 1 0.80m$ apod 2.
Head-on collision in the Earth frame,

By RSOA = RSOS,

U, —U; =V, =V,
0.80-0=v,-v, »>v,=0.80+v,

By PCOLM,

(0.36)(0) +(0.12)(0.80) = (0.36)v, +(0.12)v,
(0.12)(0.80) =(0.36)(0.80 +Vv,) +(0.12)v,
v, =-0.40 m s™ (moves rightwards)

v, =0.40 m s (moves leftwards)

The relative velocity is 0.80 m s,

AV, =v, -u, =0.40-0=0.40 m s™ (leftwards)
AV, =V, —U, =-0.40 — (+0.80) =-1.20 m s™ (rightwards)

b)

Ap, = mAV, = (0.36)(0.40) =0.144 kg m s™ (leftwards)
Ap, =m,AV, =(0.12)(-1.20) = -0.144 kg m s™ (rightwards)

Please note that the total change in momentum in the cart 1 and 2 system is zero. This indicates
that there is no net external force acting on the system.

AE, = 2(0.36)(0.40% ~0%)=0.0288 J

AE,, = %(0.12)((—0.40)2 —-0.80%)=-0.0288 J

Please note that the total change in the kinetic energy of the system is zero. This indicates that
there is no energy lost in this elastic collision.

d)

Reference frame M moves at a constant speed of 0.20 m s! towards right (towards cart 2)

Uiy =Uigamn + Uganm =0 +0.20=0.20 m s™ (leftwards)

Up = Uy o + Ugarnm = 0.80+0.20=1.00 m s™ (leftwards)

In reference frame M,

+
<~ 7] «— 2] (-(-——)
0.20 m3' LOOMms!
Head-on collision in the Earth frame, by RSOA = RSOS,

2
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Uy —Uim =V = Vo
1.00-0.20=v,, —V, >V, =0.80+Vv,,

By PCOLM,

(0.36)(0.20) +(0.12)(1.00) = (0.36)v,,, +(0.12)v,,,
V,y =—0.20 m s™ (moves rightwards)

V,y =0.60 m s™ (moves leftwards)

Please check that the relative velocity is 0.80 m s in this reference. It was the same in the Earth
frame as well. This shows that the relative velocity is the same in all inertial frames of reference.

Change in velocity in reference frame M,

AV, =V, —U;,, =0.60-0.20=0.40 m s™ (leftwards)
AV. om — Uy =—0.20—(1.00) = -1.20 m s™ (rightwards)

om =V

Change in momentum in reference frame M,

Ap,,, = MAV,,, =(0.36)(0.40) = 0.144 kg m s™ (leftwards)
Ap,y = M,AV,, =(0.12)(-1.20) = -0.144 kg m s™ (rightwards)

AE, , = %(0.36)(0.602 -0.20%)=0.0576 J

AE, , = %(0.12)((—0.20)2 —1.00%) =-0.0576 J

Please take note that the individual change in kinetic energy in cart 1 or cart 2 is different in this
frame compared to the Earth frame. However, the total change in kinetic energy is still zero.
This reinforces the fact that the total change in kinetic energy is the same in all inertial frames of
reference regardless of the type of collision.

e)

Now, the collision is elastic and the velocity of cart 1 is +0.30 m s after the collision (moves
towards left).

In the Earth frame, by PCOLM,

(0.36)(0) +(0.12)(0.80) = (0.36)(0.30) + (0.12)v,
v, =-0.10 m s™ (moves rightwards)

AE, , = %(0.36)(0.302 ~0%)=0.0162 J

AE,, = %(0.12)((—0.10)2 -0.80%) =-0.0378 J

> AE, =0.0162 +(-0.0378) = -0.0216 J
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The loss in the kinetic energy is expected as this is an inelastic collision. The loss in kinetic energy
goes to increase the internal energy of the system.

Reference frame M,

Uiy =Usgamn + Ugam =0+0.20=0.20 m s™ (leftwards)

Uy =Us o + Ugamnm = 0.80+0.20=1.00 m s™ (leftwards)

Viw =Viea +Veamm =0.30+0.20 =0.50 m s™ (leftwards)

Vom =Voran +Veanw = —0.10+0.20=0.10 m s™ (leftwards)

AE,, = %(0.36)(0.502 ~0.20%)=0.0378 J

AE, , = %(0.12)((—0.10)2 -1.00%) =-0.0594 J

3" AE, =0.0378 + (-0.0594) = -0.0216 J

Please take note that the energy loss in reference frame M is the same as that of in Earth frame.
This indicates that the gain in internal energy is the same in all inertial frames of reference.

a)

v _(0.36)(0) +(0.12)(0.80)

=0.20 m s* (leftwards
oM 0.36+0.12 ( )

b)

Uiem =Uigan + Uganow =0 —0.20 =-0.20 m s™ (rightwards)
sgath + Uganen = 0.80—-0.20=0.60 m s™ (leftwards)
V,en =0.40-0.20=0.20 m s™ (leftwards)

V,cn =—0.40-0.20 =-0.60 m s™ (rightwards)

U,em = U

Please take note that the velocities simply change sign after the elastic collision in this centre of
mass frame (zero-momentum frame). This always happens for elastic collision in CM frames and
it simplifies tedious calculations greatly.

AV, ¢y =0.20 - (-0.20) =0.40 m s™ (leftwards)
AV, ¢y =-0.60 — (+0.60) = -1.20 m s™ (rightwards)
APy = MAV,,, =(0.36)(0.40) =0.144 kg m s™
AP,y = M,AV, ¢, =(0.12)(-1.20) =-0.144 kg m s™

AE, cn = %(0.36)(0.202 ~(-0.20)%) =0

AE, o = %(0.12)((—0.60)2 ~0.60%)=0
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is a uniform piece of sheet metal, let the mass of each square be m.

3m(15)+m(5) +2m(10) _,, o

CM

CM

The coordinate of the CM is (11.7 cm, 13.3 cm) which is outside of the sheet metal.

3m+m+2m

3m(5) + m(15) + 2m(25) _133¢em
3m+m+2m

Since the rod is thin, we assume that it has negligible thickness.

a)
The infinitesimal mass of the rod: dm = Adx = rdx
The centre of mass along the x-direction:
1 1 A% A2
Xem :—jxdm =—'[x(/1dx) =—dex =——
M M My M 2
(M/L)12 L
Xem = 4 A
M 2 2
b) It is a non-uniform rod which has mass per unit length varying with x.
The infinitesimal mass of the rod: dm = Adx = aXdx
L2
Integrating it to find the total mass of the non-uniform rod gives M =
1 1 1 art o
Xem = M,[de _Mj.x(ﬂdx) _Mj.x(axdx) —MIX dx
al® al® 2L
Xcm [eppu——} —2 = —
M 3 al 3
— 13
2
a) Neglecting air resistance, the only external force acting on the projectile is the gravitational force.

Thus, if the projectile did not explode, it would continue to move along the parabolic path indicated
by the dashed line.
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Because the forces caused by the explosion are internal, they do not affect the motion of the center
of mass of the system (fragments).

Hence, after the explosion, the center of mass of the fragments follows the same parabolic path,
the projectile would have followed if there had been no explosion.

b) The center of mass (CM) of the two-piece lands at a distance R from the launch point.
One piece lands at a farther distance R from the landing point (2R from the launch point) of the
CM.
Both pieces have the same mass, the other piece must land at a distance R to the left of the
landing point. This piece will be right back at the launch point.
10 | a) It is a head-on elastic collision. By RSOA = RSOS,
1.50-(-0.400) =v, -V,
1.90=v, -v,
By PCOLM, Z Pinitar = Z Pinal
(0.200)(1.50) +(0.300)(-0.400) = (0.200)v, +(0.300)v,,
0.180 =(0.200)v, +(0.300)(1.90 +v,)
v,=-0.780 ms™
v,=1.12ms"
b _
) Voo = (0.200)(1.50) + (0.300)(—0.400) _0.360 ms™
' 0.200 +0.300
o (0.200)(-0.780) +(0.300)(1.12) 0360 ms™
' 0.200 +0.300

In the center of mass frame, Vv, .ciore = Vematter
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and
d)

The velocities in the CM frame (zero-momentum frame) before the collision,

=1.50-0.360=1.14 ms™*
Uyem =Useamn T Veamew = —0-400-0.360 =-0.760 m st
z p, =(0.200)(1.14) +(0.300)(-0.760) =0

Uiem = Uigarn +VEarth,CM

The velocities in the CM frame (zero-momentum frame) after the collision,

=-0.780-0.360=-1.14 m s™
Voem =Vaean +Veanew =1.12-0.360=0.760 m s™
> p; =(0.200)(-1.14) +(0.300)(0.760) = 0

Viem =Vigarn +VEarth,CM

Please take note that the velocites change their signs after the elastic collision in the CM frame

(zero-momentum frame). This fact greatly simplifies tedious calculations in elastic collisions.
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1 |a)
—— _— YrverEarth— —  —  —
S w— - —
—Yboat,river [ _—  — —
— | Vpoat,Earth o
\7boat,Earth :vboat,river +\7river,Earth
Viputar = ¥5.007 +10.02 =11.2 km h'*
Vv,
l9=tan_1 _[lver,EarTh :tan_l(SIOOJZZG_GO
Vboat,river 100
b)

0 | Vboat Earth

V,

boat,Earth = Vb

Vion cann = 10.0% =5.00% =8.66 km h*

v
6 =tan™ [—J‘“”'Eanh J =tan™ (—222} =30.0°

boat,Earth

oat,river + Vriver ,Earth
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Total momentum of the system (Romeo, Juliet and boat) is zero. No net external force is exerted on the
system as Juliet moves carefully moves to the rear of the boat, hence, the principle of conservation of
momentum can be applied.

2.p=0
MietV juier — Z M V., =0

@ =(77.0+55.0+ 80.0)dbt—Oat

juliet

(55.0)(2.70)
= ~0.700 m
(77.0 +55.0 + 80.0)

a) | By PCOLM,
4mv =4mv,  +mv

vV, =4 -4v,
By RSOA = RSOS,

V=V_ -V, >V, =V+V,,

V+v, =4 -4v, —3v=5, —->v, =3v/5
v, =8v/5

% of kinetic energy transferred to m,

1 (8vY
im .
2 |5 64

1y 425
2
=0.64 — 64%

Method II: Using zero-momentum frame (center-of-mass frame)

_4mv+m0 _ 4v

cm

sm 5
The velocities of particle in the zero-momentum frame before the collision,
Vamem = Vameath T Vearhem =V — 4_V = !
’ ’ ’ 5 5
Viem = Vmegath T Vearthem = 0 4_V = _4_V
‘ ‘ ‘ 5 5

After the collision, the sign of velocities changes in CM frame, hence,
4v
5
Rewriting the velocities after the collision in the Earth frame,
VvV 4y 3v
cm,Earth — _g + ? - ?

4 4v 8v

m,Earth — Vm,cm +ch,Earth = ? + ? = ?

' Vv d '
Vamem :_g ana v, cy =

V4m,Earth = V4m,cm +Vv

\'
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% of kinetic energy transferred to m,

1 8v 2
im -
2 5 64

1y 425)
2
=0.64 - 64%

Note: There is a high chance that students might perform calculation error in solving simultaneous
equations in the Earth frame (first method). The zero-momentum frame does not involve such
equations.

b)

before after
v/5 L/
1l 1
3|9

4m m

Vs <0

lv/s

centre of mass frame centre of mass frame

_4mv _\ﬂ
““ Bm 5

Using the vector diagram could help you find the direction of velocity of 4m in the
center-of-mass frame readily.

Velocity of Earth in
CM frame, Vi, om

Vi, in Earth
Vy in CM frame
frame 2]
V4m,CM = V4m,Eanh + VEanh,CM

Note: The diagram may help visualize the direction of velocities in earth and zero-
momentum (CM) frames. The total momentum in the CM frame is zero.

10
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c)
Vy in Earth frame at
maximum deflection Vym in CM
angle ! frame
Opor.
Velocity é‘f CMin 0 ;‘r
Earth frame, Vey carn ’ !
V,
sing,_ ="M _ wvis _1
CM FEarth 4V l 5 4
8. =145°
a) f’
B> 4.om ® +
1.0 ko 2. o%ég ‘ —
(at t&et)
After the inelastic collision,
<D _ ®— (.= mc'
—0.50 M
1 head-on elastic collision
coefficient of restitution=e ={0<e <1 inelastic collision
0 perfectly inelastic collision
1.50-(-0.50 . . ..
e= # =0.5 inelastic collision
4.0-0
b) | Earth reference frame

AKE

Earth frame

1 2, 1 > (1 2, 1 2
= BO)L5) +(L0)(-0.5) —(5(3.0)(0) +§(1.0)(4.0)j

AKE =-451]

Earth frame

Reference frame M moving at -1.0 m s relative to Earth.

Uy =Ug +Uzy =4.0+41.0=5.0ms*
Upy =Use +Ugy =0+1.0=1.0m s™
Viy =Vie +Vgy =—05+1.0=0.5ms™

Vam =Vie +Vgy =1.5+1.0=25ms™

11
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AKE

M frame

1 2 1 2 1 2 1 2
=2 (30)(25) +(1.0)(0.5) —(5(3.0)(1.0) +§(1.0)(5.0)j

AKE =-451]

M frame

Please note that AKE of the system regardless of inertial frames of reference. However, the
change in kinetic energy of individual masses is different.

a)

@p—%r4§*°M§\ @
0.10ky 0.050 k4 Eacth W

_ 0.100(45.0) +(0.050)(0)
™ (0.100 + 0.050)

— _ _ -1
u0.1OO,CM - uO.lOO,Earth + l"IEar‘rh,CM =45.0-30.0=15.0ms

=30.0 ms*

1
Ugosocm = Uoosogarth T Ugarthom = 0-30.0=-30.0ms

b)

U =Uo100om ~Yoosocm = 15.0- (_30-0) =450ms*

rel

Please note that the relative velocity in all inertial frames is the same.

Consider a perfectly inelastic collision. By the principle of conservation of linear momentum,

(0.100)(45.0) = (0.100 + 0.050)v
Vv =30.0ms*

common

loss in KE + gain in internal energy of the system =0 (by PCOE)

common

Internal energy = %(0.100)(45.0)2 - %(0.100 +0.050)(30.0)* =33.8 J

d)

Kinetic energy after the collision would be 0.8(% (0.100)(45.0)2j =81J

By PCOLM,
(0.100)(45.0) = (0.100)v, + (0.050)v,

v1=45—V?2

By PCOE,
2
81J=1(0.100) 45-"2 | +1(0.050?
2 2) "2

v, =48.97 ms*
v,=20.52ms™*

Please take note that in this collision, only 20.25 J of energy is converted to internal energy.

12
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2

C=>u
A “% Bardh Promme

The kinetic energy of the carts in the Earth reference frame is
1 1 1

K ==mu® +—m(2u)2 ==-m5u®
2 2 2

In another inertial frame of reference, the kinetic energy must be the same. This can be achieved by
exchanging the speeds.

If we choose the inertial frame travelling towards A with a speed u then this would result in the speed of
2u for A and u for B. Hence, their sum of kinetic energy would be K again.

<— Wt (‘eneha\ Lrare)

CaR <O
A %
00 4a %q

m, = pV, :pgﬂa3 =m
4 3
m, =2pV, = 2p§ﬂ(2a) =16m

m, =3pV, =3pgﬂ(3a)3 =81m

~ma+m,4a+m,9 ma+16m(4a)+81lm(9a) 8.1a

M m, +m, +m, m+16m + 81m
8.1a away from the starting point O.

The center of mass velocity is the same before and after the collision.

m(450) + m(0) + mV.
Veyy =300 ms™ = (450) + m(0) + Y, —V,, =450 m s*
’ m+m+m ’
4 mM(0)+m(240) + mV. .
V., =0ms*= 3% 5V, =-240ms* AY
cy m+m+m 3 7 Jay
V, = V2 +V2, =(-240) + (450)* =510 m 5™ 3
V.

f=tan?| 2L |=tan™ 450 =61.9° above the horizontal Vg

o 240 2

13
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No net external force acting on the system, hence, the total momentum of the puck system is
conserved in both vertical and horizontal directions.

Z p, =(0.200)(3.0) =(0.200)v, cos(30.0°) + (0.200)v, cos(60.0°)
3.0 =v, c0s(30.0°) +v, cos(60.0°)

Z p, =0=(0.200)v, sin(30.0°) - (0.200)v, sin(60.0°)

v, sin(30.0°) = v, sin(60.0°) > v, =v2\/§

3.0 =v,~/3¢0s(30.0°) + v, c0s(60.0°) >V, =1.5 m s
v,=2.6ms*

b)

1 _

P

-V4

10

(1)

A

— -

VB,Earth :VB,A +V,
=V VA,Earth
=V —(-v) =2v (upwards)

,Earth

B,Earth

VB,A
VB,A
Using PCOE for the ball A or B,

1 .
mgh+0:0+§mv —V =,/2gh

Vg =2V =4/8gh

14
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b) V., - MA(=V) + Mg (V) _ m,(-v)+nm,(v) :(n —1)\/ (upwards)
m, +mg m, +nm, n+1
Before the collision, their velocities in the CM frame are
n-1 2n
Upem = Uagarn +VEarth,CM =-V- n+1 V== n +1V
n-1 2
Ugcm = Ug garth +VEarth,CM =tV - m V= mv
After the collision, their velocities in the CM frame would just change their signs
AM T ht1
\% = —Lv
BCM n+1
¢) | Using PCOE,
1 5
EmAvA +0=mgH +0 -V, =2gH
Their velocities in the Earth frame are
2n n-1 3n-1
Vagath = Vacwm +VCM,Earth = mv + m V= n+l v
3n-1 3n-1
Vv, =+/20H = V= \J2gh
A d [ n+1 J [ n+1 j d
H (3n-1Y
h n+1
d)

H (3n-1) (3n+3-4) (3n+3 4 Y _ 5 4 ?
h n+1 n+1 n+l n+1 n+1
when n — oo, i—>0

n+1

ﬂ—>9
h

15
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HCI H3 Physics 2024
A2 - Rotational Motion

Mr. Pang BiaolJin

General Information

Content: A2

s Kinematics of angular motion

« Dynamics of motion

s Rigid body rotation about an axis of fixed ortentation

1.2

Learning Outcomes

Candidates should be able to:

1.

6.

gshow an understanding of and use the terms anguiar displacement, angular velocity, and
angular acceleration of a rigid body with respect to a fixed axis.

. golve problems using the equations of motion for uniform angular acceleration that are anal-

ogous to the equations of motion for uniform linear aceceleration.

. show an understanding of and use the terms angular momentum and moment of inertia of a

rotating rigid body.

. calculate the moment of inertia about an axis for simple objects by using calcutus and the

parallel-axis theorem or otherwise (knowledge of the perpendicular-axis theorem is not re-
quired).

. show an understanding of torgue produced by a force relative to a reference point, and apply

the principle that torque is related to the rate of change of angular momentum to solve
problems, such as those involving point maasses, rigid bodies, or bodies with variable moment
of inertia e.g. an ice-skater.

derive from the equations of motion, and apply the formula Kpm = %I w? for the rotational
kinetic energy of a rigid body.

. recall and apply the result that the motion of a rigid body can be regarded as translational

motion of its centre of mass with rotational motion about an axis through the centre of mass
to solve related problems, inchwding situvations where the frictional force between surfaces
heuristically takes a limiting value governed by a coeflicient of friction and the normal contact
force (no distinction is made between the coefficient of static and kinetic friction).



A2: Rotational Motion

2 Kinematics of Rotational Motion

In H2 Physics, we have learnt about some angular quantities for a point object in circular motion
(e.g. angular velocity). In H3 Physics, we will extend our discussion to analyzing the rotation of
an extended ohject.

We will constrain our analysis to the motion of a rigid body (a perfectly definite body in which the
relative locations of all particles of which the object is composed remain constant).
2.1 Angular Quantities

Consider a point on a rigid body.

Figare 1: Angular Position of an arbitrary point P on a rotating body.
We define the angular position ¢ of this point. 5 0d7 s riged.
This defines the angular position of the hody. (Qn: Why can we do this?)

The point travels from point A to position B as shown in Figure 2 in a time Af.

Y

0

Figure 2: Motion of a particle on a rotating rigid ohject.

2 Mr. Pang BiaolJin, 2024
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/—%" All {po.\"\-\_ﬁ in rigid body rotote
wrth Same w).

The angular displacement A8 of the rigid body is then given by:
T? 13 ‘(\‘1\ Xe d .

AY =05 — 0, % e e ()
Ab is he same for

The average angular velocity of the body is given by all poin s i Some Hime A"t

By —0; AP
L= (2)

Yoe = TRt T At

The instontaneous angulor velocity of the body is given by
aé
W= (3)
If the instantaneous angular speed of an object changes from w; to wy over a time interval At, the

object has an angular acceleration.

We can define the overage angular acceleration of the body as

Wi —wi  Aw
Kape = fAt 1’:E (4)
Finally, we can define the instantaneous angulor acceleration as
©
: > — X
2 Mgl
dw  d*6 Voo = M body.

';;,’,
OEZR—ES-EEE /M

The velocity of the point is given by its tangential velocity (Why so?), which we recall from H2

Physics aa:

v = 1w (V=0xr) ®

Further, we can write expressions for the tangential and radial components of the/acceleration as

follows: - -
a = é__\f_ = .,i,_ ~ —
ey (W Xr )

4t
ap = T CLTIT LA (7)
"3 —
= dw > -3 dr
T o= X b X o
Iy =7 w2 v (8) dt
- - - ==
= o xr -+ S){DJ X F:?)
FY1: Direchons ot these vyectors? B/ | QL
tangentio MorMo, |
Ay -3
an—:w X Cu\) % 'F‘)
R w follows
e N7V gt handled
A | “’j convepton
at - xr 5 - 3 rototion, iy Pang BiaoJin, 2024
e 14 4w,
« > XN
X fw

/’\w D<: % li’; (,U‘J?,
XN -



AZ: Rotalional Motion

Lecture Example 1 (Uni Phy by YnF, Q9.7)

The angle # through which a disk turns is given by § = @ -- bt — ct®, where
e g, b and ¢ are constants,
e { ig in seconds,
e ( ig in radians.

When £ = 0s, § = /4 and the angular velocity is 2.00 rad s™.
When ¢ = 1.5s, the angular aceeleration is 1.25 rad s7L.

(a) Find the values of a, b and ¢

(b) What is the angular acceleration when 8 = 7 /47

o) -‘{;g a+ b(D) -%."-fc(o‘)a + =L

W,
4P _ b - * = b 2
:E’g, Set . 200 b -3c(D) = L= 2. po.
92

4P . et > 125 = ~b6ce(0Y) ¥ o= -0.139.
D(.“" d.r/ﬂ o X G

ID‘)_ ol = -60—0.;3‘1)4: -
vy e JWhen B lzl-, t=o0.
K= = 6(-0.139)(0)

= O Paudw'i-

4 Mr. Pang BiaolJin, 2024



A2: Rotational Motion

dv
& = p—
2.2 Rotational EOM with Constant Angular Acceleration A dt -
Vv = o d
Noting the similarity between the expressions for linear motion (a = %) and rotational motion t

(v = %, we can write down analogous expressions for the Equations of Motion for rotational
motion with ponstant engular acceleration. J}lv = \fa,cﬂ’ .

dw = oIt v = W+ at.

W = wg + ot (9)
w= W, +ot- H=80+w0t+%at2 (10)
ete .
W= wi -+ 200 — ) (11)
1
f =0+ 5{&) + wg )t (12)

Lecture Example 2 (Uni Phy by YnF, Q9.19)

At ¢t = 0s, a grinding wheel has an angular velocity of 24.0 rads™'. It experiences s constant
angular acceleration of 30.0 rads™2 until a circuit breaker trips at t = 2.00s. From this moment
onwards, it turns through 432 rad ag it coasts to a stop at a constant angular a.ccelela,tlon

(a) Through what total angle did the wheel turn between ¢ = 0s and the time it stopped'?
(b) At what time did it stop? N wT 24.0 rads
O ot L= 0.
(c) What was itg acceleration as it slowed down?
Constapnt of = 30.0rad s

a) 9’ = 8 + ¥4 ‘:'U.‘

{0 +o 2..005Y €2-005 tilsyop) |

= (w, ¢ + -'zoﬁiz)u\— w32,

=
'
(.

= (24.0)(2.00)+ + {30.0) (2 -Oo)rL + 432 .

= T, 540 rad- S L .
b. wl-oos": W-t::o + o &
= 2%.0 + (30.0) ( 2.00)
= &%.0vads "
€5 2 H32- 0+ F(200+ §%0) (4~ 299 .
+ = 12.3s. -

Tutorial: D1, D2% (sfarred questions are compulsory)
C - M,.g;ﬂe) w = WO'f’O(_'f/,

0

X

n

g4 .0 + o (12.3 ~ D_)
e 8(1:’?‘{‘0_55’

M
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A2: Rotational Motion

3 Kinetic Energy of a Rotating Body

A rotating rigid body has kinetic energy.
Let us analyze a rigid object rotating about some axis with some angular velocity w.

Consider a particle of mass m; on the object, at some distance r; from the rotation axis, shown in
Figure 3. This particle s moving with some velocity v; in the COM frame.

Figure 3: A rigid object rotating about the z axis with some angular speed w.
Applying Equation 6, we can deduce that the kinetic energy of the point Kj is given by:
1 2

1 e
K, = Sl = Emirfwf (13)

Recalling further that all particles share the same w, and summing over all particles, we get an
expression for the total kinetic energy K, of the rotating rigid object:

1
Koot = Z(imtrfwf)
i

1
= Z(Emir3w2)
i

. (14)
= §(Z ?nz"!‘,?)wz
i
= —é—f w2
Here, we define the quantity I as the moment of inertia of the body.
1= meirf‘ (15)
i

6 Mr. Pang BiaoJin, 2024



A2: Rotational Motion

Lecture Example 3 (Serway, Example 10.3)

Consider an oxygen molecule {O) rotating in the zy plane about the z axis. The rotation axis
passes through the center of the molecule, perpendicular to its length.

The mass of each oxygen atom is 2.66 x 1072 kg, and at room temperature the average separation
between the two atoms is d = 1.21 x 10710 m.

You can treat the atoms as point particles.
(a) Caiculate the moment of inertia of the molecule about the z axis,

(b) The angular speed of the molecule about the z axis is 4.60 x 102 rads™1,
Calculate its rotational kinetic energy.

a7
2 PRI d N2 L= Ve
- e - e e [ S
by I = Z; M r oz m[z ) 4+ m( 2) . c}—%m(% |
- A 2 '
=z md -

- L -6 l.2| % —|o>5‘
= 7 (2.66x10 X 10
= .95 % o "t kg m .
b) K"o-{- = 'E_—Iwi .
= Liacxiw ) (weox 10'")

b

= 2.0b 10 VT,

T Mr, Pang BiacJin, 2024



A2z Botational Motion

3.2 Moment of Inertia

We now expand on the expression for moment of inertia defined in Equation 15. If we consider
the rigid object to consist of infinitely many particle, each individual m; — 0. In this limit, the

expression can be written as an integral over the object:

I = ?Aiigloz.:mw? = /Tzdm (16)
%

Lecture Example 4 (Serway, Example 10.6)

¥ ¥

1

!

¥

" M

: ex ﬂ/: "“’L‘:"

! —tpn -

: iy

; S x

i o

i

: hx—b\

H Am: /'\/O].)C,

i

- L g = _.'fi—,o]L,
L.

Figure 4: Uniform rigid rod of length L

“aleulate the moment of inertia of a uniform rigid rod of length L and mass M about an axis
perpendicular to the rod {the y axis) and passing through its center of mass (Figure 4).

1=jr1dM.
/2

1= /M Ndx,
S'L’; .3(/ (L‘> N

1 /2
;ﬁ— 3 dﬁ)&zdz_’,_

i - bfz
-/
_ .__'\:}___,[/'é—)(;a]Lz
L -Lja2
= _L_Ml_?l

12

&uiok checlkl ™ De youw expect +he moment of nerfa. +o

be h@.ar‘eaﬁem lovver or the some

. . 2
the axis were Y insfteachf. Pang Binolin, 2024



A2: Rotational Motion

3.3 Applying the Parallel Axis Theorem to find Moment of Inertia

Suppose the moment of inertia of a body of mass M about an axis passing through the center of
mass of the body is given by Ioar.

Figure 5: Parallel Axis Theorem

The parallel-axis theorem then states that the moment of inertia I about any axis parallel to and
a distance D from this axis is given by: &ﬁik

I=Iop+MD? (17)

Lecture Example 5 (Serway, Example 10.6(modifled))

Refer back to Figure 4. Calculate the moment of inertia of a uniform rigid rod of length L and
mass M about an axis passing through one end of the rod (the 3 axis)

{a) through direct iutegration, without using your answer in Example 4

(b} by using your answer in Example 4 and the parallel-axis theorem

a- 1= (r2dm b. 7 - Frem Eg 't,
L o M . -~ —J’“ML_Q.
= j > (“,‘:)ij’ Lem = 73
° L N2
- M2 )
= % j"’ " doe L= ‘IcM L (2)
[}
L 2
- M L 52 e Lepl T+ ML
- 7 I ]o = ,2ML L
! — .
= E_ML—Z' = ”"; M

Tutorial: 3%, D4*, D5, D6 (starred questions are compulsory)
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A2: Rotational Motion

4 Torque

4,1 Tundamentals and Recap of H2 Content

We recall from H2 Physics that a force exerted on a rigid extended object pivoted about an axis
tends to cause the object to rotate about that axis.

Fsin ¢

———

Figure 6: A force F' applied on a wrench. d = rsind is known as the moment arm.

This tendency of the object to rotate is quantified by torgue 7, of which magnitude is given by the
product of the magnitude of the force exerted on it ' and its moment arm d {See Figure 6 above
for an example).

T=Fd 7 (18)

Note that torque is a vector.

Being slightly pedantic and considering the rotation direction, we notice that an object rotating
about a fixed axis has two possible directions of rotation.

Typically, we define torque to be positive if it tends to produce counter-clockwise rotation and
negative if it tends to produce clockwise rotation.

We thus have our final equation:

r=+Fd (19)

This will suffice for the H3 Physics course.

10 Mr. Pang Biaodin, 2024



A2: Rotational Motion

4.2 Relating Torque to Angular Acceleration

We know from Newton's Second Law that a net force acting on an object will cause it to accelerate.
Similarly, what happens when there is a net torque on an object?

dFt
3
P
T ‘ \&
:

Figure 7: A rigid object rotating about an axis through O.

Consider a rigid object rotating about a fixed axis, such as in Figure 7 above.
Breaking the object down into infinitesimal mass clements dm, cach has a tangential acceleration
a; caused by an external tangential force dF; acting on it.

By Newton’s Second’s Law,
dF; = (dm)a; (20)

The torque dr associated with the force dF; can then be expressed by:

dr = r(dFy) = r(dm)a, (21)

Invoking our expression in Equation 7 for a;, we thus have an expression for d7:

dr = ar’*dm (22)
cigid body-

Note that every dm here has the same angular acceleration o. This allows us to obtain an expression
for the net torque through integration.

Z Ti= [av‘zd'm =« /r'zdnz = la (23)

Finally, we simplify the expression by invoking the expression for the Moment of Inertia defined in
Equation 16.

ZT:IQ (24)

11 Mr. Pang BiaoJin, 2024




A2: Rotational Motion

Lecture Example 6

A light cable is wrapped several times around a uniform solid cylinder that can rotate freely about
its axis. The cylinder has a diameter of 0.120 m and mass of 50 kg.

90N

Figure 8: Cylinder and cable
The cable is now pulled with a force of 9.0 N, as shown in the Figure 8.

Assuing that the cable unwinds without stretching or slipping, what is its acceleration?

Torq-tc due To +he appla‘ed bree= Fr.

Mowmen+ of

nertia  of cxylinder = "L{Mr"“-
Angular acceleratien is thus
e L o EE o JE
i - "‘Ii'f“frz M,
(50 ) (0. 060)
= (. Orads ™'
of mbfe

A&fé‘fera'HOn 5 Thus a

R o

(0.060)( 6.0)
= 0. 386 mg =2 .

A

W

12 Mr. Pang BiaoJin, 2024




A2: Rotational Motion

Lecture Example 7 (Serway, Example 10.10)

A uniform rod of length L and mass M is attached at one end to a frictionless pivot and is free to
rotate about the pivot in the vertical plane, as shown in Figure 9.

L X
I - 1

Pivot

Mg
Figure 9: Rod rotating freely about a pivot

The rod is then released from rest in the horizontal position.

In terms of the gravitational acceleration g, what is the initial lincar acceleration of the right end
of the rod?

7= My (5)
s s = Mj( ) B 3q
= E & - ‘JéML - ER
ing then a, -_—_r‘.o(,
- 3 _ 33
o= Lo = L(P)= F

Tutorial: D7, D8, D9*, D10
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A2: Rotational Motion

5 Angular Momentum

5.1 Fundamental Definition

We first establish the rotational counterpart to linear momentum: angular momentum L.
Similar to how linear momentuin is given by the product of mass and velocity, the form of angular
momentum should not surprise you:

L=1Iw (2

o
Tt
g

5.2 Conservation of Angular Momentum

Revisiting what we know about conservation of linear momentum in H2 Physics, we recall:

dp
F=— (2
> F=0 28]

This then suggests that if > F =0, p; = pf.

Similarly, we note that:

dL _
Yy = = (27)

We then observe that if Y. 7 =0, L; = L i
(To be pedantic however, note that > 7 and L have to be measured about the same origin.)

Lecture Example 8 (Uni Phy by YnF, Q10.37)

Find the magnitude of the angular momentum of the second hand on a clock about an axis through
the centre of the face of the clock. The clock hand has a length of 15.0 em and a mass of 6.00 g.
Assume the second hand is a slender rod rotating with a constant angular velocity about one end.

14 Mr. Pang BiaolJin, 2024




A2: Rotational Motion

Lecture Example 9 (Uni Phy by YnF, Q10.42)

A diver comes off a board with arms straight up and legs straight down. giving her a moment of
inertia of 18 kgm?® about her axis of rotation. She tucks into a small ball, decreasing her moment
of inertia to 3.6 kgm?. While tucked, she makes two complete revolutions in 1.0 s from board to
water. If she has not tucked at all, how many revolutions would she have made in 1.5 s from board
to water?

Anga}c\r Mo Mentum  of the iselated  diver gys e s conervid.

H?ﬂce

-Llw' = IPW‘P
(18) w; = z,ex(z-_xz_nv
-
. e B
il w ket

Réevolutions n 1.Sg

|27

= W, x
2z

0. 6 reve(utiony |

Tutoerial: D11*, D12
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A2: Rotational Motion

6 Rolling Motion of a Rigid Object

To conclude our discussion, we extend our discussion to the rolling of a rigid object along a flat

surface.

Typically, such analysis is not easy.
We can (and will, in this case), simplify our discussion by

1. focussing on the center of mass of the object

2. considering the case of pure rolling, where the object rolls without slipping.

Rotation of the wheel around

Translation of the center the center of mass: for rolling
of mass of the whesl: without slipping, the speed at
velocity 8, the tim must be v,
3 e Uy’ = Uy
f_‘,&‘“m‘@* g‘ﬁ w*%‘?‘*
‘ & B
) G \ A 32'? o X
! § '
%}‘%& };S ‘9; 34
___.__....:'i'&nwggi T —— ‘W,MMM%W&%@@
1 i;c.m v = "Bx:m

Combinsation of translation
and rotation: rolling
without slipping

4

iy IF R T el oo
Ps
U=

¥

Figure 10: Pure Rolling Motion

We can break down pure rolling motion into a combination of translational motion and rotational

motion (Figure 10 above).

For pure translational motion, the cylinder does not rotate, so each point moves to the right with

speed VoA -

For pure rotational motion, the rotation axis through the center of mass is stationary, with each

point having the same angular speed w.

CCOM Fm\me ot re-{ﬁ:renceﬁ,

The combination of both these two motions represents pure rolling motion.

In the next page, we will now derive expressions for the velocity and acceleration, as well as the

kinetic energy of such a rotating system.

16
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AZ: Rotational Motion

Consider a uniform cylinder of radius R rolling without slipping {Figurc 11).

s=Ro
Figure 11: Pure Rolling Motion of a cylinder

Tts center of mass moves a distance of s = Rf as it rotates through an angle #. The linear speed of
the center of mass veoss is thus given by: '

' ds df
vom = =R = Ruw (28)

Consequently, the linear acceleration of the center of mass acyr is thus given by:

dv duw
Aoy = -—;—M = i = Ra (29}

Finally, by invoking the approach shown in Figure 10, we can write down the expression for the
total kinetic energy K of the object:

1 1
K= EI(;ng + E.MT'U%M : (30)

Tutorial: D13*. D14

17 Mr. Pang BiaodJin, 2024
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i H3 PHYSICS 2023

Example 1 (IOAA 2007, theoretical round, questions 6 and 7)

a) A sun-orbiting periodic comet is farthest from the Sun at 31.5 AU and closest to the Sun at 0.5 AU. What
is the orbital period of this comet?

b) Forthe comet in part (a) above, what is the area per unit time (in square AU per year) swept by the line
joining the comet and the Sun?

Note: 1 AU = 1 astronomical unit, which is given by the average Sun-Earth distance, where
1 AU = 149.6 x 10°km. For part (b), you may use that the eccentricity of the orbit and the semi-minor axis b
are related to the semi-major axis a by b? = a? (1 — e?), and that the area of an ellipse Aeiipse iS given by
Aeiipse = TTab. Refer to Figure 1 for the eccentricity of an orbit.

Solution

a) The major axisis 31.5 + 0.5 =32.0 AU.
Hence, the semi-major axisis a =32.0/2 = 16.0 AU.
We use Kepler's third law and compare the comet’s orbit to that of the Earth, so that we can keep
everything in “solar-system units” (aeath = 1.0 AU, the orbital period of the Earth is Pearth = 1.0 year).

P2« a® =P =a3? =16.03/2 = 64.0 years.
b) The area of an ellipse is given by Aelipse = T a b.
The eccentricity is e = 15.5/16.0 = 0.969.
Since b? = a? (1 — e?), the semi-minor axis b = 3.97 AU.
Hence, the area of the ellipse is ma b = 1 (16.0) (3.967) = 199 AU
Thus, the area swept by the line joining the comet and the Sun is 199/ 64.0 = 3.12 AU? yr,
Example 2

The distance between Earth’s surface and an object of mass m is changed by an amount Ax.

Show that when x = Re and Ax << Rg, the gravitational potential energy of the system reduces to the
expression AU = mgAx.

Solution

GMEm GMEm
T
(Rg + 4x) Rg
_ GMEmMRE GMgmMRE
Rg(Rg+4x) RE
GMgmREg
= =7 ax + gmRg
RE(1+R—E)

~ —gmRg (1 —2—2) + gmRg

=~ —gmRg + gmAx + gmRg

~ mgAx
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Example 3 (University Physics by Young and Freedman, 12.40)

A thin uniform rod has length L and mass M. A small uniform sphere of mass m is placed a distance x from
one end of the rod, along the axi of the rod, as shown in the figure below.

M

Y YA

L >

Figure 4: Thin uniform rod and small spherical mass

a) Calculate the gravitational potential energy of the rod-sphere system.

b) Show that your answer reduces to the expected result when x >> L.

Solution

a) Taking 6M to be the mass of a small section of the rod, and A = M/L the mass per unit length of the rod,
so that &M = Adr is the mass contained within a section of thickness ér. we have for the gravitational

potential energy due to m and a section M at a distance r from m,

_G(6M)m
r

oU =

GA(ér)m GMm 1 _
- =— —6r
r L r

oU =

For the gravitational potential due to the whole rod, we have to integrate rfrom xto x + L,

. HFeMmm1 GM - GM GM,
U =—J m—‘a’rz— Lm [Inr] g Lm[ln(.HL)—hl(x)]:— m(ln

L 1 L

x+LJ
x

X

b) Using that L << x, so that L/x << 1, we can do a Maclaurin expansion, so that

]11x+L :ln(1+£}z£
X

X X

from which,

_GMm { mX* L _GMm L _ GMm
L x L «x X

U=

]

which is indeed what we expect if the length of the rod is much smaller than the distance between the
rod and the mass m: from a very large distance, any object will look (or behave) like a point object.

© Hwa Chong Institution (College)
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Example 4 (IOAA 2010, theoretical round, question 2)

-
—

If the escape velocity from a solar-mass object’s surface exceeds the speed of light, what would be its radius?

You may use the following values:
€c =299 792 458 m s,
G =6.6726 x 10 N m? kg2,
Msun = 1.9891 x 10%° kg.

Solution
At the edge of a black hole, the escape velocity is equal to the speed of light, c.
If an object is moving at the escape velocity, its initial speed is just enough to reach infinity with no speed (or

kinetic energy) left. At infinity, the gravitational potential energy is also zero. Hence, the total energy is zero.

kinetic energy = - gravitational potential energy

Mm
—mc?=G6G—
1 Mr
—CZ = G7
-11 30
_ @ _ 2(6.6726x10711)(1.9891x1030) — 29535 m.
c (299 792 458)2

Hence, if the escape velocity exceeds the speed of light, the radius must be smaller than 2,953.5 m. Note
that the radius of a (nhon-rotating, un-charged) black hole as calculated above is called the Schwarzschild
radius, rs. (Since all numbers are given to at least five s.f., the final answer can be given to five s.f. as well.)

Example 5 (IOAA 2011, theoretical round, question 3)

On 9 March 2011, the Voyager probe was 116.406 AU from the Sun and moving at 17.062 km s. Determine
the type of orbit the probe is on: (a) elliptical, (b) parabolic, or (c) hyperbolic.

You may use the following values:
1 AU =1.4960 x 10" m,
G =6.6726 x 10 N m? kg2,
MSun = 19891 X 1030 kg
Solution

We calculate the kinetic energy KE and gravitational potential energy GPE of the probe in Sl units with respect
to the Sun.

KE=%mv?=%m(17.062 x 10%)?2 = 145,556,922 m (where m is the unknown mass of the probe).
GPE = -GMm/r =-7,621,575 m.

Since the total energy TE = KE + GPE > 0, the probe is on a hyperbolic orbit (c).

© Hwa Chong Institution (College)
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Example 6

a) Forthe Hohmann transfer orbit in Figure 10, write down the expressions for v1 and vs, the velocity of the
object in circular orbits 1 and 3. Denote the large mass as M.

b) Write down expressions for v, and vp, the velocity of the object at apoapsis and periapsis of the elliptical
orbits in terms of vy, v3, Av and Av'.

c) Using your understanding of elliptical orbits, write down an expression relating va and vp. You may use
any suitable lengths defined in the problem.

d) Applying energy considerations to the elliptical path, and using suitable results obtained in previous parts,
show that Av and Av’ are given by Equations 30 and 31.

Solution
a) By =F
Mm_ v?2
S r
GM
/ and vz = /R,
b) vp = vy +Av

v, = Vg3 — AV’
c) By the principle of conservation of angular momentum,

vpR = VR’

d) By the principle of conservation of energy,
1 , GMm 1 _ GMm
2" T TR T2 T TR
1, 1 _(R\>* GMm GMm
i~y () =~

1, R? 1 1
2\ gz) =M (E‘E)
1 R'?2 — R? . R'—R
zvp R'2 - RR'
1 (R —R\ (R +R em R'—R
2P TR R ) RR'
R'—R R R’
2 = 26M ( )
RR' R +R
26M
R +R
2R’ GM
Av=vp =11 = I R’+R_ R
_ M 2R’
“JR R'+R

Equivalently, we can derive

GM 2R
R’ R+R'

LA —
Av =v3—v, =
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Tutorial A3: Planetary and Satellite Motion

Questions:

1 University Physics by Young & Freedman / 12.39:
A uniform solid 1000 kg sphere has a radius of 5.00 m.

(a) Find the gravitational force this sphere exerts on a point mass of 2.00 kg, placed at the following
distances from the centre of the sphere:

(i) 5.01m,and (i) 2.5m.

(b) Sketch a gualitative graph of the magnitude of the gravitational force F this sphere exerts on a
point mass as a function of the distance r from the centre of the sphere.

2 University Physics by Young & Freedman / 12.41.

Consider the ring-shaped body of mass M as shown in the figure below. A particle with a mass m is

placed a distance x from the centre of the ring, along the line through the centre of the ring and

perpendicular to its plane.

(a) Calculate the gravitational potential energy U of this system.

(b) Show that your answer to part (a) reduces to the expected result when x is much larger than the
radius of a of the ring.

(c) Use F = —Z—U to find the magnitude and direction of the force on the particle.
X

(d) Show that your answer to part (c) reduces to the expected result when x is much larger than a.

3 University Physics by Young & Freedman / 12.76:
As Mars orbits the sun in its elliptical orbit, its distance of closest approach to the centre of the sun (at
perihelion) is 2.067 x 10! m, and its maximum distance from the centre of the sun (at aphelion) is 2.492
x 10 m. Ignoring the influence of other planets, if the orbital speed of Mars at aphelion is 2.198 x 10* m
s, what is its orbital speed at perihelion?

©% Hwa Chong Institution (college)
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4 Shown on the right is a typical elliptical orbit.

The turning points rp, and ra are the distances of closest r b
approach and furthest recession. These points are
usually denoted by the Greek prefixes peri (“near”) and
apo (“away”). Thus, a planet's point of closest T " h r Y
approach to the Sun is called its perihelion, and its
point of furthest recession is its aphelion (helios is sun
in Greek).

(@) Show that, when the satellite is at either of the turning points r, and r, ,

GMm L’
r_

r’+ =
E 2mE

0,

where r is the distance between the satellite and the Earth,
E is the total energy of the satellite and Earth system,
and L isthe angular momentum of the satellite.

(b) Since the equation above has two solutions, r =rp, and r = ra. it can be written as (r —ra) (r —rp) = 0.
Using this, show that

GMm
Fa +r,=————,
E
L2
r,r,=- )
P 2mE

(c) For an ellipse, we have that r, + r, = 2a and ra r, = b?, where a is the semi-major axis of the ellipse
and b is the semi-minor axis. Using this, show that the energy and angular momentum of the orbit in
terms of a and b are given as

E =_GMm ,
2a
1> =—2mEb?.

(d) Using that angular momentum is conserved and that the area of an ellipse is mab, show that

T2 a3
472 GM

where T is the period of the orbit. (Hint: check the derivation of Kepler's Second Law!)

©% Hwa Chong Institution (college)
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5 University Physics by Young & Freedman / 12.87 — modified:

The most efficient way to send a spacecraft from the Earth to
Mars is using a Hohmann transfer orbit. If the orbits of the Earth
and Mars about the Sun are circular, the Hohmann transfer orbit
is an elliptical orbit whose perihelion and aphelion are tangent
to the orbits of the two planets. The spacecraft’s rockets are
fired briefly at Earth to put the spacecraft into the transfer orbit,
after which the spacecraft coasts until it reaches Mars. The
rockets are then fired again to put the spacecraft into the same
orbit about the Sun as that of Mars.

Orbit of Mars

Assume negligible gravitational forces acting on the spacecraft
due to the Earth and Mars.

(a) For a flight from Earth to Mars, in what direction must the rockets be fired at the Earth?
(b) What is the time spent in the Hohmann transfer orbit during a one-way trip from the Earth to Mars?

In order to reach Mars from the Earth, the launch must be timed so that Mars will be at the right spot
when the spacecraft reaches Mars’ orbit around the sun.

(c) Atlaunch, what must be the angle between the Sun-Mars line and the Sun-Earth line?

(d) What is the energy per unit mass supplied to or withdrawn from the spacecraft near Earth to place
it into the transfer orbit? (Consider the force exerted by the rockets to be an external force.)

(e) What is the energy per unit mass supplied to or withdrawn from the spacecraft near Mars to align
the spacecraft’s orbit to that of Mars?

You may use any or all of the data provided below, as well as the equation for the energy of an orbit.

Mass of Sun = 1.99 x 10%* kg

Mass of Earth = 5.97 x 10%* kg

Mass of Mars = 6.42 x 10% kg

Radius of Earth’s orbit = 1.50 x 10! m
Radius of Mars’ orbit = 2.28 x 10 m
Period of Earth’s orbit = 365 days
Period of Mars’s orbit = 687 days

6 International Olympiad on Astronomy and Astrophysics 2008, theoretical round, question 4:
Consider a potentially hazardous object (PHO) moving in a closed orbit under the influence of Earth’s
gravitational force. Let u be the inverse of the distance of the object from the Earth and p the magnitude
of its linear momentum. As the object travels through points A and B, values of u and p are noted, as
shown in the table below. Find the mass and the total energy of the object and sketch the shape of the u
curve as a function of p from A to B.

p (x 10° kg m s) u(x 108 m?)
A 0.052 5.15
B 1.94 194.17

©% Hwa Chong Institution (college)
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7 University Physics by Young & Freedman / Example 12.10 & 12.85:

Suppose we drill a hole through the Earth (radius Re, mass meg) along a diameter and drop a mail

pouch (mass m) down the hole.

(a) Derive an expression for the gravitational force on the pouch as a function of its distance r from
the centre. Assume that the density of the Earth is uniform (not a very realistic model).

(b) Derive an expression for the gravitational potential energy U(r) of the object-Earth system as a function
of the object’s distance from the centre of the Earth. Take the potential energy to be zero when the
object is at the centre of the Earth.

(c) If an object is released in the shaft at the Earth’s surface, what speed will it have when it reaches the
centre of the Earth?

8 University Physics by Young & Freedman / Example 12.89:

Mass M is distributed uniformly over a disk of radius a. Find the gravitational force (magnitude and
direction) between this disk-shaped mass and a particle with mass m located a distance x above the
centre of the disk. Does your result reduce to the correct expression as x becomes very large?

9 International Olympiad on Astronomy and Astrophysics 2013, theoretical round, question 17 — adapted:

A spacecraft is orbiting the near-Earth asteroid Seneca (staying continuously very close to the
asteroid), transmitting pulsed data to the Earth. Due to the relative motion of the two bodies (the
asteroid and the Earth), the time it takes for a pulse to arrive at the ground station varies approximately
between 2 and 39 minutes. Assuming that the Earth moves around the sun on a circular orbit and that
the orbit of Seneca does not intersect the orbit of the Earth, calculate

(a) the semi-major axis as of Seneca’s orbit around the Sun,

(b) the period of Seneca’s orbit Ts.

Express your answers in terms of the Earth’s orbit, that is, in astronomical units (AU) and years.

10 International Olympiad on Astronomy and Astrophysics 2011, theoretical round, question 1 — fast food:

Most single-appearance comets enter the inner Solar System directly from the Oort Cloud. Estimate how
long it will take a comet to make this journey. Assume that in the Oort cloud, 35 000 AU from the Sun, the
comet was at aphelion.

11 International Olympiad on Astronomy and Astrophysics 2011, theoretical round, question 4 — adapted:

Assume that Mars’ moon Phobos moves around Mars in a perfectly circular orbit in the equatorial plane
of the planet, find the length of time Phobos is above the horizon for a point on the Martian equator.
Mass of Mars Mwars = 6.421 x 102 kg; radius of Mars Ruars = 3393 km; rotational period of Mars Pyars =
24.623 hours; orbital radius of Phobos apn = 9380 km.

©% Hwa Chong Institution (college)
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Suggested solutions:

1(a)()) 5.31x10°N
2(a) GMm
N __ oV
X2 +a?
3 2.65x10*m s?
5(b) 259 days
6 5.00 x 10* kg
. Gmcm .
(a) RE3
o 2GMm {1_ X
a’ Jai+x?
9(a) 2.46 AU
10 1.2 x 108 years
11 4.25 hours

©% Hwa Chong Institution (college)

(@)(ii)

(c)

(c)

(b)

(b)

2.67 x 10°N

GMmx
)%

(x2 +a’

44° (d)

-1.0 x 10*2J

Gm.m ,
2RE3 (C)

3.87 years

9.13 x 107 J kgt

7.90x10°m st

(e)

6.00 x 107 J kg*
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Tutorial A3: Planetary and Satellite Motion

Suggested solutions:

1 (@) (i) For a spherically symmetric distribution of mass, the force outside the distribution
is equal to that of a point of the same mass located at the centre. Hence,
F_ GMm

9 r2

_ (6.67x10){1220)(2.00)
(5.02)°

=5.31x10° N
(i) For a spherically symmetric distribution of mass, the force at a point only depends
on the mass “below” the point. Using the 1/8 of the sphere’s mass is located within
2.5 m of the centre of the mass,

GMm
Fg = 2
=(6.67 xlO’“)m
(2.5)
=2.67x10° N
(b) gravitational force
A radius of sphere

>

distance

Inside the sphere, the force increases linearly with distance. Outside the sphere, the
force falls of as 1/r>. The graph being negative indicates that the force is directed
towards the centre of the sphere.

©% Hwa Chong Institution (college)
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2 (&) Taking OM to be the mass of a small part of the ring, and A = M/(2rra) the mass per unit
length of the ring, so that M = Adr is the mass contained within a section of thickness
or. We then have for the gravitational potential energy due to m and a section OM at a
distance r from m,

_G(6M)m :_G(ﬂﬁr)m

SU =
r Jx?+a?

We need to integrate over the whole ring. However, we find that the integration is
independent of x and a, so we find for the total potential energy due to the ring

2 GAm GAm

U=- dr=——222 [f"* =222 _27a=
5 a’ \/x2+a2[ k

GAm

_GAm_ __GMm_
N X’ +a’ I ra?
where we used that M = 2mraA is the total mass of the ring.

(b) Using that a << x, we can do a Maclaurin expansion in a, so that

(x* +a2)7% =f(a)~(x +02)7% =x7,

from which,
GMm -4 -¥ GMm
U=—————=-GMm(x*+a?) "2 *—~GMm(x* + 0? =,
S Gl (' +a°) e vy =S8

which is indeed what we expect if the radius of the ring is much smaller than the
distance between the rod and the mass m: from a very large distance, any object will
look (or behave) like a point object.

©) u=__SMm_ =-GMm(x* +a* )_}/2

VX2 +a?

|:g :_Z_E:GMm[—%(XZJFaZ)% 2X:|:—(X§;-'|\—/I—an:);%.

The minus sign indicates that the force is in the direction of decreasing x, which is
decreasing distance between the ring and m. In other words, the minus sign tells us
that the force between the ring and m is attractive.

(d) Using that a << x, we have
_3 _3
(x2+a2) A z(X2+02) é =X_3,
from which,

u =—w=—Gme(x2 +a2)_% ~—(GMmx) X __GMm ,

(x2 +a2)% i

X

which is indeed what we expect if the radius of the ring is much smaller than the
distance between the rod and the mass m: from a very large distance, any object will
look (or behave) like a point object.

©% Hwa Chong Institution (college)
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4

The angular momentum of Mars relative to the Sun is given by
L=mv,r,

where L is the angular momentum, m is the mass of Mars, v; is the velocity of Mars
perpendicular to the line Sun-Mars and r is the distance between Mars and the Sun.

Using subscripts p for perihelion and a for aphelion, by the principle of conservation of
angular momentum,

L=mv, ,r, =mv,,r,
_ Lv,r, AN

v
p
Lrp

=2.650x10* ms™?,

i

where we use that the velocity at the aphelion and the perihelion is perpendicular to
the line Sun-Mars, so v; = v there.

(@) This question is adapted from https://webhome.phy.duke.edu/~lee/P53/sat.pdf.

E=— GMm +1mv2
r 2

Taking v the radial component of the velocity and v: the tangential component,

GMm 1 _, 1 .,
- +=mv,” +=my,
r 2 2

E=

At the turning points, v; = 0. Using that L = m v; r, we get

GMm L’
- +

E=
r 2mr?

Multiplying by r?/E and rearranging,

, GMm_ L2
+ r—

r =
E 2mE

(b) (r—ra)(r—rp)=0,
r’—rr,—rr,+r,r, =0,
r’—r(r,+r)+rr, =0.

Comparing terms [see part (a)], we have

GMm L2
—— and  rnr,=- .
E  2mE

(c) With the given equations, this part becomes trivial:

r+r =-

E 2a
L2
b =— = L?=-2mEb?.
2mE

©% Hwa Chong Institution (college)


https://webhome.phy.duke.edu/~lee/P53/sat.pdf

333 AR
HWA CHOMNG

H3 PHYSICS 2024

(d) Recall from the derivation of Kepler's Second Law that
L _oA
2m 5t

Note that the area swept out in one period T is equal to A = rrab, so that

L rzab 2mzab
—="= = L=
2m T T
Squaring both sides,
,  4m’r?a’h’
L = T—2
Also, from part (c) we have
GMm , GMm?b?

L2 =—2mEb% =2m

b2
a a

Comparing the two equations for L?,

4m’z’a’h?  GMm’b’

T? a
47 GM
T2 &
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5 (a) The spacecraft has to speed up to get into a higher orbit (larger 2a) about the Sun. By
Newton’s Third Law, the rockets must be fired opposite to the direction of motion of the
spacecraft.

(b) The major axis of the Hohmann orbit will be equal to the sum of the radii of Mars’ and
Earth’s orbits, 2a = (1.50 x 10'%) + (2.28 x 10*!) =3.78 x 10* m, so a=1.89 x 10 m
= 1.26 AU, where 1 AU = 1 astronomical unit is the radius of Earth’s orbit. By Kepler's
Third Law,

WV
THohmann = (MJ TEarth = 516 dayS.

aEarth

Hence, the spacecraft will spent 516 / 2 = 258 days in the Hohmann orbit.

(c) Referring to the figure in the question, we can assume that the Earth was “at the
bottom” at the time beginning of the transfer, while Mars is “at the top” at the end of the
transfer. In 258 days, Mars will have moved 258 / 365 x 360° = 135° in its orbit. Hence,
at the beginning of the transfer, it was 135° “from the top.” As the Earth was “at the
bottom” at the that time, the angle Earth-Sun-Mars was 180 — 135 = 45°,

(d) As the spacecraft sped up, energy was supplied to it. Given that E = -(GMm)/(2a) is
the total energy of a system consisting of the Sun of mass M and a satellite (or
spacecraft, or planet) of mass m in orbit about the Sun, the energy per unit mass
supplied is

AE _(__GM | [_GM } (Lt 1 ~0.13x10" J kg,
m 2a 2aEar‘fh 2a‘Earth aEar‘[h +4

Hohmann Mars

(e) The spacecraft has to speed up again to get into a higher orbit, since the (semi)major
axis of Mars’ orbit is longer than that of the Hohmann transfer orbit. Hence, energy is
again supplied. The energy per unit mass supplied is this time

E= - GM - = GM =GM ! _— =6.00x10" Jkg™.
m 2aMars 2aHohmann a'Earth + aMars 2aMars
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6 The total energy TE=KE+ GPE=%mVv? -GMm/r=p?/2m -G M m u.
For point A we have TE = (0.052 x 10%?/2m — G M m (5.15 x 10®)
=(1.352x 10%°) / m - (2.051 x 10") m  (in Sl units) (1)
For point B we have TE = (1.94 x10°?2/2m — G M m (194.17 x 10°%)
= (1.881 x 10%8) / m —(7.73 x 108) m (in Sl units) (2)
Note that we used G = 6.67 x 101t N kg2 m? and M = Mearn = 5.972 x 10%* kg. We now
have two equations with two unknowns, TE and the mass of the PHO m, for which we
can solve. Subtracting (1) from (2), we get
(1.88 x 10*®) / m — (7.525 x 10*®) m
1.88 x 108 = (7.525 x 108) m?
m = 50,000 kg.
Plugging the value into either of the two equations (1) or (2), we get
TE = (1.352 x 10*®) / 50,000 — (2.051 x 107) (50,000) = -1.0 x 10*2 J.
Sanity check: the PHO is on a closed orbit, so the total energy must be negative.

For the second part of the question, we have

TE=p?2/2m -G M mu

-1.0x 102 =p?/10°—- (2.0 x 10 u

(2.0x10®°) u=p?/10°+ 1.0 x 102

u=p? (5.0 x 10%%) + (5.0 x 10%).
This is a parabolic function, shifted upwards from the horizontal axis, passing through
points A and B. Note that, although the orbit of the PHO is elliptical (it is a closed orbit),
the function u vs. p is parabolic. As the PHO orbits the Earth, it goes back and forth
along part of the parabola. u is never zero — the PHO does not reach infinity — and p is
never zero — the PHO never stops moving.

u @
B (1.94, 194.17)

@
A (0.052, 5.15)

Sketch: definitely not to scale!

7 (@) Note that, for a spherically symmetric distribution of mass, only the sphere below the
pouch matters.

where we used M for the mass below the pouch, pe the density of the Earth.
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(b) Since the magnitude of the gravitational force is the gradient of the potential with
respect to position, the gravitational potential is the integral of the gravitational force
with respect to position. We have to integrate from the centre of the Earth to the position
of the pouch, a distance r from the centre.

r 2
U:ijETr dr,:GmESm 1r,2 szErr;r
. Re R L2 2R

As all the variables in the equation are positive, the gravitational potential U is positive.
This is, because the gravitational potential is set to be zero at the centre of the Earth
in this question.

Sanity check: if we drop a pouch into the hole, it will speed up towards the centre of
the Earth, gaining kinetic energy and losing potential energy. Hence, the potential
energy must be larger than zero everywhere, except at the centre of the Earth.

(c) Atthe Earth’s surface,

~ GmgmR.>  Gmgm

2R’ 2R,

Loss in gravitational potential energy = gain in kinetic energy, from which

26Me _ 2900 m s

final —
E

Note that we need the mass of the Earth me and the radius of the Earth Re to solve this
part of the question. Alternatively, we can use that g = 9.81 m s at the surface of the
Earth. However, we would still require the radius of the Earth. For homework exercises
like these, you may look them up. In exams, any required values will be provided.
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8 The most straightforward method, using Newton'’s law of gravity for m and a small mass
OM and integrating does not work directly. This law gives only the magnitude of the
force and not the direction. If this is not taken into account, the force is overestimated.

Let OM be the mass of a small part of the disk, and A = M/(17a?) the mass per unit area
of the disk, so that 6M = A (r d6) dr. We then have for the gravitational potential energy
due to m and a section oM at a distance s from m,

G(6M)m _ G(A rdédr)m

&J:_ - ]
S NI

where r is the distance of dM from the centre of the disk. To get the gravitational
potential energy due to a ring of radius r, we have to integrate 6 from 0 to 27, so that

U :_ZMG(r dr)m _ 2zGM(r dr)m _ 2GMm r

= = dr,
" NS ra’ X +r? a®  x+r

To get the gravitational potential energy due to the whole disk, we have to integrate r
from O to the radius of the disk a,

ZGMm

a’ J\/x +r?

Using the substitution u = r? + u?, so that du = 2r dr, r dr = % du,

2GMm } _ ZGMmaj-le y 2GMm[2ul,2]az+xz

a’ I\/x P 2 24u 2a’
:_ZGaI\ZAm (\/a2 +x° —\/X_Z)

L F(x2 +a2)_% 2x—1} = ZGMm{ X —1}.

disk = gy a2 2 a2 m

Note that Fgisk < 1, which means the force points in the direction of decreasing x, which
is to say, decreasing distance between m and the disk: the force is attractive. Also, the
magnitude of the force is

|F | 2GMm{1_ X }
disk \/m

Using that a << x, we have (using a Maclaurin expansion)

2
x(x2+az)y~1+0+—%a—2=1—%a—2,
X X
from which,
|F |_2GMm X 2GMm 114 1a2 _GMm
disk \/X +a a X2 '

This is indeed what we expect: at a large distance, the disk will look (or behave) like a
point mass.

©% Hwa Chong Institution (college)
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The signal from the satellite to the Earth travels at the speed of light. The time for it to
travel will be 2° when the Earth and Seneca are on the same side of the Sun and
Seneca is at perihelion; the time will be 39’ when the Earth and Seneca are on opposite
sides of the Sun and Seneca is at aphelion. Hence,

2as=(2x60s+39x60s)x(299 792 458 m s*) =7.38 x 10* m = 4.93 AU,
a, =4.93/2 =247 AU.
(b) By Kepler's Third Law,

a %
T. = L_ e J TEarth =3.87 yearS'

Seneca
aEar‘(h

10 Note that a true single-appearance comet will be on a hyperbolic orbit. However, in this
guestion, we are told that the comet is at aphelion when it is at 35 000 AU from the
Sun. Thus, we have to assume the comet is on an elliptical orbit. To some extent, the
comet is still a single-appearance comet: it has visited the inner solar system at most
once since the emergence of homo sapiens a few 100 000 years ago.

35 000 AU

As the comet enters the inner solar system, it will be at most a few astronomical units
(AU) from the Sun. Hence, its perihelion will at most be a few AU, which is negligible
to the distance to the aphelion.
2a=35000 AU,
a=17 500 AU,
T =a%?=17500%? = 2.3 x 106 years.

Hence, a one-way trip will take about (2.3 x 10°) / 2 = 1.2 x 10° years.

©% Hwa Chong Institution (college)
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Let the smaller circle be the surface of Mars and the larger circle Phobos’ orbit. If we
are at the top of the smaller circle (at the end of the dashed line), we can only see
Phobos when it is above the horizontal line. Otherwise, we would have to look through
Mars itself (Phobos would be below the horizon).

Mars’ angular speed about its own axis is wWwas = 360 / 24.623 = 14.6 degrees hr.

We can use Kepler's Third Law to obtain Phobos’ rotational period. However, we have
to plug in M = Muass for the mass of the central object (rather than the mass of the Sun)
and a = apn (rather than the semi-major axis of a planet). With this, we find for the
rotational period of Phobos Tpn = 27 582 s = 7.6616 hr. From this, we find for Phobos’
angular speed about the centre of Mars wen = 360/ 7.6616 = 47.0 degrees hr.

So Phobos “overtakes” Mars at an angular speed of 47.0 — 14.6 = 32.4 degrees hr?.
From the figure above, we find cos 6 = Ruars / @arn = 3393 / 9380, from which 6 = 68.8°.

Throughout each orbit, Phobos will be visible for the amount of time it takes to cover
an angle 26 = 137.6 degrees, thatist = 137.6 / 32.4 = 4.25 hours.

©% Hwa Chong Institution (college)



H3 Electric and Magnetic Fields Tutorial

There are four parts to this tutorial (A, B, C and D). Discussion questions are the sort of questions to expect in the A-
levels or Prelim papers. Challenge questions will not be discussed unless time permits, and can be safely skipped.

Part A: Conductors in Electrostatic Equilibrium, Mathematical Preliminaries & Continuous Charge
Distributions

Self-Review Questions
S1 A conductor is in electrostatic equilibrium. Explain:

(a) why the electric field strength inside the conductor is zero, and
(b) why the surface of the conductor is an equipotential surface.

S2 (a) Find the total charge in a line of charge of length L, with linear charge density A = bx?, where b is a
positive constant and x ranges from 0 to L.

(b) L

W

_—
Z

Find the total charge in a thin cylindrical shell of charge of radius R and length L, with a surface charge
density 0 = kz where z ranges from 0 to L.

(Note: “cylindrical shell” only refers to the curved surface. The circular base and top of a cylinder are not
considered part of a cylindrical shell.)

(c)

Find the total charge in an insulating cylinder of radius R of length L with volume charge density p =
k(1 —r), where k is a positive constant.

(d) Find the total charge in an insulating sphere of radius R with volume charge density p = a(b —r2),
where a and b are positive constants.



Discussion Questions
D1 (2020 H3 Q6 - part)
A uniformly charged thin disc of radius R lies in the x-y plane as shown in Fig. 6.1.

Fig. 6.1

The total amount of charge on the disc is Q.

(a)(i) State an expression for the surface charge density ¢ in terms of Q and r [1]

(b)

(i)

(ii)
(iii)

(iv)

The electric field strength can be determined by superimposing the point charge fields of infinitesimal
charge elements. This can be done by summing the fields of charged rings of width dr, as shown in Fig.

6.2.
e}

Fig. 6.2
Show that the electric field at position (0,0, z) is given by:

o
E, =

z
LA -
2¢9 [ Vz? + R?
(6]
Determine an expression for E, when z < R. [2]

Determine an expression for E, when z >> R.
You may wish to use the approximation when x is small:
A+x)"=1+nx
(2]

Comment on the form of the expressions in (b)(ii) and (b)(iii) [2]



D2 Two large plates with surface charge o; and g, are arranged parallel to each other, with separation d.

Determine the magnitude of the electric field strength between the plates, and to the left/right of the plates if:
(@ o04=-0;,

(b) o0y =0

(c) Both plates are positively charged (but a; # 03)

D3 A wire of length L has a charge Q. The charges are uniformly distributed across the rod with linear charge
density A.

| _—Total charge Q

t‘-q
F+r++++++F+++++++]
=
|I‘U

(a) Calculate the electric potential V at point P at a distance x from the mid-point of the rod.
(b) Find the gradient of I/, and hence show that you get the same results as Lecture Example 5.

D4 The figure below shows an electric dipole, with charges — g and +q, centred on the origin.

y
p B
d | d
dibdib
G EVaR —
NIV AN

(a) Find expressions for the magnitude of the electric field strength E at:
(i) apoint A along the x-axis
(ii) a point B along the y-axis
(b) By considering what happens to your expressions in (a) when x and y respectively become large, show that
the electric field of a dipole is inversely proportional to the cube of the distance from the dipole.
You may wish to use the approximation when x is small: (1 + x)" =~ 1 + nx



(Optional) Challenging Questions

These questions will not come out in the A-levels, but are good for conceptual understanding. Use of computer algebra
software (e.g. Integral Calculator https://www.integral-calculator.com/) is advised to deal with the tedious mathematics.
You’'ll need to solve multiple integrals, so do have a look at Appendix 1 if you're stuck.

C1 Asolid sphere of charge has volume charge density py as shown below.

\
\ Q ~1

(@) show that the electric potential VVat a distance z from the centre of the sphereis V = Jﬁ (where Q is the
0

total charge on the sphere) when z > R.
You may find the cosine rule useful: ¢? = a? + b?> — 2ab cos

(b)  Find the gradient of V, and hence verify that E = when z > R

4TTENZ 2

C2 Inquestion D1, we calculated the electric field strength due to a circular plane of charge, and then used that to
find the electric field strength of an infinite plane.

Let’s try the same thing, but using a square plane. The figure shows a square plane of positive charge, of side L.
The charges are uniformly distributed with surface charge density o.

P

[ ]

z

L

Set up the integral (but do not perform the integration manually!) to calculate the electric field strength at
point P at a distance z from the centre of the plane. Why is this integral much more difficult to perform?


https://www.integral-calculator.com/

Part B: Gauss’ Law

Self-Review questions

The following charges are located at various places inside a submarine, 5.00uC, —9.00uC, 27.0uC and —84.0uC.
Calculate the net electric flux through the hull of the submarine.

S1

S2

A point charge Q is located just above the center of the flat face of a hemisphere of radius R. What is the electric
flux through the curved surface? What is the electric flux through the flat face?

Discussion Questions

(2020 H3 Qb6a modified — continuation of AD1)
A uniformly charged thin disc of radius R lies in the x-y plane as shown in Fig. 6.1.

D1

D2

Fig. 6.1
The total amount of charge on the disc is Q.
(i) State an expression for the surface charge density ¢ in terms of Q and r [1]
(i)  Useyour answer in (i) and apply Gauss’s law with an appropriately chosen Gaussian surface to show that

an approximation for the electric field at the position (0,0, z), where z < R, is given by

E, = 2nko

where k is a constant you will need to determine.

You may wish to draw a diagram to help your answer. [6]
(iii) Determine an expression for the electric potential at the point (0,0, z) relative to the origin. [2]
(iv) Why is your answer in (ii) only an approximation? (Hint: The actual expression is found in Part A, D1)

(Griffiths, Introduction to Electrodynamics)
A long cylinder of radius R carries a volume charge density that is proportional to the distance r from the axis:
p = kr, for some constant k.

(a)
(b)

Find the electric field strength inside and outside the cylinder.
Hence, find the electric potential inside and outside the cylinder.



D3 (a) Using Gauss’ Law, find expressions for the electric field strength E at a distance r from the centre of a
sphere of charge of radius R with a constant volume charge density p,
(b) Hence, calculate the electric potential V inside and outside the sphere.
(c) Plotagraph of E against r and V against r on the same axes
(d) Optional, additional exercise:
Repeat (a), (b), and (c) in the case where the volume charge density is instead given by p = kr, where k is
a constant.

D4 Aninsulating sphere of radius 2R has a uniform charge density p. A spherical cavity of radius R is carved out as
shown below:

4

B

Find the magnitude and direction of the electric field strength E at points A and B.

D5 A long, high, rectangular slab of insulating material of thickness d is placed at the origin. It has a uniform positive
charge density p. The diagram below shows the side view:

VA

(a) Find the magnitude of the electric field strength E inside the slab for points along the x-axis.
(b) Suppose an electron of charge -e and mass me is released along the x-axis somewhere inside the slab, and

2T | Me€g

can move freely within the slab. Show that it exhibits simple harmonic motion with frequency f = = ’ pe



Part C: Ampere’s Law

Self-Review Questions
S1 (2019 H3 Q2)
(a)  State Gauss’ Law for magnetic fields. [1]
(b)  Explain why magnetic field lines always form closed loops. [2]
(c)  Explain why the existence of magnetic monopoles would be inconsistent with Gauss’ Law for magnetic
fields. [2]

Discussion Questions
D1 (2019 H3 Q3)
(a) State the line integral form of Ampere’s Law. Define the symbols used. [3]
(b) A long straight copper wire of radius R carries a constant current [.
(i) Use Ampere’s law to show that the magnetic flux density B at a distance d from the wire is: [2]

ol
5= ond
(if) Sketch the magnetic flux density as a function of distance from the centre of the wire. [3]
A |
B I
|
I
I
I
I
I
I
|
I
0 i L
0 R distance d

D2 Along cylindrical copper wire of radius R carries a current I as shown. The current density ] varies according to
radial distance r from the centre of the wire, given by ] = br where b is a constant.

1

(@)  Find the magnitude of the magnetic flux density B at a distancer; < R andr, > R.
(b)  Sketch a graph of B againstr.



D3

D4

(HCI Prelim 2020 Q7a)

Consider a cylindrical segment of a long straight wire carrying a current that is uniformly distributed across the
cross-section of the wire of radius R.

(i)
(ii)

(iii)

(iv)

(a)

(b)

Derive expressions for the magnetic field at a distance r from the axis of the wire forr < Randr = R, in
terms of current density /, r and R. [4]

On Fig. 7.1, sketch the variation of the magnetic field B with the distance r from the center of the wire. [2]
B a

v

Fig. 7.1

In a particular segment of the wire carrying a uniform current I, it is discovered that there is a cylindrical
cavity of radius 0.1R centered at a point that is 0.5 R away from the axis of the wire, as shown in Fig. 7.2

I
Show that the current density J is given by J = 0.322? [2]

With reference to Fig. 7.2, derive an expression for the magnetic field at the point P in terms of u,, / and
R.

Point P is on the edge of the cavity nearest to the axis of the wire. [7]

A wide, long insulating belt has a uniform positive charge per unit area ¢ on its upper surface. Rollers at
each end move the belt to the right at a constant speed v.

Calculate the magnitude and direction of the magnetic field produced by the moving belt at points near
its surface.

A metal sheet oriented as the one above has a uniform surface current K flowing through it from left to
right. Calculate the magnitude and direction of the magnetic field near the surface of the sheet.



(HCI CT 2023 Q4b)
A coaxial cable is used for the transmission of high frequency electrical signals such as television signals.

Fig. 4.2 shows the typical construction of a coaxial cable and the radii of the different layers.

Lt AI'

profile

conductor insulator metal braid plastic jacket

cross-section

plastic jacket
metal braid
conductor
insulator

Fig 4.2
When there is a current I in the conductor in one direction, there is a current I in the metal braid in the opposite
direction.
(a) State Ampere’s Law in integral form, defining all terms. [2]

The current per unit cross-sectional area is a quantity known as the current density J. The current density in the
conductor is J; and the current density in the metal braid is J,. Assume that J; and J, are both constant.
(b) Show that:
2
"

]2:2

rf—rf
(2]
(c) Showing your working clearly, derive expressions for the magnetic flux density B in terms of J; and distance
r from the centre of the coaxial cable for:
(i) 0<r<mn, [1]
(i) n<r<n, [1]
(i) andr3<r<m. [1]
(d) Use Fig. 4.3 to sketch how the magnetic flux density Bvaries between zero and a maximum value B, 4
with distance r from the centre of the coaxial cable, for 0 < x < ry.

B
A

Bmax--}-----mmmmmmmeee-

R
'
1
'
1
1
]
1
1
]
'
1
'
'
1
'
1
1
'
'
1
'

e S,
]
'
'
1
'
'
1
'
1
1
'
'
1
'
'

e

0 :
o conductor | insulator { metal plastic jacket
r r> braid rs fa

3]



(e) Standard transmission cables are made of two insulated wires, as shown in Fig. 4.4.

neutral

Fig. 4.4
Standard transmission cables are less expensive than coaxial cables.
Suggest why standard transmission cables are not used for high frequency electrical signals. [1]

10



(Optional) Challenging Questions
These questions will not come out in the A-levels, but are good for conceptual understanding.

C1

C2

(modified from Griffiths, Introduction to Electrodynamics)

In calculating the current enclosed by an Amperian loop, one must consider the total current I, flowing through
a surface bounded by the Amperian loop. The trouble is, there are infinitely many surfaces that share the same
boundary line — the figure below shows two of them. §; is a hemisphere, and §, is a “chef’s hat” shape that
bulges outwards near the top:

L i

,—\ C" \> S5

—— Ampern (oap —1— Ampenin loqo

Of the infinite number of possible surfaces, which one(s) are we supposed to use? Explain.

(Adapted from Griffiths, Introduction to Electrodynamics)
In Lecture Example 10, we derived the expression for the magnetic flux density B inside a long solenoid by
assuming (correctly) that:

e B = (0 everywhere outside the solenoid

e B inside the solenoid is a constant and points along the axis of the solenoid
Let’s prove these assertions using Ampere’s Law! Consider the following (long, tightly-wound) solenoid carrying
current I. Draw two rectangular Amperian loops, 1 and 2; and a circular Amperian loop 3.

h |
I — . | * [
a | [
]

: | T

| : M ]

i Lol
: 1 Amperian loop 3
Amperian loops N—

(@)  Argue that B does not have a radial component. (Hint: use cylindrical symmetry and consider the effect
of changing the direction of the current)

(b)  Using Amperian loop 3, show that B does not have a “circumferential” component.

() Using Amperian loop 1 and the result of (a), show that B=0 everywhere outside the solenoid.
(d)  Using Amperian loop 2 and the result of (c), show that everywhere inside the solenoid, B = yynl and
that it points along the axis of the solenoid

11



Part D: Dipoles in Fields

Self-Review Questions
S1  Arectangular coil consists of 100 closely wrapped turns has a length of 0.400 m and width of 0.300m. The coil is
hinged along the y-axis and its plane makes an angle of 30.0° with the x-axis.

y
1.20 A

0.400m

7 0.300m
What is the magnitude of a torque exerted on the coil by a uniform magnetic field of 0.800 T directed along the
x-axis when the current is 1.20 A clockwise as shown in the diagram? What is the expected direction of rotation
of the coil?

S2  (a) The Sl unit for magnetic moments is ampere square metres (A m?), but it can also be expressed in joules
per tesla (J T~1). Convert 1 Am?into] T™1.

(b) The magnetic moment of Earth is approximately 8.00 x 102% A m?.
The magnetic dipole moment of a single unpaired electron (also known as the Bohr magneton pe) is i, =
927 x 10724 T,
(i) If the magnetic moment of the Earth were caused by the complete magnetization of a huge iron
deposit, how many unpaired electrons would this correspond to?
(ii) Attwo unpaired electrons per iron atom, how many kilograms of iron would this correspond to?
(The density of iron is 7900 kg/m? so there are approximately 8.50 X 10%8iron atoms/m?)

Discussion Questions
D1 (H3 Specimen Paper Q7) — part (c) deals with dipoles
(a) Fig 7.1 shows the cross section of a solid, egg-shaped object made out of a conducting material.

Fig. 7.1
The object is charged negatively.
(i) OnFig 7.1, sketch the electric field lines due to the conductor. [2]
(ii) State how the charge is distributed. [1]
(b) Fig 7.2 shows a uniformly positively-charged solid sphere of radius R made of an insulating material.

12



(c)

Fig. 7.2
The sphere has a constant charge density of p throughout its volume.
(The unit for charge density is C m™.)
(i) Using Gauss’ Law, derive an expression for the electric field strength at a distance r from the centre
of the sphere for the case where r = R. [4]
(ii) Derive an expression for the electric field strength as a function of r for the case where r < R. [2]

(iii) On Fig 7.3, sketch the electric field strength as a function of the distance r intheranger =0tor =
3R. [3]

Electric field
strength

Fig. 7.3 [3]

The positively-charged sphere in Fig 7.2 is attached, via an insulating rod of length L, to a sphere identical
in material and dimensions but uniformly negatively charged with a charge density of - p throughout its
volume.

An electric dipole is thus formed.

(i) Find an expression for the magnitude of the electric dipole moment p. [2]
(ii) Suppose that the electric dipole is placed in an external uniform electric field E at an angle 6 of 45°
with respect to the lines of E.

Sketch this arrangement and include on your diagram arrows to show the force acting on each of the
two charged spheres. [2]

(iii) State the torque 7 on the system in terms of E, p and 6. [1]

(iv) There are two orientations of the dipole within the field where the dipole experiences zero torque.
Describe what these orientations are and explain how an oscillating dipole is most likely to settle
within the field. [3]

13



D2 Asquare loop of wire carrying current I = 2.00 A is in a uniform magnetic field B = 0.830 T. The normal to the
plane of the loop makes an angle ¢ with the field, as shown below. The loop is free to rotate. Each side of the
loop has length 5.00 cm and mass 20.0 g.

A y

(a) Theloop is released from rest when ¢p = 5°.
(i) Calculate the magnitude and direction of net torque on the loop.
(ii) Show that the oscillation is simple harmonic, and find the period of the oscillation.

(b) Sketch a graph to show how magnetic potential energy U varies with ¢ as the loop is rotated through ¢ =
0° to 360°.

(c) Find all equilibrium points, and discuss their stability.

D3 Two 1.0 g balls are connected by a 2.0 cm rod of negligible mass. One ball has a charge of +10 nC, the other has
a charge of -10 nC. The rod is held in a 1.0 x 10* N C* uniform electric field at an angle of 30° with respect to the
field, then released. Calculate its initial angular acceleration.

+10 nC

-
>

E=1.0X10*N/C

/

—10nC

-
>

D4 A dipole with charges +q and separation d is located at a distance r from a point charge Q, oriented as shown.

+q
i
‘o AT
® -
I* r Jl
—-q
It is known thatr > d.
(i) Without calculation, deduce the directions of the net torque and the net force on the dipole. Explain your

reasoning.

The rest of this question is an optional challenge.
You may wish to use the approximation when x is small: (1 + x)" = 1 + nx

(i) Show that the magnitude of the torque 7 on the dipole is T = 423‘12 and determine its direction.
0

(iii)  Show that the magnitude of the net force F on the dipole is F = 4qu

- and determine its direction.

€o
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Answers to selected problems
A Continuous Charge Distributions

Self-Review Questions

S2 (a) - E
=3
o] Q = mkRL?
(d) TERE
Q =4ma =T
Discussion Questions
D1 | (a)(i) ~ 0
TR?
(b)(ii) N
2&
(b)(iii) ok’
B 4‘8022
D2 | (a) Between: E =2 =22
=0 £
Outside: E =0
(b) Between: 0
Outside: E =2 =2
€n £n
(c) Between: E = \91-%!
2¢
Outside: E = %8"2
D3 | (a) v Alx/m+L/2
= n
dmeo 3+ 17/4=1/2
D4 | (a)(i)
E, = 2 1 1
‘A — 5 — -
4‘7‘[80 d d
(x- 7)d (x+3)
(a)(ii) B a
EB - d 2 3/2
2 —
i (32 +(3))
®) _%d
4 Amregx3’ B~ 41e,y3

(Optional) Challenging Questions

Cc2

OR

x=L/2 ry=L/2 1 ozdxdy
|
x==L/2

oz

“ 4me,

fy=L/2 L
y=—1/2 (y? + 2)\Jy* + L} /4 + 72
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B Gauss’ Law

Self-Review Questions

S1 ®p =—6.89 x10° Nm? C!
S2 Q
Dryrvea = 2_80
Q
o) =——
flat 280
Discussion Questions
D1 | (a)(i) o= Q/mR?
(a)(ii) k = 1/4ms,
(a)(iii) V, =—Ez
(1
D2 () |—kr?2 r<R
3g
E =
"
k3£0r "=
(b) kR3® r
——In— r=R
V= 3 a
| kR® R k
——In———@@3-R? 7r<R
k 3 a 9¢g
where R < a < oo is an arbitrary point of reference
350
\ P r=>R
3gy1?
b R3
(b) { p o R
) 3&r
~ | p(BRZ 1?2
| p( %) r <R
k 6&g
(d) (kr? ( kR*
|— r<R | r=R
E & V= 4egr
kR* ’ k(4R3 —713)
r=R r<
\4¢,72 12¢
17pR
b4 = 5—80 upwards, Ep = 27P€O downwards
X
D5 | (a) E = L
€o
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C Ampere’s Law

Discussion Questions

D2 | (a) {
r<
3
#ObR r=R
D3 | (i) uo]r <R
p={ 2
R
#0] >R
(iv) 0 0805;101
R
ov
D4 | () Ho out of the paper (above the sheet)
B = HoOV |
into of the paper  (below the sheet)
K
(b) MOT out of the paper (above the sheet)
B =
K
IloT into of the paper  (below the sheet)
D5 | (c)(i) 1
B = Ello]ﬂ’
(c)(ii) g = BTt
2r
(c)(iii) B=0
D Dipolesin Fields
Self-Review Questions
S1 T=998Nm
S2 | (a) 1Am?=1J T
(b)(i) 8.63 x 10*°
(b)(ii) 4.01 x 102° kg
Discussion Questions
D1 | (b)(i R3
(b)) o Fp
RENE
(b)(ii) F_ P
REA
i 4
()i p= §TL’R3p(2R +1L)
(c)(iii) 7= Epsin6
D2 | (a)(i) | T =3.62 % 10~* N m clockwise
(a)(ii) T =0.563s
D3 a =5.0rad s™?
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Tutorial solutions

Part A: Conductors in Electrostatic Equilibrium, Mathematical Preliminaries & Continuous Charge

Distributions

Self-Review Questions

S1

(a) If the electric field strength inside the conductor is not zero, free charges will experience an electric force, and
thus move. Then the conductor would not in electrostatic equilibrium.

(b) The electric field at the surface of the conductor is normal to the surface. Therefore, there is no component of
the electric field along the surface. (Otherwise, there would be a component of electric force acting on
charges along the surface of the conductor, causing them to flow)

The potential difference between any two points along the surface is therefore zero as V = [ E df. Thus the
surface is an equipotential surface.

S2

(a)

3

L L bx3L pL3
Q=Jldx=fbx2dx=— =—
0 0 3 0

Single integral method:

Q= f odA
We need to replace dA with some variable to integrate over. Since g only depends on z, slice the cylinder into

thin strips of width dz. Then the area of each slice dA = 2nR dz.
L

L
. Q= f kz 2nR dz) = 271ka z dz = mkRL?
0 0

Double integral method:

Q=jadA

Since area elementdA = R d6 dz,

z=L r0=2m
Q= j kz (Rd6 dz)

z= 6=0

(Note: Our solution is proportional to L?, just like Lecture Example 1(b), so our answer is likely to be correct)

Single integral method:

Q=fpdV
We need to replace dV with some variable to integrate over. Since p only depends on r, referring to lecture
example 3, slice the cylinder into thin cylindrical shells of radius r and thickness dr.
ThendV = n(r + dr)?L — nr?L = nL[(r + dr)? —r?] = nL[r? + 2r dr + (dr)? — r?] = 2nrL dr (we drop
the (dr)? term as it is negligible).

R R R? R3
W Q= f k(1 —r)x 2nrLdr) = 271ka (r—7r?)dr = 2nkL <7 - ?>
0 0

Triple integral method:

Q=fpdV




Since volume element dV = r d@ dr dz

=21 z=L
Q= f f k(1—r)rdfdrdz
6=0 r=0

r=R ,z=L
f f 2nk(r—r?)drdz
= f 2nkL(r — r?) dr
r=0

R? R3
= 2mkL | —— —
e (5-5)

Single integral method

szpdV, p=alb—r?

We need to replace dV with some variable to integrate over. Since p only depends on r, referring to lecture
example 3, cut the sphere into thin spherical shells of radius r and thickness dr.
ThendV = %n(r +dr)3 — %nr3 = %n(r3 + 3r2(dr) + 3r(dr)? + (dr)® — r3) = 4nr? dr. (The (dr)? and
(dr)? terms are negligible).
R R
Q=] alb—1?) @4nr?)dr = 47raf
0 0

2 g 4 bR3® RS
r T T = 41TQ 3 5

Triple integral method

e=[pav, p=a-r?
Since volume element dV = (r d6) (r sinf@ d¢)(dr),
r=R ,¢=2m
f f a(b—7r%)r?sin@ d@ dr d¢

qb 271:
= f asin@ (br? —r*) do dr d¢
PR
f 2masin® (br? —r*)sin@ d dr
r:

o (PR_ES
= 4mta 3 5

(Note: [, sinf d = 2)

B Gauss’ Law

Self-Review questions

S1

The total charge inside the submarine, @ = 5.00 uC —9.00 uC + 27.0 pC — 84.0 uC = —61.0 uC
Take the surface of the submarine as a Gaussian surface. Using Gauss’ Law,

ﬁﬁ_ d,éi) — Qenc
&o

(where ¢p E-dA= @, the net electric flux through the surface)
—61.0 uC —61.0 x 107

8.85x10-12Fm-1 _ 885 x 10-12 _

s O = —6.89 X 106 Nm? C™1




S2

From Gauss’ Law, the total flux through a surface that completely encloses the point charge is ® = gg
0

Then, the total flux through the bottom hemisphere is half of that: ®.,;;eqa = %
0
As the closed surface does not contain any charge, the net flux through it is zero. Therefore, the flux through
- __9
the flat surface is @y, = 2eq

C Ampere’s Law

Self-Review Questions

S1

(a)

Gauss’s Law for magnetic fields states that the total magnetic flux through a closed surface is zero

(b)

A magnetic field line that does not form an open loop will imply the presence of magnetic monopoles at the
ends of the field line. As magnetic monopoles do not exist, magnetic field lines will always form a closed loop.

(c)

If a magnetic monopole exist, the magnetic flux calculated based on a closed surface that enclose the
magnetic monopole will be non-zero which is inconsistent with Gauss’s Law for magnetic fields.

D Dipolesin Fields

Self-Review Questions

S1
The magnetic dipole moment of all N turns is ji = NIA
The torque is Z = i X B, which is in the clockwise direction.
The magnitude of the torque is T = uB sin ¢
~ 7= NIABsin¢
= (100)(1.20)(0.400 x 0.300)(0.800) sin 60°
=998 Nm
(the coil will rotate clockwise)
S2

(a)

Since W = Fd ,we have] = Nm

Since F = BIL =B =£, wehaveT=l
IL Am

1) _ 2
Am
. 22
(b)(i) The number of unpaired electrons N = M = 8.63 x 104>
9.27x1024

(b)(ii)

Number of iron atoms required is g = 4.31 x 10*°> atoms

4.31x10%°

850x1028 = 5.07 X 101® m3

The iron atoms occupy a volume of VV =

Mass of the iron is thus M = Vp = 4.01 x 102° kg




Tutorial solutions (Part A - Conductors in Electrostatic Equilibrium, Mathematical
Preliminaries & Continuous Charge Distributions)

Discussion Questions

D1
(a)(i) | Surface charge density o= charge per unit area
Hence Q = o (nR?)
o= Q2
7R
(b)(i)

Consider infinitesimal charge element dq = 0 dA = o(2nr dr). At (O, 0, z), the electric field E due to

charge element dq is

dq 2mor dr

- 4meg (V22 + rz)z ~ 4mey (22 +12)

By symmetry, the radial components of E cancel out, so we only consider the z-component.
ordr z

260(z2 +12)\/722 + 12

orz
z dr

0 2¢0(z%2+1?)2
oz (R r

dE

dE, = dE cos@ =

R
E, =

dr

o
oz (R1 2r

dr

 2g), 2

3

(z2+12)2

R

oz |1

1
ey

(1 1
Z

o)

0
(o4

2¢&
o

Z

N

- 250




(b)(ii)

When z <R, 7> +R?~ R?
- z - z
E = 1- = 1-
’ 230{ \/22+R2} 2&[ \/RZ}

-9 1_5 zi 1_0]:i
2¢, R] 2¢, 2¢,

Marker's Comment: The simplification of the expression and the approximation to be made must be
clearly shown in the working.

(b)(iii) | When z > R, g is small
£ =0 [1 z ] _9| z
? 7 2 VZZ+R2l 2¢ R?
z |1+ ?
. rR2\~1/2 1 R?
Since (1 +;) = 1—52—2
e~ (1_]1 1R?*]\  oR?
Z 7 2¢, 222|) " 4gyz?

Marker's Comment: The binomial expansion must be used in the simplification of the expression.
(b)(iv) o

When z <R, E,=—

2¢,

The electric field at (0.0.z) is independent of z, equivalent to the case for an infinite charged sheet, the

electric field lines are parallel lines emerging from the surface and constant everywhere (R is «).

Whenz >R, E, o —- The electric field at (0,0,z) of the disc is equivalent to the electric field of a point

Z

charge when R = 0.

Marker’'s Comment: Comments on the physical significance and recognition of the common scenarios

that led to the expressions are expected.
D2

(a)

Between: the fields point in the same direction and have the same magnitude
0, O
E=E,+E,=—==
& &o
Outside: the fields point in opposite directions and have the same magnitude
E=E,—E_ ,=0

Between: the fields point in opposite directions and have the same magnitude

~E=0
Outside: the fields point in the same direction and have the same magnitude
o, O
E=E,+E,=—==2
& &
(c) Between: the fields point in opposite directions but have different magnitudes
loy — a5
F=—17=
2¢&
Outside: the fields point in the same direction
01+ 0

2g




D3

(a)

b

2

The magnitude of the electric potential dV due to the small charge dq is given by:
Qv = 1 dg 1 dq

dmey v Amey [x2 + y2

Let the linear charge density be A = Q /L. Since dq = 1 dy,
1 Ady
dv = —_—
4mey \[x2 + y2
y=L/z2 1 Ady
AV = f A
y=—1/2 40 \[x? + y?
A | Jx2+L2/4+L/2
= n
4ney  [x2+12/4—L)2

av 2 ( L ) A 2L

dx 4meo \  x,/x2+12/4 ATrEy 3\[Ax2 + L2
av 2L _
dx  4meg x\AxZ + 12

Which matches our answer in Lecture Example 5

D4

(a)(i)

Take right as positive. At A(x, 0),

- - -
Enet,A = E+q + E—q = 2 2

(a)(ii)

la
Bl




By symmetry, the vertical components §+q and E_q cancel out and the horizontal components sum, pointing

to the left.
q

me, (yz +(3))

Take right as positive. The net electric field strength at B(0, y) is twice the x-component of E due to the
positive charge. Let 8 be the acute angle with the y-axis:

Enetg = 2E4qx =2 1 2 sinf
41e, (yz + (7) )
. d/2
By geometry, sinf = >
v2+(3)
2q d/2 qd
Enet,B = =

(@) e @ sware @)

(b) From (a)(i):

d
As x becomes large, " becomes small.

(1450 =1-2(3)=1-%

2x ~ 2x) x
q d ( d) q 2d 2qd 1
Ey~ 1+——(1-=)]= i
A7 Ay x? +x X ATTEg X2 X 47reox3ocx3

From (a)(ii):
qd
Enet,B:

41reyy3 (1 n (%)2>3/2

2
d d .
As y becomes large, — becomes small, and (—) becomes negligibly small.
y y

()2
2y T o2\2y) T
) qd 1
“Enet,BzW F

Therefore, E o< 1/13

(Optional) Challenging Questions
Note: these questions are mathematically tedious, and therefore will not come out in exams. However, the ideas are the
same as whatever will come out. For details on multiple integrals, read Appendix 1.

C1

Using the cosine rule, the distance between dgq in the sphere and a point along the z-axis is

Vz2 4+ 12 —2zrcos 6
The electric potential due to charge element dq at a distance r > R is therefore:




dq

AmegVz2 + 12 — 2zr cosf

dv =

The volume element in spherical coordinates is dV = (r d68)(rsin8 d¢)(dr). Since the volume charge
density is uniform, dq = py dV'’

_f”Rf J‘¢ =2 por?sin® dr df do
r=0 Jo= AmegVz2 + 12— 22r cosf
This looks scary, but let’s do one integral ata tlme Notice that ¢p does not appear in the expression, so
21 .
fo d¢ = 2m. We factor that out in front:
_ 2mp, f“R O=n  r2sin6 dr de
0

amey )y Jo=o Vz2 412 —22rcosf

Now let’s try integrating to get 8. Let u(8) = z? + r? — 2zr cos 0, then du = 2zr sin 8. Then we force the
numerator so that it looks like dy:

r= R-[ r  2zrsin@ dr dé
250 0=

0 2z Vz2 +1r2 —2zrcos6

Since fj—; = Zﬁ,

po (TR o=m po (TR
V=— —2\/22+r2 erCOSH] dr=— —(\/22+r2+22r—\/22+r2—22r)dr
2e0 )y 2z = 2¢ r=
r=R R =R
—Po —(Z+T—(Z—T‘))d7"—p0 U dr—p—o r2dr
28 Jr—g 28 J—p £0Z ),
Phew! Now the last integral is easy.
7 Q R3
- X p3
V:P_ofr g B_\3TR) 0
£z J,— &Z 3 3e0z 4rteyz
Which is what we’d expect.
(b) av_Q
dz 4meyz?
awv . Q

Cdz 4meyz?
Again, as expected.




C2

Set the coordinate origin in the middle of the plane.

= Jx2 +y2 4322 / / For an alternative
Y z method utilising the

result of E due to a line

> X charge, see below.
dy, '7 /

The magnitude of the electric field dE due to a small patch of charge dq at (x, y) is
1 d
dE = 9
Amey x% + y2 + 22
Since P is directly above the middle of the plane, the x- and y- components of the electric field cancel out and
the net field is only in the positive z-direction, so we only need to find dE, due to dgq.

dE, = dE cos 4q z ! z dq
= COsSU = =
z 4‘7T€0x2 +y2+ZZ /xZ +y2+ZZ 4‘7'[80 (xz +y2 +Z2)3/2

Sincedq =0 dA=odxdy,
1 ozdxdy
Bz " 4me, (x2 + y? + z2)3/2
x=L/2 y=L/2 o zdx dy
* B L——L/Zf L2 4neo (x2 4+ y2 + z2)3/2
This is a rather painful integral to evaluate, because there isn’t enough symmetry for us to get rid of more of
the variables.

However, if you’re one of those people who insist on trying painful things, here’s how it could be done. You
solve a double integral by first integrating over one variable, then the other (the order doesn’t matter — the
second one will be extremely painful regardless):

x=L/2 fy L/2 o 7 dx dy

Z

4'”‘90 w12 dy=cpp (X F 3’2 + 22)3/2
x=L/2 y=L/2
47150 J;__L/z (x2 + z2) /xz +yZ+ Zz]
o7 x=L/2 L
= J dx (1)
Ameo Jye_pjp (x2 + 22)\[x2 + [2 /4 + 22

oz [2 . ( Lx )r”z
4 —tan
L) 2 4(x? + z2) + 12 =12

( L-L/2 ) tan_1< L-(=L/2) ))
2 4(L? /4 + 2z2) + L2 2 4(L2 /4 + 2z2) + 12

T[EO

L? L? >>
tan™ tan~ ! ———
2”50 < (Zz V512 + 422 422) < 2zV5L2% + 472
1,

Since tan™1(—a) = —tan"1q,

g = ( L >
=—+tan | —
7 me 2zV/512 + 4z2




Let’s check that this is correct. As we’re checking the field near the plane, z K L,E — 0 and 5 — 00

o _ / L? \ o _ /L 1 \ o (L1
= ! | —— | =gt | S | = (0]
° \2zL[5+4Li2/ ° \ 2/5+4Li2/ 0

. . — Vs
Since lim tan~1x = >

X—00

Phew! That’s the answer we wanted.

Alternatively, you could have sliced the plane of charge into many lines of charge:

N2
2 K JE/M@’E 7“4_‘( 1/’32
é\’“ 24

/, //y
— Vi

P

In Lecture Example 5(a), we found that the electric field at a distance r due to one line of charge of length L is:
A 2L

Ejine =
tine Amey r/4r2 + 12

So, the electric field due to a rectangular strip of charge of length L of width dy is:

A 2L
dE = Ejjpe dy = d
e dney A ¥ 12
Sincer =,/y? + z2,
oL dy z olz dy
dE, = dE cosf = —
2megJy2 + 22 [4x2 + 4y2 + 12 \Jy2 + 22 4mey(y2 + 22)\/y2 + 12 /4 + 22
oz j‘y=L/2 L p
© T Ameg y=-1/2 (¥2 + 22)\/y?2 + L2 /4 + 22

Which is the line marked (1) in the previous solution, swapping x for y. The rest of the solution works out the
same.




Tutorial solutions (Part B - Gauss’ Law)

Discussion Questions

D1
(a)(i) | Surface charge density o = charge per unit area
Hence Q = o (nR?)
o = Q2
7R
(a)(ii) | Assume the circular thin disc to be an infinitely large uniformly charged circular sheet and by symmetry

we say that the field at 'z' is a uniform outgoing field Ezand solve it by taking a gaussian cylinder with
the top and bottom above and below the disc with z < R.

Sheet of charge ————fn
il

)‘_{ |E n — el A :
- > e E .
E - ~—

Gaussian

F 3

T+ ++++ g+
v t.;v
M

cylinder
Charge per Side view
unit area ¢

Applying Gauss’s Law, let electric field at position (0,0,z) be E:

95,6152-01,4=g
€o

E, ¢ dA:Z—A

0

oA
&

2AE, =

[o]

E, = 2 - Zﬂd(i)
2¢, 4re,

=2r7ko
1

4re,

)=9.0x10° kg m*C™

where k =(

Marker’s Comment: All necessary steps must be shown since this is a “show” question. It is necessary
to include a diagram with the Gaussian surface drawn with the E field lines drawn

(iii)

Let V be the potential at the origin, and V, be the potential at (0, 0, z).
v, -V, fZEd fza d %% 4y
—_ = — r = — e r=—|— = ——
z 70 0 o 2& 2g0l, 2&,

Comparing terms, we see that V; = 0 as we expect.
oz

N 250

Marker's Comment: The minus sign should not be omitted as it signifies the relationship between V
and E.




(iv) In our calculation of Gauss’ Law, we assumed that the electric flux is normal to the Gaussian surface that is
parallel to the plane. This is only true near to the centre of the plane when d is small enough that edge effects
can be ignored.

D2 (Griffiths pg 73-74)

(a) Draw a cylindrical Gaussian surface of radius r and length [:
e
e
_—.——_—_ _____
Gaussian
E surface

For r < R, using Gauss’ Law,

=4 rd Qenc
#Ein'dA= o Mathematically, 7 cannot
1 both be in the limits of the
— . ' - —Jp av integral as well as be a
The electric field points radially ’ , variable to be integrated, so
away from the axis. Thus the e (kr )(@ZmrLdr’) relabel the variable as r’ and
electric  flux through the Zﬂkl ., 2kl _ | leaver in the limit.
circular ends of the cylinder is = . r'edr’ = 3e r
zero, and we only need to T[(;d 0 0
consider the flux through the EQ2nrl) = 3¢, r3
curved cylindrical area. kr?
E —
3g
For r > R, using Gauss’ Law,
- - 21kl
# E, -dA= Qenc = —f pdV = —f (kr)Q2mnrldr) = R3
€o
E(2nrD) 27TklR3
rl) =
3g
_ kR3
" 3g,r

Check: the two expressions
I(—krz r<R should be equal atr = R, and

E = { from Appendix 3, outside the
kkRS r>R cylinder (wire) E o< 1 /7.




As the cylinder is infinitely long, V' # 0 at infinity. So we choose a reference point r = a > R as our reference
(i.e. V. =0whenr = a).
Ifr >R,

r " kR3 kR® r
V=—fEdr’=—f -dr' = ———In-
a o 3&T 3 a

(Note that if a — oo, lng — —o00)
Ifr <R,

T
V= —f E dr' As E is a piecewise function, we
a4 KR3 rq need to split the integralatr’ =
= _f - dr’—j —kr2dr' | R and perform the integrals
a 3&T R 3%
KR® Rk separately.
= ——] ———(1"3—R3)
3 a 9¢g
( kR® r
| ———In— r=R
V= 3 a
< kR® R k

—goInm— (P -R%)  T<R

If the a bothers you, try differentiating IV — you’ll see that it disappears, so that E is independent of a, as we'd
want. This pesky extra term only crops up when you have an infinite amount of charge, because then the
electric potential at infinite will no longer be zero.

D3

(a)

Draw a spherical Gaussian surface:

For r > R, using Gauss’ Law,

For r < R, using Gauss’ Law,

- - 1
#Em dA=Qe"C=— pdv=—f4nr2pdr
€o €o 0
2 1 43
E;,(4mr )—g p<§m‘ )
pr
Ein=5—




— <R
{ 3g r
= R3
P r=R
RN
(b) Since there is a finite amount of charge, we can safely choose infinity as the reference point* because V,, = 0.
Ifr >R,
r r R3 R3
V=—f Edr'=—f P~ _dr =L
o w 3&T" 3gor
Ifr <R,
r R pR3 T or! R® [pr'®]" pR? pr? pR® p(3RZ—12
V=—fEdr'=—j P dr,_fp g = PR _|P _PRT_pr7 P _A( )
) 0 3801"’2 R 380 3€0R 680 R 380 680 680 680
R3
Jp r=R
_ ) 3&r
| p(3R% — 12
6gg
(c)
1’? > T
(d) If p = kr, repeating the same calculations and the same Gaussian surfaces,

Using Gauss Law for r > R,

2 2 1 1 (R 4Amk (R 4k R*
ﬁEout'dA:QenC:— pdV=—f kT(4-7tT'2 dr‘)=— ‘r'3 dr = ——
& & € Jo & Jo & 4

mkR*
Eout (47'[7'2) =
€o

_kR*
out — 4£0T2

1 See solution to B2(b).




Using Gauss Law forr < R,
= 2 1 1 (" Amk r*
#Ein'dAz Qenc - fpdV=_j krl (47TT'2dT') —_

SO 80 80 0

& 4
wkr*
Ein(477r2) =
€o
_kr?
n - 480
kr? <R
. ™ r<
SRR
k4£0r2 r=
Since there is a finite amount of charge, we can safely choose infinity as the reference point because V,, = 0.
Ifr >R,
r r kR4 kR4
V=—fEdT'=—f 2dr'=
co oo 4"(E‘Orl 4‘307"
Ifr <R,
. frEd , JR kR* Jrkrz o KR kr'®l” kR3S k3 L KR KGR - 1)
T T T e T ) ae T TagR (126, der 126, 126, 126
(kR*
| r=R
V= 4eor
T ) k(4R3 - 13)
——— 71r<R
U 12¢,

v
=

D4

We can achieve the same effect of carving out the spherical hole by superposing a sphere of radius R with a
uniform charge density — p where the hole is. This corresponds to a charge of - Q.

Consider the large sphere of radius 2R before the cavity was carved. Repeating the calculations we did in D3,
we get:

2R)3
pCR)” > 2R
_ ) 3gor?
EZR -
pr
—, < 2R
350

For the small negatively-charged sphere of radius R we get:

pR®
ﬁ' r=R
ER = 0

pr
3g’




AtA, Ezp = 0and Ep = £, so:
0

PR
E, = — upwards

3¢,
2R RS
AtB, Eyr = p§£o) downwards and Ex = ﬁ = 27i0R upwards, so:

__2pR p _ 17pR

= d d
3eg 27eR  27¢, owmwards

B

D5

(a)

Consider a Gaussian cuboid centered at the origin, with a thickness 2x. By Gauss’s Law,
ﬁ E . dfi) — Qenc
€o
Since the electric field of the slab inside the Gaussian surface points to the left and right parallel to the x-axis,
only the left and right surfaces with area A contribute to the flux,

#E -dA = 2EA
Since Qene = pV = pA(2x),
pA2x
2EA =
&o

pX
&o

~ E

OR
Slice the slab into many large planes of infinitesimal thickness. Each of these slices sets up an electric field
with field strength:
o pdx
dE = —=—
250 280

Take right as positive. At a point —% <x< gthe electric field will be:

d d
E_J"‘pdx’ fzpdx’d,_px’x px'|2 _ px
N % 250 x 280 = 280 _d 280 - &o

X

The force that acts on the electron in the slab when it is at a distance x from the center is given by

X
mea = qE = —e'D—
€o
Hence comparing with characteristic equation of simple harmonic motion a = —w?x

w 1 pe
Wehave f =—=— |—
f 27 2T | Me&g




Tutorial solutions (Part C - Ampere’s Law)

Discussion Questions

D1

(a)

Ampere’s Law states that § B-df = Uolenc

where B is the magnetic flux density, d? is a line element along the integration path, u, is the magnetic
permeability of free space and I,,,,. is the current passing through the area enclosed by the integration path.

OR

where 55_5 . d? is the net magnetic flux along the loop, y, is the magnetic permeability of free space and /.,
is the enclosed current.

Note: gﬁ B-dbis the magnetic flux along the loop, not through or of the loop.
Do not confuse permeability (1) with permittivity (c)!

(b)(i)

Draw a circular Amperian loop of radius d centred on the wire. When d > R:

B-df = Holenc

B(2rd) = pol
ol
B=—
2nd

(b)(ii)

Let the current density be J, and assuming that it is uniform across the cross-section of the wire:

I

J = RZ = constant
Whend < R,
N 5 As | = constant, no integration
f B~ d?f = polenc = po) (d?) is needed: we can simply take
1d? Ione =] X Area of loop
B(2nd) = py—
(2nd) 1110 TR2
Ho
B = d
27R?

i.e. B < dwhend <R.

A
B

v

(b)(iii)

A magnetic field exists inside the wire as the current flows through all parts of the cross section of the wire,
hence when we apply Ampere’s Law over a circular path inside the wire, the path will enclose a fraction of
the current that flows in the wire resulting in a non-zero magnetic field in the wire.




D2

Draw a circular Amperian loop of radius r centred on the axis of the wire. The magnetic field is constant along

(a)
this loop.
Applying Ampere’s Law, within the conductor, r < R, As J varies with , integration is
. T ~ ., | needed: Ion. = [] dA over the
jCB $AE= folene = Ho J;) J @mr')dr cross-sectional area of the loop.
.
B(2mr) = Zﬂﬂof (br')r'dr’ = = 2nr'sodA = 2nr'dr’
0
b (" br?
B :‘uLf 2y = HoOT
r J, 3
Outside the conductor, r > R,
r
% B-dt = polenc = #Of JQ@2rr")adr’
20
B(2nr) = Znyof (br)r dr
bR3
B = #0
{Hobr <R
bR3
L5 2 R
(b) B
A :
,;
D3

(i)

Inside the wire, consider an Amperian circular loop of radius r centered around the axis of the wire. Due to
symmetry, the magnetic field on this loop is constant.
Using Ampere’s Law,

f B-df = Holenc

B2nr) = pojmr?
_Ho mr? _ Mo)T
- 2mr 2
Outside the wire, using Ampere’s Law,
B(2mr) = poJmR?
iy R
~ T 2r




(ii)

: r

-
»

(iii)

As the wire carries a current | that is uniformly distributed throughout the wire (with the
cavity), the current density J in the wire is given by

I 1
= , — = -=0322—
/ (mtR? — m(0.1R)?) 0.99mR* R?
(iv) The magnetic field at P due to a uniform wire of radius R with no cavity is given by
_ HoJr 1o I _
Bpy = - =3 O.BZZF (0.4R) = 0.0644uyl /R
The magnetic field at P due to a uniform wire of radius 0.1R (centered at the center of
cavity) is given by
HolR 1o I
Bpy = = ?([}.322 @) (0.1R) = 0.0161uy! /R

The net magnetic field at P is given by the superposition of the magnetic field at P due to a

uniform current in the original wire and the magnetic field due to a uniform current in the

opposite direction flowing through the cavity.

Amperian Loop A . :
mben P Assume the positive current to mean current flows into
page and negative current to mean current flows out of
page.
Using right hand grip rule, the positive current flowing
within the Amperian loop A will cause a clockwise B-field
along the Amperian loop. Hence direction of Bro is
vertically down.
Using right hand rule, the negative current flowing within
the Amperian loop B will cause an anti-clockwise B-field
along the Amperian Loop. Hence direction of Bp1 is also
vertically down.
BP = BPO + BPl = 00805 /.lol/R
D4

(a)

Consider a rectangular Amperian loop of width y across the belt as shown in the diagram,
‘B/
/ ‘ >/
—
/; —>
Vs

In time dt, dq of charge moves a distance dx. The enclosed current is thus given by:
/ _dq Adx oydx
T dt dt  dt

= oyv




Apply Ampere’s Law to the loop,
f B-df = polenc

2By = ugoyv
HoOoV
s B =
2

HoOoV
out of the paper (above the sheet)

B = HoOV .
> into of the paper  (below the sheet)
‘B/
‘ >
—>
7
lenc = Ky
Using Ampere’s Law,
f B-df = Holenc
2By = oKy

HoK
—— outofthe paper (above the sheet)

p=1J 2
) koK
—~ into of the paper  (below the sheet)
D5
a — —
(@) fB'dlelOIenc

Where 55 B - df is the net magnetic flux along the loop, , is the magnetic permeability of free space and I,

is the enclosed current.
(b) Since I} = I,
J-jl dA = f]z dA

f 1]1 (2nr dr) =f 3]2 (2mr dr)
0 v

”r12]1 = ”(T?; - rzz )2

il J,  (shown)

G
(c)(i) | Draw a circular Amperian loop of radius r centred on the axis of the wire, where 0 < r <nry
fB dtf = Uolene = ﬂoll,enc = /107'[7'2]1
B(2nr) = pomr?jy
1
B = 5#0]17”
(c)(ii) | Draw a circular Amperian loop of radius r centred on the axis of the wire, wherer; <r <r,
;’.B Al = Polenc = toly = pomri ]y
B(Q2mr) = pomri)y




_ to)11{
B="-""1
2r

(c)(iii)

Draw a circular Amperian loop of radius r centred on the axis of the wire, wherer; <r <r,

fﬁ dt = polene = “0(11 - 12)

SincelL =1, =1,

(d)

B(2nr) =0
B
A ' ' ' '
B | N . —
O conductor | insulator | metal | plastic jacket ! X
r r, braid p, ra

a e . .
Marker’s Comment: From r, to rs, B takes the form B = — —br , where the first term initially dominantes,
r

followed by the second term. Hence the first part of the graph is an inverse graph, followed by a linear graph.
However, simply drawing a curve will suffice.

The magnetic field outside a standard transmission cable, unlike that of a coaxial cable, is not zero when a
current is flowing through it. A high frequency signal will mean that energy will be dissipated in metal
components in the surroundings through electromagnetic induction.

(Optional) Challenging Questions

C1

They are all equivalent!

Intuitively, all the current that flows through the flat circular area, also flows though any other open surface
you can draw, so the current enclosed by the loop is the same.

And any current that doesn't flow through the flat circular area, but happens to flow through one of the other
surfaces (e.g. S2), also flows out again, so there’s zero net contribution.

There is one notable problem though (which is explicitly not in the H3 syllabus, so fret not): what happens
when you have a current flowing in and out of a pair of parallel plates (i.e. a capacitor)?

. P
! SI ~ ,"//—\\I

_ = [ [ i
SE | | I

‘/
Choosing the flat circular area (left), you get a current as expected. But choosing a surface that encompasses
the plate (right), apparently no current flows through it. But Maxwell noticed that something is changing
through the surface, even though there is no current: the electric field!




So he simply added a term to the RHS of Ampere’s Law that accounts to the change in electric flux, and all was
well.

fﬁ dl = polenc + tola

This is known as Maxwell’s correction to Ampere’s Law (the correction term is the “displacement current”),
and the H3 syllabus explicitly states that you don’t need to know this. So this situation will not come out in
the A-level exam, nor any school prelim papers. But you took H3 to learn new physics, not just to get an “A”,
SO now you are smarter! :)

C2

(This can be found in Griffiths, page 236-237)

The system is cylindrically symmetric, so the magnetic field must also be cylindrically symmetric.
Suppose B has a radial component, E;.

When the current were flowing in one direction, suppose E; is positive (e.g. radially away from the axis). If the
current direction is reversed, the direction of §r would be reversed too.

Changing the direction of the current is physically equivalent to turning the solenoid upside down, but we
know in real life that that does not affect the direction of the magnetic field.

Therefore, §r = 0.

Let the circumferential component be §¢. If it exists, it will be tangential to Amperian Loop 3 (which is a
circle)
Applying Ampere’s Law to Amperian Loop 3,

i B-df= By (21s) = polenc

3
But I, = 0 because the loop encloses no current (the current is parallel to the plane of the loop)

(c)

In cylindrical coordinates, B = §r + §¢ + §Z (just like how in Cartesian coordinates we can write B = B, +
§y + §Z). But from (a) and (b), we’ve seen that §r = 0and §¢, =0.Thus B points only upwards or
downwards.

In general, we expect that value of B, may depend on how far it is from the axis of the solenoid, i.e. B, =

B, (r). Furthermore, we expect that inside the solenoid, B points in one direction (e.g. upwards), and outside
the solenoid it points in the other direction (e.g. downwards).




Applying Ampere’s Law to Amperian Loop 1,

L

(Note that the two zeroes are because B, L d_f, and the negative sign on the third term is because of the

direction we are traversing the loop: on one side of the rectangle we are moving in the same direction as _BZ,
at the other side we are moving in the opposite direction)
Butl,,. = 0foranyb >a > R.

~B=0 everywhere outside the solenoid

- — I
f B-df =Bz(a)L+0—BZ(b)L+O — Bz(a)—BZ(b) — Holenc
C

1

Applying Ampere’s Law to Amperian Loop 1,

;; B-dl=BL+0+0+0 = pylon
€1
(where two of the zeroes are because B, L d¥, and the third zero is because B = 0 outside the solenoid.)
If the loop encloses N turns of wire, then I, = NI.Ifn = N/L, then I, = yonlL
~ BL = ugnlLI
o B = llonl




Tutorial solutions (Part D - Dipoles in Fields)

Discussion Questions

D1
(a)(i) | Field lines normal to surface AND directed towards surface ;
No lines inside the conductor ;
(a)(ii) | Charged particles are on the surface AND charge density is greater where the
radius of curvature is smaller ;
(b)(i) = HEdA = Q,I’gu :
[IE.dA = 4nr? E(r) ;
Q=4/3 2R3,
| E(r) = (4/13) nR¥p e dnr® = Rple3r% ;
(b)) | | inside have Q = 4/3 nr¥p ;
S0 E(r) = /3¢,
(b)(iii) | linear from origin (directly propertional)to R ;
matches at r = R (continuous but not smooth), R labelled ;
1t forr>R;
@) | p=Qd;
=4/3 nR%p 2R+ L);
dipole at 45 degrees to uniform field ;
(c)(ii) dipole at 45 degrees to uniform field ;
forces on charges along field lines in correct direction ;
(c)ii) | r=Epsing,;
(c)(iv) | The dipole mament is paraflel or anti-paraliel to the field ;
The dipole will setfle in the orientation where an arrow drawn from the
negative charge to the positive charge is in the same direction as the electric
field lines ;
Appropriate explanation of stable equilibrium, e.g. dipoie experiences a
restoring torque to this orientation if displaced sfightly from it/electric potential
energy of the dipcle is lowest (U =-p.E) ;
D2 Sketch of the system:

(a)(i)

u=1A=(2.00)(0.05)? = 0.0050 A m?
7 = uB sin¢ = (0.0050)(0.830) sin 5° = 0.000361696 =~ 3.62 X 10~* N m clockwise




(a)(ii)

To show that the oscillation is simple harmonic, we need to show that & &« —¢.
Let the moment of inertia of the loop be i. By Newton’s 2" Law (t = ia):

T=uBsing = ia
uB
La =Tsmq,’>
Since ¢ = 5°is small,sin¢ = ¢
B
Lam MTqb > axep

The torque acts in the opposite direction to the angular displacement. .- this is a simple harmonic oscillation
Since a = —w?¢,

uB

W= |=
i

2 |uB
T i

/i
T =21 |—
nuB

(moment of inertia of rod about the centre: EmLZ. Moment of inertia of point mass at distance 7 is mr?)
The moment of inertia of the square loop is:

- (L)Z v2(Lmiz) = 2mie (242
L= mz 12m =M

1
= 2 — =5 2
7 12) 2(0.020)(0.0500)? > = 333 X 10~ kg m

g | 333x105
~ 4" [(0.0050)(0.830)  °°°

¢2 ¢2
AU = f Td = uBsing d¢p = —uB cos ¢, — (—uB cos ¢;)

1 ¢1
~ U= —uBcos¢
Plot a y = — cos x curve, with minima at ¢ = 0° and 360° and maxima at ¢ = 180°
Here’s a Desmos plot (in radians):

—2

S

\
%

-2

(note that the horizontal axis is in radians.)

Alternatively, if you decided to pick ¢p = 0° as the reference (zero) potential: (this is similar to choosing a
different reference height to be h = 0 in the formula GPE = mgh)




S —
0 2 4 6

(c)

There are equilibrium points at ¢ = 0° (or 360°) and 180° because at those points, |t| = |Z—Z| =0

There is a stable equilibrium point at 0°/360°. A small displacement to the left or right will result in a restoring
torque back to the equilibrium point.

There is an unstable equilibrium point at 180°. A small displacement to the left or right will result in a torque
pushing the loop further from the equilibrium point.

D3

Magnitude of electric dipole moment:
= —10
p=|qld=20x10""Cm
Magnitude of torque exerted on the dipole with respect to the center of mass by the field:
T =pE|sinf] = 1.0 x 107°Nm
Moment of inertia with respect to the center of mass:
I = mlrf + mgrg =20x 107" kg m>
Magnitude of angular acceleration: rod rotates about its center of mass

T=Ila = a= % = 5.01'8(_1/.‘3'2

The torque and the angular acceleration will
decrease as the rod rotates toward
alignment with E.

_—




D4

(i)

-

+q F+q

+Q __________________________________________ T
— _
I r J
<\—

Fq —q

Direction of net torque must be clockwise as ﬁ+q and ﬁ_q both give clockwise torques.

Direction of net force is upwards, because both 13+q and ﬁ_q have a component in the upwards direction, and
their left and right components cancel out.

(ii)

d>2 +q E

Q1 0 1

(1))

Sincer >» d,% =~ 0 (we completely neglect even higher powers of d /r) and 8 = 0 (the direction of Eis
approximately parallel to the horizontal). So:

Q 1

4mey 12

Since E L 7,
Q
41rET?
From the right hand rule for cross products, T is directed into the page (i.e. clockwise torque)

d
T= 99 (clockwise)
4meyr?

2| = |p x E| = pE = (qd)

(iif)

As drawn in (i), the net force on the dipole is 13+q + ﬁ_q

By symmetry, the horizontal components cancel out. Both vertical components are identical and point
upwards. Let 8 be the angle with the horizontal. Take upwards as positive.




Fpet = 2F1qx =2 P, p sinf@
r2|1+ (?)

Since sin @ = —2£2 =

r2+(3)

P9 Qq 1 a/2 _ Qq d _ Qq d
net — 2 - 3/2 3/2
4mey d d\? 4me, d\2 4meg d\2
r2+(5 24 (2 24 (¢
@\ @) (@) (@)
Sincer > d, (1 + (i)z)_3/2 ~1-32 (1)2 =~ 1 (we neglect powers of d /r greater than 1 because d /7 is
’ 2r 2 \2r
small)
Qq d Qd
et = pr r3( )= -3 upwards




Case study: The parallel plate capacitor

o Q Gfuisifn:; _+_I + + +
’ — — £ |
From Gauss’ Law, E = o e surface )
Where o is surface charge density, A is the surface re

Also, for parallel plates, E = g

_ I
Hence V = cod Q

. o A
The capacitance of a parallel plate capacitor is thus C = %

Similarly, by considering the electric field between the two conductors of

a capacitor, we can also find that the capacitance of a spherical capacitor

comprising two concentric spherical conducting shells separated by a

vacuum with inner radius 7, (positive charge) and outer radius 1y
TaTh

(negative charge) as C = 47T€0r s
b~ Ta

From Gauss’ Law, E = Q/(4me,r?) is ‘emitted’ from positively charged inner sphere,

—2 = Q/(4meo %) , V = Q/(4reor)
By performing integration, Vp—Va =(Q/ 47[60)(:— - rl—) =(Q/ 4mey)(ra—ro)/ (rora)
b a
Since Va>Vo , € =0Q/(Va—Vb) =4neo% .
b~ "a
Also, the capacitance of a cylindrical capacitor of inner radius 7, +“———»>
(positive charge) and outer radius 1, (negative charge) and l
length L is C = —=<0!
& In(rp/ra) '

From Gauss’ Law, E = Q/(2reqrl) is ‘emitted’ from positively charged inner tube,

-2 = Q/ (7o) , V=—0Qniir)/(2re,l) =
By performing integration, Vp—Va =(-Q(nr, =Inr, )/ 27€,l) =(Q (lnii) / 27eyl)
b
Since Va>Vi , € =0Q/(Va~Vs) = (2meol)/In(2) .



Solutions to Self Review Questions

1. Applying Gauss’s Law over a Gaussian surface
of radius r, that just covers the sphere of radius
R,

_ o(4mR?)

€o

E(4nr?)

Hence the surface charge density is given by
72 5
o = Ee, (ﬁ) =133 uC/m

Capacitance is given by

C= % = 4megR = 13.3 pF

2. Consider a Gaussian surface as shown in the
diagram below,

Applying Gauss’s Law yields

EA—GA—(V>A
e \d

Hence the separation between the plates,

eV
d=-2"
o

=442 ym

3. Combining the 15 uF and 3.0 uF capacitors in
series gives an effective capacitance of 2.5 uF.

Combining the 2.5 uF and 6.0 uF capacitors in
parallel gives an effective capacitance of 8.5 uF.

Combining the 8.5 WF and 20 pF capacitors in
series gives an effective capacitance of 5.96 pF.

When 15 V is applied across the arrangement,
Total charge is

Q = CV = (5.96 x 1076)(15) = 89.4 uC

This is also the charge on the 20.0 uF capacitor.

The potential difference across the 20.0 puF

capacitoris thus IV = % = % =4.47V.

Hence the potential difference across the
parallel arrangement is 10.53 V. This is also the
potential difference across the 6.0 uF capacitor
which gives it a charge of 63.2 uC.

That leaves only a charge of 26.2 uC for the
other parallel branch and that is also the charge
on each of the two capacitors in series in that
branch.

4. Energy stored in the capacitor is given by

&= %cv2 = %(450 x 1076)(295)2 = 19.6 ]

5. The electric field due to charges on the
surfaces of the dielectric is given by

Egietectric = E — E' = 0.70 X 10° V/m

Hence the charge density on the surfaces of the
dielectric can be determined from

E _ Odielectric
dielectric —
€o

Ogictectric = (0.70 x 10°)(8.854 x 10712)
=6.20 x 1077C/m?

Dielectric constant, K = % = 1.28

6. The circuit can be described by the equation

=iR+1L i
§=1 dt
Solving yields
i = %(1 —_ e_(R/L)t)
i=12(1-e5)

Final steady value of current is 1.2A and



Time needed for current to reach 50.0% ; i.e.
0.60 Aisgivenbyt = 0.139s.

7. a) Mutual inductance is the ratio of the
magnetic flux linkage in one coil due to current
flowing in the other,

N,®, 400 x 0.032
ii, 652

=196 H

b) Similarly, for the other coil, since My, = M,4,

_ (2.54)(1.96)

=7.12x10"3 Wb
1 700

8. For a solenoid of length /, the inductance is
UoN?A

given by L = ]

Thus the energy stored in the solenoid is given
by
1 _ UoN2AI?

U==LI?

_ -6
: T 2.44 %1076

1 |1
9. Resonance frequency f = oic = 711 Hz
10. At steady state, there is no p.d. across the
inductor. Both resistors are connected in
parallel to the cell and has the same p.d.

6000 2000

(a) Att = 0, the switch is opened and the cell
is no longer part of the circuit. The current
in the inductor is initially 9 mA (clockwise)
and this will be the current in the outer
loop through both resistors. The p.d.
across both resistors is thus 72 V, hence
the induced emf at the inductor is 72 V.
Since the current is initially clockwise, the
point b will be at a higher potential than a.

(b)

P!

\



Solutions to Tutorial Questions

1. Consider a Gaussian cylindrical surface
(radius r) in the region between the two
conductors in the co-axial cable.

Applying Gauss's Law yields

E(ZTL’T‘L) — Qinner
€o
The potential difference between the inner
conductor surface (radius a) and the inner
surface of the outer conductor (radius b) is
given by

V= bedT — Qinnerfbﬂ _ Qinner In (9)
a

2nLey ), T  2nle, a

Hence capacitance is given by

Q 27TLEO
=== = 268X 107 F
€= = inth/ay = 268X 10

2. When fully charged, potential difference
across capacitor C; is the same as the cell. The
amount of charge on itis givenby Q = CV =
120 ucC.

When switch S; is now open and S; closed,
charges redistribute between the two
capacitors until the potential difference across
each are the same. Hence we can write

G _0-0
c, G

Solving yields Q; = 80.0 uC and Q, = 40.0 uC.

3. For a parallel plate capacitor, E.A = 62
0

Hence the energy stored in the capacitor is

w_ @

2 2604

given by & =

Change in energy stored is given by

_ @
€ = 5eoa @)

Hence the force between the plates is given by

_d§_ Q?
Cdx 26,4

4. a) The dielectric constant is given by

_Ey Vo 45
E V115

b) We can model this as two capacitors
connected in parallel with the charges split
between them such that the same potential
difference exist across the plates of both
capacitors.

For the one-third part with dielectric,
Co
Q1 = CaietectricV = K?V

For the two-third part with vacuum,

2C,
=73

Hence

2 K
CoVo=0=01+0: = (5+5) GV

3V,  3x45

V=T kT 2+301

=228V

5. The potential difference across each slab of
dielectric is given by
Q Q Q Q

V=== and V, ===
17 ¢, 7 K26 27 ¢, K26

€0A . .
where C, = ?T is the capacitance across the

two parallel plates in vacuum of separation d.

Total potential difference,

V= Q (K1+K2)
T 2C,\ KK,
KiK. 2¢pA 1 KK
C=g=(260)< 12): 0( 12)
%4 K; + K, d \K;+K,



6. The magnetic field at the center of the
solenoid is given by

B = pgnl = (41 x 10" 7)(40 )(80)
ot = A57 0.25
=0.161T

The magnetic energy density is given by

BZ
u=—=1.03x10%*]/m3

219

Total energy stored is given by
E=u.Al=0.129]

Since energy & stored in the magnetic field is
given by

1
§ =5LI% = 0129

Inductance is thus given by

~2(0.129)

g0z = +02x107°H

7. (a) The circuit can be described by the
equation

=iR+1L di
$=t dt
Solving yields
$
[ =—(1— —(R/L)t
l R ( e )
022 = —— (1 — ¢~ “.90/0.140)t
490( )

Hence t = 5.66 ms.

(b) Using the same equation,

6.00

: 1— —(4.90/0.14—0)10 =122 4
i =%90( )
(c) When current is decreasing, the equation is
given by
L di iR
dt

Solving yields

4.90,
0.16 = 1.22¢ 014"

Hencet = 0.058s.

8. In an LC circuit, the charges oscillate with a

1 1 |1
frequency of f = W=

Hence if the circuit oscillations are in tune with
the radio signal of frequency fg;gna = 6.3 X

1012 Hz

The capacitance can be found by

2

C—1< ! ) =608 x 10712 F
=7 ﬁ =

9. For the LC circuit consisting of a fully charged
capacitor and inductor connected in series,

q  d*q

[T

We can see that it is of the same form as the
characteristic equation of SHM where the
resonant frequency can be determined by
comparison, ie,

1 _ 1
Wo =E = 4472 rad.s

With the addition of a resistor,

q Ldzq dq
c T dt? dt

d’¢ Rdq gq
R T B
dt? * Ldt * LC
Auxiliary equation is of the form
R 1

— =0

This has complex roots of



__ R, |1 R
Y12 = Tor e T a2

Hence solution is of the form

With frequency

w= |=—% = 4360rad.s’
LC 4L



