

HWA CHONG INSTITUTION 2019 C2 H2 CHEMISTRY PRELIMINARY EXAM SUGGESTED SOLUTIONS

Paper 4

1 (a) (i) • Tabulates volumes and temperature data in (a)(i) Table should contain correct headers and units. Data headers to include volume of FA 1, volume of FA 2, T_{FA1} , T_{max} and ΔT . [1]

Volume of FA 1 /	FA 2 /	Τ_{FA 1} / °C	T _{max} / °C	∆ 7 / °C	563
cm ³	cm ³	1,90			
10.0	40.0	32.0	36.0	4.0	1.1
20.0	30.0	32.0	39.5	7.5	
25.0	25.0	32.0	41.5	9.5	
30.0	20.0	32.0	41.0	9.0	
35.0	15.0	32.0	38.5	6.5	100
40.0	10.0	32.0	36.0	4.0	l C T

 Complete 6 sets of volume/temperature readings in (a)(i) Required volumes: Volume of FA 1 = 10.0 cm³, 20.0 cm³, 25.0 cm³, 30.0 cm³, 35.0 cm³ and 40.0 cm³ and

use appropriate volume of **FA 2** such that the total volume of reacting mixture in each set of data is 50 cm³ [1]

- Records all temperature data in (a)(i) to 0.5°C, all volumes for FA 1 and FA 2 in (a)(i) to 1 d.p. [1]
- Correctly calculates all ∆T values to 1 d.p. in (a)(i)
- (a) (ii) Axes correct way round and correct labels and units and scale [1] Note: Scale chosen must allow for the lines to be extrapolated to cross each other. The plotted points should occupy at least half the grid in both directions.
 - All points are correctly plotted to within ± ½ small square. [1]
 - All drawn graph lines are <u>straight</u> best-fit lines and are extrapolated to cross each other.

and

there are at least three points on each side of the graphically determined ΔT_{max}

[1]

(a) (iii)	AT and V are read correctly to 1/ small square from graph
(-, (,	ΔT_{max} and V_{max} are read correctly to $\pm \frac{1}{2}$ small square from graph
	From the sample graph, $\Delta T_{\text{max}} = 10.4 \text{ °C}$ $V_{\text{max}} = V(H_2SO_4) = 27.25 \text{ cm}^3$ [1]
	HWA CHONC
(b) (i)	$H_2SO_4 + 2 \text{ NaOH} \rightarrow \text{Na}_2SO_4 + 2 \text{ H}_2O$
	V(NaOH) = 50.0 – 27.25 = 22.75 cm ³ n(NaOH) = 1.50 × (22.75/1000) = 0.03413 mol
	$n(H_2SO_4) = 0.03413 / 2 = 0.01706 \text{ mol}$ [H ₂ SO ₄] = 0.01706 / (27.25/1000) = 0.626 mol dm ⁻³ [1]
(ii)	Heat change = $m_{solution} C\Delta T_{max} = 50.0 \times 4.18 \times 10.4 = 2174 J$ [1]
(c)	$n(H_2O) = n(NaOH) = 0.03413 \text{ mol}$ $\Delta H_{neut} = -2174 / 0.03413 = -6.37 \times 10^4 \text{ J mol}^{-1} = -63.7 \text{ kJ mol}^{-1}$ (Sign must be negative) [1]
(d)	ΔH_{neut} would be <u>less exothermic</u> as malonic acid is a <u>weak acid</u> . Energy is <u>absorbed</u> to <u>ionise</u> the un-ionised weak acid. [1]
(e)	Suggested sources of errors and its appropriate improvements: [1]
	heat loss to the surrounding and use a cup lid to minimise heat exchange with the surrounding air
	V_{FA1} and V_{FA2} is to 1 d.p. as measured using less precise measuring cylinders and can be measured using more precise burettes to give 2 d.p.
	initial temperature of FA 2 was not accounted for and weighted initial temperature should be calculated where $T_{weighted initial} = \frac{(Volume of FA 1 \times T_{FA1}) + (Volume of FA 2 \times T_{FA2})}{Volume of FA 1 + Volume of FA 2}$
	heat capacity of the calorimeter (Styrofoam cup) was not accounted for and heat absorbed by the styrofoam cup can be included in the calculation of heat change
2 (a)	Mass of weighing bottle and FA 3 / gMass of weighing bottle and residual FA 3 / gMass of FA 3 used / g
	Tables have correct headers and units (included in the header or with each entry in the table) [1]

	(b)		Effervescence observed. [0.5]
			and Yellow / greenish yellow / yellow green solution turned colourless / very pale green. [0.5]
	(c)	(i)	Final burette reading / cm ³ Initial burette reading / cm ³ Volume of FA 4 used / cm ³
			• Tables have correct headers and units (included in the header or with each entry in the table) [1] Note: Mark is lost if any final and initial burette readings are inverted or 50 is used as the initial burette reading.
			• All mass reading in (a) are recorded to the nearest 0.01 g and burette readings & volume used for all accurate titres in the titration table are recorded to the nearest 0.05 cm ³ . [1]
			• At least two uncorrected titres for end-point within ±0.10 cm ³ . [1]
	(c)	(ii)	 Student obtains average titre, to 2 d.p., from any experiments with <u>end-point titre values within 0.10 cm³</u>
			Mark is lost if there are arithmetic errors in the table. Mark is lost if the titres used are not identified either in the table (by, for example, a tick) or in a calculation.
			Accuracy
			Supervisor's $V_{FA 4} / m_{FA 3} = 1.530$ [2]Difference between student's and supervisor's $V_{FA 4} / m_{FA 3}$ [2]If difference is $\leq 0.045 \text{ cm}^3 \text{ g}^{-1}$ [1]If difference is > 0.045 but $\leq 0.075 \text{ cm}^3 \text{ g}^{-1}$ [1]For a difference > 0.075 [0]
	(d)	(i)	If $V_{FA 4} = 10.10 \text{ cm}^3$
			$\eta(Fe^{2+}) = 10.10 \times 10^{-3} \times 0.020 \times 5 = 1.01 \times 10^{-3} \text{ mol } (3 \text{ s.f})$ [1]
	(d)	(ii)	$\eta(Fe^{3+}) = 1.01 \times 10^{-3} \times 250 / 10.0 = 0.0253 \text{ mol } (3 \text{ s.f})$ [1]
	(d)	(iii)	$m_{FA 3} = 6.60 \text{ g}$
			Mole ratio of $Fe_2(SO_4)_3.nH_2O$: $Fe^{3+} = 1 : 2$
			Number of moles of $Fe_2(SO_4)_3$. $nH_2O = 0.0253 \div 2 = 0.01265$ mol
			$M_{\rm r}$ of Fe ₂ (SO ₄) ₃ . <i>n</i> H ₂ O = 6.60 / 0.01265 = 521.7 [1]
			$n = \{521.7 - [2(55.8) + 3(32.1) + 12(16.0)]\} \div 18.0$ = 7 (nearest whole number) [1]

	 Shows working in 1(b)(i), 1(b)(ii), 1(c), 2(d)(i), 2(d)(ii) and 2(d)(iii). All calculations must be relevant although they may not be complete or correct. Any calculation not attempted loses this mark. [1]
	 Shows appropriate significant figures (3 or 4 sf) in all final answers (in the blank) in 1(b)(i), 1(b)(ii), 1(c), 2(d)(i) and 2(d)(ii). For 2(d)(iii), M_r can be given to 1 d.p. or 3 s.f. but <i>n</i> should be given as a whole number. Any calculation not attempted loses this mark. [1]
	 Shows appropriate units in all final answers (in the blank) in 1(a)(iii) (°C, cm³), 1(b)(i) (mol dm⁻³), 1(b)(ii) (J or kJ), 1(c) (J mol⁻¹ or kJ mol⁻¹), 2(c)(ii) (cm³), 2(d)(i) (mol), 2(d)(ii) (mol). Units should not be given for <i>M</i>_r or <i>n</i> in 2(d)(iii). Any calculation not attempted loses this mark. [1]
(e)	Effervescence was observed as zinc reacted with acid to form H_2 gas. [0.5]
	Yellow solution turned colourless / very pale green as <u>Fe³⁺ was reduced to</u> <u>Fe²⁺</u> . [0.5]
(f)	Zinc metal that is not removed will <u>continue to reduce Fe³⁺ formed during the</u> <u>titration to Fe²⁺</u> , resulting in a <u>higher than expected titre</u> . [1]
3 (a)	$K_{c} = \frac{[FeSCN^{2+}]}{[Fe^{3+}][SCN^{-}]} $ [1]
(b)	no. of moles of FeSCN ²⁺ formed \approx no. of moles of SCN ⁻ added = 2.00 x 10 ⁻³ x (5/1000) = 1.00 x 10 ⁻⁵ mol [FeSCN ²⁺] = (1.00 x 10 ⁻⁵)/(10/1000) = 1.00 x 10 ⁻³ mol dm ⁻³ [1]
	Large excess of Fe ³⁺ is used to <u>drive the equilibrium almost completely to the <u>right</u>. [1] Hence, the amount of FeSCN²⁺ produced will be essentially equal to the amount of SCN⁻ added.</u>
(c)	Procedure (sample answer)
	 Using separate <u>burettes</u>, transfer 5.00 cm³ of Fe(NO₃)₃ and 5.00 cm³ of KSCN into a <u>boiling tube</u>. Stopper and <u>shake</u> to ensure a homogeneous solution. Rinse and fill a cuvette with 3 cm³ of the mixture. Place the cuvette in a <u>thermostatically controlled water bath</u> maintained
	at <u>50 °C</u> for <u>about 5 min</u> . 4. Measure and record the <u>temperature</u> of the solution using a <u>thermometer</u> .

- 5. Remove the cuvette from the water bath, and <u>immediately</u> measure and record the <u>absorbance</u> (at wavelength of blue light 447 nm) using a spectrophotometer.
- Repeat steps 3 5 at <u>40 °C, 30 °C, 20 °C and 10 °C</u>. or

Repeat steps 2 – 5 (total volume must then be at least $5\times3=15$ cm³) at <u>40 °C, 30 °C, 20 °C and 10 °C</u>.

- M1 Logical sequence [1] (minus ½ mark for each missing point)
 - Mixing known volumes of Fe(NO₃)₃ and KSCN, amount of Fe³⁺ not more than <u>10 times</u> of SCN⁻, <u>total volume > 3 cm³</u>
 - Measure (and record) the temperature of the mixture
 - Measure (and record) the <u>absorbance</u> of the mixture

M2 - Apparatus [1] (1/2 mark for each point)

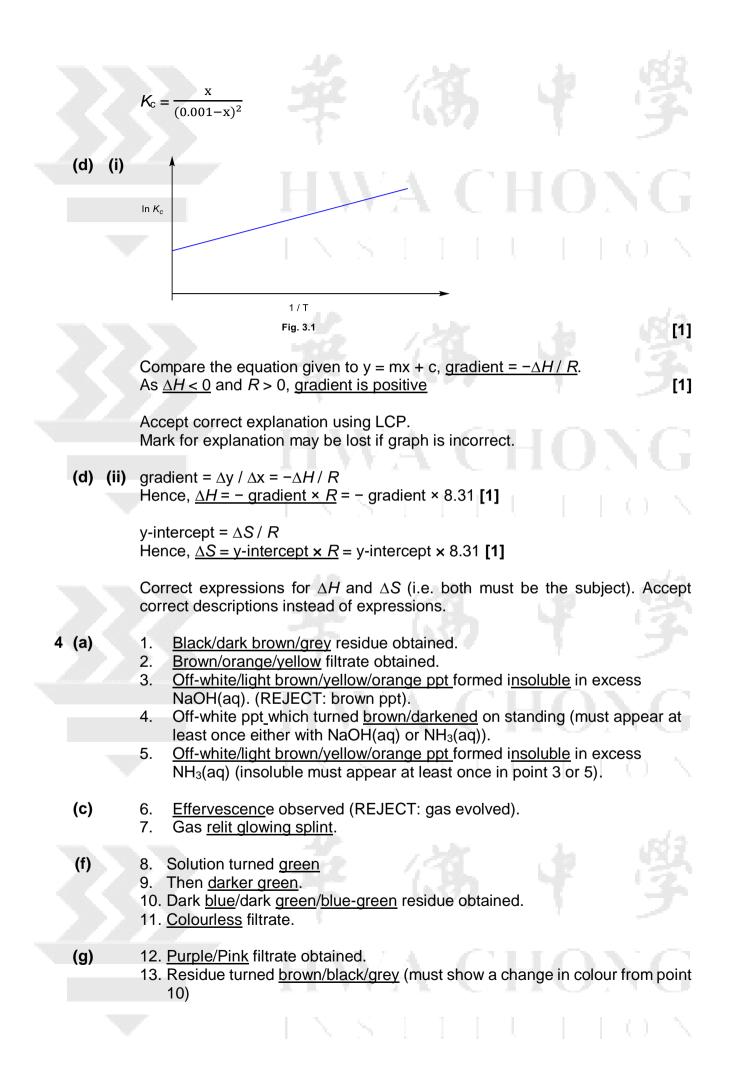
- <u>separate burettes</u> for Fe(NO₃)₃ and KSCN (or other <u>precise apparatus</u> e.g. micropipette or pipette)
- thermostatically controlled water bath

M3 – Essential details [1] (1/2 mark for each point)

- <u>Shake boiling tube</u> / test-tube/ swirl conical flask (with stopper) or stir beaker (with glass rod)
- Allow time for the mixture to equilibrate in the water bath (e.g. 5 10 min) and measure absorbance immediately

M4 - Choice of temperatures [1] (1/2 mark for each point)

- at least <u>5 different temperatures</u>
- with at least <u>5 °C difference</u>, 0 °C < T < 100 °C


M5 and M6 - Treatment of results [2] (1/2 mark for each point)

- use calibration line to determine [FeSCN²⁺] (accept if show how on calibration line)
- correct [Fe³⁺]initial and [SCN⁻]initial
- correct [Fe³⁺]_{eqm} and [SCN⁻]_{eqm}; ecf from initial conc
- correct expression for K_c in terms of [FeSCN²⁺]_{eqm}; ecf from eqm conc

Sample answer:

For each absorbance obtained, read off the <u>calibration line</u> to determine the corresponding [FeSCN²⁺] at each temperature.

Fe³⁺ SCN-FeSCN²⁻ initial / mol dm⁻³ $2 \times 10^{-3} \times 5$ $2 \times 10^{-3} \times 5$ 0 10 10 $= 1.00 \times 10^{-3}$ $= 1.00 \times 10^{\circ}$ change / mol dm⁻³ – x – x $[FeSCN^{2+}] = x$ eqm / mol dm⁻³ 0.001 - x0.001 - x

	Observation points 11 - 13 = 6 marks 9 - 10 = 5 marks 7 - 8 = 4 marks
	5-6 = 3 marks 3-4 = 2 marks 1-2 = 1 mark 0 = 0 mark [6]
(b)	Oxidising agent [1] Evidence 1: Since a <u>brown/orange/yellow solution</u> is formed that decolourises with $S_2O_3^{2^-}$, <u>I⁻ was oxidised to l_2</u> . [½] Evidence 2: <u>MnO₂ was reduced</u> to Mn ²⁺ , as seen by the <u>off-white/light brown</u> <u>ppt</u> formed with NaOH(aq) that darkened on standing. [½]
(d)	Since there was no ppt with NaOH(aq), MnO ₂ was not reduced to Mn ²⁺ or an off-white ppt will be formed, hence it is not acting as an oxidising agent. [1]
(e)	Heterogeneous <u>catalyst</u> [½] Since there was brisk <u>effervescence</u> , it indicates that rate of decomposition of H_2O_2 is <u>faster</u> . [½]
(h)	X: $MnO_2[\frac{1}{2}]$ Y: $MnO_4^{-}[\frac{1}{2}]$ (no credit if colour of filtrate is not correct)
(i)	BaSO4. [1]
	HWA CHONG
	ENSELLEON