

Anglo-Chinese School (Independent)

**IBDP Mathematics Higher Level** 



# **SECTION A**

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 6] NOT IN SYLLABUS

Let  $A = \begin{pmatrix} 2 & 6 \\ k & -1 \end{pmatrix}$  and  $B = \begin{pmatrix} h & 3 \\ -3 & 7 \end{pmatrix}$ , where *h* and *k* are integers. Given that det  $A = \det B$  and that det AB = 256h.

- (a) show that h satisfies the equation  $49h^2 130h + 81 = 0$ ; [2 marks]
- (b) hence find the value of k.
- **2.** [Maximum mark:6]

Find the area between the curves  $y = 2 - 3x + x^2$  and  $y = 2 + x - x^2$ .

**3.** [Maximum mark: 6]

The random variable T has the probability density function

$$f(t) = \frac{\pi}{4} \cos\left(\frac{\pi t}{2}\right), \quad -a \le t \le a.$$

Find

- (a) the value of *a*; [2 marks]
  (b) an expression for the cumulative distribution function *F*(*x*). [2 marks]
- (c) the interquartile range. [2 marks]

# 4. [Maximum mark: 6]

The marks in an IB Mathematics HL exam are distributed normally with mean  $\mu$  and standard deviation  $\sigma$ . If the cut off score for a 7 is a mark of 80%, and 10% of students get a 7, and the cut off score for a 6 is a mark of 65% and 30% of students get a 6 or 7, find the mean and standard deviation of the marks in this exam. Give your answers correct to **two** significant figures.

# 5. [Maximum mark: 6]

Find the exact value of

$$\frac{\arcsin(\sin 4)}{4} + \frac{\arccos(\cos 3)}{3} + \frac{\arctan(\tan 2)}{2} + \frac{\operatorname{arccot}(\cot 1)}{1}$$

# 6. [Maximum mark:6]

Given that  $z = (b + i)^2$ , where b is real and positive, find the **exact** value of b when  $\arg z = \frac{\pi}{2}$ .



[4 marks]

#### **7.** [*Maximum mark:* 6]

Let X be a random variable. By expanding the expression  $E\left[\left(X - E(X)\right)^2\right]$  show that

$$E(X^2) \ge \left(E(X)\right)^2.$$

# **8.** [*Maximum mark:* 6]

Find an equation of the plane containing the two lines

$$x-1 = \frac{1-y}{2} = z-2$$
 and  $\frac{x+1}{3} = \frac{2-y}{3} = \frac{z+2}{5}$ .

- **9.** [Maximum mark: 6]
  - (a) State the transformations from graph  $y = a \sin(x + b) + c$  to graph  $y = \sin x$ . [3 marks]
  - (b) The graph below represents  $y = a \sin(x + b) + c$ , where *a*,*b*, and *c* are constant.



Find values for a, b and c.

[3 marks]

**10.** [Maximum mark: 6]

Given that  $(1 - 2x)^5(1 + 3x)^4 = a + bx + cx^2 + \cdots$ , find the values for a, b and c.

# **Section B**

Answer all the questions on the answer sheets provided. Please start each question on a new page.

11. [Maximum mark: 13]

(a) The function f is defined by  $f(x) = (x + 2)^2 - 3$ .

The function g is defined by g(x) = ax + b, where a and b are constants.

Find the value of a, a > 0 and the corresponding value of b, such that

$$f(g(x)) = 4x^2 + 6x - \frac{3}{4}.$$
 [8 marks]

(b) The functions h and k are defined by h(x) = 5x + 2 and  $k(x) = cx^2 - x + 2$  respectively. Find the value of c such that h(k(x)) = 0 has equal roots. [5 marks]

# 12. [Maximum mark: 14]

(a) Sketch the graphs of

$$y = \frac{x+1}{x-1}$$
 and  $y = |3x-5|$ .

State intercepts, asymptotes, maximum and minimum points of each graph clearly if there is any. [8 marks]

(b) Hence, find the range(s) of x for which

$$\frac{x+1}{x-1} < |3x-5|$$

where  $x \neq 1$ .

#### **13.** [Maximum mark: 16]

(a) Using Mathematical Induction, prove that  $\frac{d^n}{dx^n}(\cos x) = \cos\left(x + \frac{n\pi}{2}\right)$ , for all positive integer values *n*. [7 marks]

# (b) Solve the equation $\sin 4x = \cos x$ for $-\frac{2\pi}{3} < x < \frac{\pi}{4}$ . [9 marks]

# 14. [Maximum mark: 17]

Let A be the point (2, -1, 0), B the point (3, 0, 1) and C the point (1, m, 2), where  $m \in \mathbb{Z}$ , m < 0.

- (a) Given that  $A\hat{B}C = \arccos \frac{\sqrt{2}}{3}$ , show that m = -1. [6 marks]
- (b) Determine the Cartesian equation of the plane *ABC*. [4 marks]
- (c) The line *L* is perpendicular to plane *ABC* and passes through *A*. Find a vector equation of *L*.

[3 marks]

[6 marks]

(d) The point D(6, -7, 2) lies on L. Find the volume of the pyramid ABCD. [4 marks]

Answers

1(b) k = -3  
2. 8/3  
3(a) a = 1 or 1 + 4k  
(b) 
$$F(x) = \frac{1}{2} \left( \sin \left( \frac{x\pi}{2} \right) + 1 \right)$$
  
(c) 2/3  
4.  $\mu = 55 \ \sigma = 20$   
5.  $2 - \frac{\pi}{4}$   
6.  $\sqrt{3}$ .  
8.  $-7x - 2y + 3z = -3 \ \text{or } \mathbf{r} = \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1\\ -2\\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3\\ -3\\ 5 \end{pmatrix}$   
9(a)  
• Translate the graph along negative y-axis by c;  
• Translate the graph along positive x-axis by b;  
• Stretch vertically by factor  $\frac{1}{a}$ .  
(b)  $a = 3, b = -\frac{\pi}{4} + 2k\pi, c = -1$   
10.  $a = 1, b = 2, c = -26$   
11(a)  $a = 3, b = \frac{1}{2}$   
(b)  $c = \frac{5}{48}$   
12.  $x < 1 \ \text{or } x > \frac{9+\sqrt{33}}{10}$   
13(b)  $x = -\frac{\pi}{2}, -\frac{3\pi}{10}, \frac{\pi}{10}, \frac{\pi}{6}$   
14(a)(i)  $\overrightarrow{BA} \cdot \overrightarrow{BC} = 1 - m$  and show m = -1  
(b)  $-2x + 3y - z = -7$   
(c)  $\frac{\sqrt{14}}{2}$   
(d)(i)  $r = \begin{pmatrix} 2\\ -1\\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -2\\ 3\\ -1 \end{pmatrix}$   
(ii) 14/3