

# H2 Mathematics (9758) Chapter 3 Functions Discussion Questions (Suggested Solutions)

# Level 1

- **1** Sketch the graphs of each of the following functions. State its domain and give its corresponding range.
  - (a)  $f: x \mapsto \frac{2x-3}{x-1}, x \in \mathbb{R}, x > 1$
  - **(b)**  $g: x \mapsto -(x-2)^2 + 4, x \in \mathbb{R}, x \le 2$
  - (c)  $h: x \mapsto \ln(x-1), x \in \mathbb{R}, 1 < x < 3$





2 The function f is defined by

$$f: x \mapsto -(x-2)^2 + 4, x \in \mathbb{R}, x > 0.$$

- (i) Sketch the graph of f.
- (ii) State the domain and range of f.
- (iii) Explain why  $f^{-1}$  does not exist.



- 3 The function f is defined as  $f: x \mapsto \frac{2x-3}{x-1}, x \in \mathbb{R}, x > 1$ .
  - (i) Explain why  $f^{-1}$  exists.
  - (ii) Find  $f^{-1}$  in a similar form.

| 3    | Solution                                                                                                                                                                                                                                                                                                                        |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (i)  | $y + y = 2 \qquad y = f(x)$                                                                                                                                                                                                                                                                                                     |  |
|      | $O = \left(\frac{3}{2}, 0\right) \xrightarrow{x} X$ To explain that $f^{-1}$ exists $\Leftrightarrow$<br>show f is one-one (horizontal line test)<br><b>Note:</b> you must draw the graph if it is<br>not given by the question.                                                                                                |  |
|      | $\begin{array}{c} y = a \\ x = 1 \end{array}$                                                                                                                                                                                                                                                                                   |  |
|      | Since any line $y = a$ , where $a \in \mathbb{R}$ , cuts the graph of f at most once, f is one-one<br>Hence $f^{-1}$ exists                                                                                                                                                                                                     |  |
| (ii) | Hence f ' exists.<br>Let $y = \frac{2x-3}{x-1}$<br>y(x-1) = 2x-3<br>x(y-2) = y-3<br>$x = \frac{y-3}{y-2}$<br>$x = f^{-1}(y) = \frac{y-3}{y-2}$<br>$f^{-1}(x) = \frac{x-3}{x-2}$<br>$D_{f^{-1}} = R_f = (-\infty, 2)$<br>$f^{-1}(x) = \frac{x-3}{x-2}$<br>To write the expression of $f^{-1}$<br>in similar form, state the rule |  |
|      | $D_{f^{-1}} = R_f = (-\infty, 2)$ $f^{-1} : x \mapsto \frac{x-3}{x-2}, x \in \mathbb{R}, x < 2$ To write the expression of $f^{-1}$ in similar form, state the rule<br>and domain of $f^{-1}$                                                                                                                                   |  |

4 Functions g and h are defined by

$$g: x \mapsto x^2 + 1, x \in \mathbb{R}, x \ge 0,$$
  
$$h: x \mapsto 2x + 3, x \in \mathbb{R}, x > 2.$$

- (i) Show that gh exists.
- (ii) Find gh in a similar form.
- (iii) Find the range of gh.



## Level 2

- 5 The function g is defined as  $g: x \mapsto \ln(x^2), x \in \mathbb{R}, x < 0$ .
  - (i) State the domain and range of g.
  - (ii) Give a reason why  $g^{-1}$  exists.
  - (iii) Find the rule, domain and range of  $g^{-1}$ .



## 6 2013/CJC Prelim/II/3 (modified)

Functions f and g are defined by

f: 
$$x \mapsto (x-2)^2 - 1$$
,  $x \in \mathbb{R}$ ,  $x < 2$   
g:  $x \mapsto \ln(x^2 + 1)$ ,  $x \in \mathbb{R}$ 

Only one of the composite functions fg and gf exists. Give the rule and domain of the composite function that exists, and explain why the other composite does not exist.



**(ii)** 

#### 7 2018/ACJC Promo/Q9(part)

Functions f and g are defined by

$$f: x \mapsto \frac{x+3}{4-x}, \quad x \in \mathbb{R}, \ x \neq 4,$$
$$g: x \mapsto \frac{1}{x}, \qquad x \in \mathbb{R}, \ x < 0.$$

- (i) Show that the composite function fg exists.
  - Find the range of fg.
- (iii) Find an expression for fg(x) and hence, or otherwise, find  $(fg)^{-1}\left(\frac{1}{2}\right)$ .



[3]

7 **Solution** (i)  $\mathbf{R}_{g} = (-\infty, 0) \quad \mathbf{D}_{f} = \mathbb{R} \setminus \{4\}$  $R_g \subseteq D_f$ y = g(x) with domain  $(-\infty, 0)$  x = 0Therefore, fg exists. (ii) Method 1: Using rule and domain of fg -----  $y = \frac{3}{4}$  $fg(x) = \frac{\frac{1}{x} + 3}{4 - \frac{1}{x}} = \frac{1 + 3x}{4x - 1}$ x y = fg(  $D_{fg} = D_g = (-\infty, 0)$ Find R<sub>fg</sub> by referring to the graph of fg to determine the range of precisive y = fg(x)(0,-1)range of possible y values. (i.e. minimum and maximum y values) Method 2: Using mapping method y = 0 y = f(x) with y y = f(x) with y  $domain (-\infty, 0)$  x = 0 y = -1 y = -1x = 4 $D_{g} = (-\infty, 0) \xrightarrow{g} R_{g} = (-\infty, 0) \xrightarrow{f} R_{fg} = \left(-1, \frac{3}{4}\right)$ 

| ( <b>iii</b> ) | 1 $+ 2$                                                                                               |                                                                                                    |
|----------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                | $fg(x) = \frac{x}{x} = \frac{1+3x}{1-x}$                                                              |                                                                                                    |
|                | $4 - \frac{1}{x} + \frac{4x - 1}{x}$                                                                  |                                                                                                    |
|                | x                                                                                                     |                                                                                                    |
|                | Let (fg) $\left(\frac{1}{2}\right) = a \implies fg(a) = \frac{1}{2}$                                  | $(a)^{-1}(1)$                                                                                      |
|                | 1+3a 1                                                                                                | $(fg) \left(\frac{-}{2}\right) = a$                                                                |
|                | $\frac{1}{4a-1} = \frac{1}{2}$                                                                        | $\rightarrow f_{\alpha}(f_{\alpha})^{-1}(1) = f_{\alpha}(r_{\alpha})$                              |
|                | 2(1+3a) = 4a-1                                                                                        | $\rightarrow \operatorname{Ig}(\operatorname{Ig}) \left(\frac{-}{2}\right) = \operatorname{Ig}(a)$ |
|                | 2a = -3                                                                                               | $\Rightarrow \frac{1}{2} = fg(a)$                                                                  |
|                | $a = -\frac{3}{2}$                                                                                    |                                                                                                    |
|                | (1) 2                                                                                                 | [since $\operatorname{fg}(\operatorname{fg})^{-1}(x) = x$ ]                                        |
|                | $\left  \therefore \left( \mathrm{fg} \right)^{-1} \left( \frac{1}{2} \right) \right  = -\frac{3}{2}$ |                                                                                                    |
|                |                                                                                                       |                                                                                                    |

- 8 It is given that  $f(x) = (x-1)^2 + 2$ ,  $x \in \mathbb{R}$ ,  $0 \le x < 2$  and that f(x) = f(x+2) for all real values of x.
  - (i) State the period of f.
  - (ii) Evaluate f(1) and f(-2).
  - (iii) Sketch the graph of y = f(x) for -2 < x < 3.



[1]

### 9 2010/MJC JC1 MYE/I/5 (Modified)

The function f is defined by

$$f: x \mapsto x^2 - 4x - 5, \quad x \ge 2$$

- (i) Show that  $f^{-1}$  exists.
- (ii) Find  $f^{-1}$  in a similar form. [3]
- (iii) Write down the equation of the line in which the graph of y = f(x) must be reflected to obtain the graph of  $y = f^{-1}(x)$ . [1]
- (iv) Sketch the graphs of y = f(x) and  $y = f^{-1}(x)$  on the same diagram. Hence find the exact solution of the equation  $f(x) = f^{-1}(x)$ . [4]



| (iii) | The graph of $y = f(x)$ is reflected if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in the line $y = x$ t                                                                                                                                         | o obtain the graph of                                                                                                                                                                                                                      |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | $y = f^{-1}(x).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                                                                                                            |
| (iv)  | (-9,2) $(0,5)$ $(-9,2)$ $(0,5)$ $(0,5)$ $(-9,2)$ $(0,5)$ $(-9,2)$ $(0,5)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ $(-9,2)$ | $y = x$ $= f^{-1}(x)$                                                                                                                                         | Note: $y = f(x)$ and<br>$y = f^{-1}(x)$ should be<br>symmetrical about the<br>line $y = x$ .<br>The graphs must also<br>satisfy both the<br>vertical and horizontal<br>line test as f and f <sup>-1</sup><br>are both one-one<br>functions |
|       | Solving $f(x) = f^{-1}(x)$ can be see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n as solving $f(x)$                                                                                                                                           | = x.                                                                                                                                                                                                                                       |
|       | $(x-2)^{2} - 9 = x$<br>$x^{2} - 5x - 5 = 0$<br>$x = \frac{5 \pm 3\sqrt{5}}{2}$<br>Since $x \ge 2$ , $x = \frac{5 + 3\sqrt{5}}{2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note that the <i>x</i> -c<br>intersection of th<br>is an element of<br>$D_f \cap D_{f^{-1}} = [2, \circ$<br>Therefore, choose<br><i>x</i> such that $x \in [$ | coordinate of the<br>ne graphs of f and $f^{-1}$<br>the set<br>$\infty$ )<br>se the correct value of<br>$(2,\infty)$                                                                                                                       |

[2]

[1]

[4]

## Level 3

#### 10 2018/ACJC Promo/Q9(modified)

The function h is defined by

$$\mathbf{h}: x \mapsto \left| \frac{x+3}{4-x} \right|, \quad x \in \mathbb{R}, \ x \neq 4.$$

- (i) Sketch the graph of h and state its range.
- (ii) Explain why the inverse function  $h^{-1}$  does not exist.
- (iii) The function  $h^{-1}$  exists if the domain of h is restricted to  $x \le k$ . State the greatest value of k. [1]
- (iv) Using the domain in (iii), find  $h^{-1}(x)$  and state the domain of  $h^{-1}$ .



### 11 2013/VJC Prelim/II/3 (Modified)

The function f is defined by

$$f: x \mapsto x^2 - 2x + 2, \quad 1 < x \le 3.$$

- (i) Sketch the graphs of y = f(x),  $y = f^{-1}(x)$  and  $y = ff^{-1}(x)$  on a single diagram, indicating clearly the domains of the respective functions. [3]
- (ii) Without using the graphing calculator, find the exact solution of the equation  $f(x) = f^{-1}(x)$ . [2]
- (iii) State the range of values of x satisfying the equation  $f^{-1}f(x) = ff^{-1}(x)$ . [1]

The function g is defined by

$$g: x \mapsto \frac{x+a}{x+1}, x \ge 0,$$

where *a* is a constant and a > 1.

(iv) Show that the composite function gf exists and find, in exact form, the range of gf. [4]

| 11    | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                           |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)   | y<br>y = f(x)<br>(3, 5)<br>(5, 5)<br>(5, 5)<br>(5, 3)<br>(5, 3)<br>(1, 1)<br>(1, 1)<br>(3, 5)<br>(5, 5) | Graphs of f and $f^{-1}$ should be symmetrical<br>about the line $y = x$ (Use the same scale for<br>x- and $y$ -axis)<br>Graphs must pass vertical and horizontal<br>line test.<br>The graph of $ff^{-1}$ is the line $y = x$ where<br>$D_{ff^{-1}} = D_{f^{-1}} = (1,5]$ |
| (ii)  | $f(x) = f^{-1}(x)$<br>f(x) = x<br>$x^{2} - 2x + 2 = x$<br>$x^{2} - 3x + 2 = 0$<br>(x - 2)(x - 1) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Be careful with the curvature, ensure that the<br>graph of $f^{-1}(x)$ does not curve downwards<br>Solving $f(x) = f^{-1}(x)$ can be seen<br>as solving $f(x) = x$                                                                                                        |
|       | $x = 2$ or $x = 1$ (rejected $\therefore x > 1$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                           |
| (iii) | $f^{-1}f(x) = ff^{-1}(x).$<br>$D_{f^{-1}f} = D_{f} = (1,3]$<br>$D_{ff^{-1}} = D_{f^{-1}} = R_{f} = (1,5]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Find $R_f$ by referring to graph of f to<br>determine the range of possible y values.<br>(i.e. minimum and maximum y values)                                                                                                                                              |
|       | So, $f^{-1}f(x) = ff^{-1}(x)$ when $1 < x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≤3                                                                                                                                                                                                                                                                        |



12 At a local meteorological station, the daily average temperature recorded by the instrument is in degrees Fahrenheit, °F. The meteorological station master wants to record the temperature in degrees Celsius, °C and he uses the following function c to do the conversion:

$$c: x \mapsto \frac{5}{9}(x-32), \quad x > -459.67.$$

- (i) Given that the average temperature of a particular day is given as 50°F, express the temperature in terms of °C.
- (ii) Define  $c^{-1}$  and explain the significance of this function in the context of the question. [3]

A physicist wants to record the temperature in Kelvin, K and he has the following function k which converts temperature in degrees Celsius,  $^{\circ}C$  to Kelvin, K:

$$k: x \mapsto x + 273.15, \quad x > -273.15.$$

(iii) The physicist wants to convert the temperature from degrees Fahrenheit, °F to Kelvin, K directly. Define a composite function to meet his requirement [2]

| 12    | Solution                                                                                                                                |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|
| (i)   | $c(50) = \frac{5}{9}(50 - 32) = 10$                                                                                                     |
|       | The average temperature is 10 $^{\circ}$ C.                                                                                             |
| (ii)  | Let $y = \frac{5}{9}(x-32)$<br>$x = \frac{9}{5}y+32$<br>$c^{-1}(x) = \frac{9}{5}x+32$<br>$D_{-1} = R_{c} = (-273.15, \infty)$           |
|       | $\therefore c^{-1}: x \mapsto \frac{9}{5}x + 32,  x > -273.15$ (-459.67, -273.15) The function c^{-1} converts temperature in °C to °F. |
| (iii) | $kc(x) = \frac{5}{9}(x - 32) + 273.15$                                                                                                  |
|       | $D_{kc} = D_{c} = (-459.67, \infty)$<br>kc: $x \mapsto \frac{5}{9}(x - 32) + 273.15,  x > -459.67$                                      |

[2]

[3]

#### 13 2014/DHS Promo (Modified)

The function f is defined by

$$f(x) = \begin{cases} 2x+3 & \text{for } 0 < x \le 4, \\ -4x+27 & \text{for } 4 < x \le 6, \end{cases}$$

and that f(x) = f(x+6) for all real values of x.

- (i) Find the value of f(-17) + f(17).
- (ii) Sketch the graph of y = f(x) for  $-8 \le x \le 13$ .



Things to note:

Proper scale for *x*-axis (e.g. 1cm denote 1 unit)

Open circles for excluded endpoints and closed circles for included endpoints
Draw dotted reference lines for critical *y*-values to ensure you always end at the same height

# 14 2016(9740)/I/10(b)

The function g, with domain the set of non-negative integers, is given by

$$g(n) = \begin{cases} 1 & \text{for } n = 0, \\ 2 + g\left(\frac{1}{2}n\right) & \text{for } n \text{ even,} \\ 1 + g\left(n - 1\right) & \text{for } n \text{ odd.} \end{cases}$$

(i) Find g(4), g(7) and g(12).

[3]

| ( <b>ii</b> ) | Does g have an inverse? Justify yo                                                 | ur answer.                                                             | [2] |
|---------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----|
| 14            | Solution                                                                           |                                                                        |     |
| ((i)          | g(0) = 1                                                                           | <i>y</i>                                                               |     |
|               | g(1) = 1 + g(0) = 1 + 1 = 2                                                        | y = f(x)                                                               |     |
|               | g(2) = 2 + g(1) = 2 + 2 = 4                                                        | •(0,1)                                                                 |     |
|               | g(3) = 1 + g(2) = 1 + 4 = 5                                                        | -                                                                      |     |
|               | g(4) = 2 + g(2) = 2 + 4 = 6                                                        |                                                                        |     |
|               | g(5) = 1 + g(4) = 1 + 6 = 7                                                        |                                                                        |     |
|               | g(6) = 2 + g(3) = 2 + 5 = 7                                                        | <b>Comment:</b><br>For unseen question, it is a good practice          |     |
|               | g(7) = 1 + g(6) = 1 + 7 = 8                                                        | for students to try listing out the first few                          |     |
|               | g(12) = 2 + g(6) = 2 + 7 = 9                                                       | "terms" of the function to gain some<br>understanding of the function. |     |
|               | $\therefore g(4) = 6$                                                              |                                                                        |     |
|               | g(7) = 8                                                                           |                                                                        |     |
|               | g(12) = 9                                                                          |                                                                        |     |
| ( <b>ii</b> ) | $\therefore$ g(5) = g(6) from (b)(i)                                               |                                                                        |     |
|               | Therefore g is not 1-1, implying that                                              | t g does not have an inverse.                                          |     |
|               | To prove that a function is not 1-1, i.e. Find 2 different values of <i>x</i> that | we need to give counter-example.                                       |     |
|               |                                                                                    |                                                                        |     |

| Answer Key                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------|
| <b>1(a)</b> $D_{f} = (1, \infty), R_{f} = (-\infty, 2)$                                                                    |
| <b>(b)</b> $D_g = (-\infty, 2], R_g = (-\infty, 4]$                                                                        |
| (c) $D_h = (1,3), R_h = (-\infty, \ln 2)$                                                                                  |
| <b>2 (ii)</b> $D_f = (0, \infty), R_f = (-\infty, 4]$                                                                      |
| <b>3 (ii)</b> $f^{-1}: x \mapsto \frac{x-3}{x-2}, x \in \mathbb{R}, x < 2$                                                 |
| <b>4 (ii)</b> gh: $x \mapsto (2x+3)^2 + 1, x \in \mathbb{R}, x > 2$                                                        |
| (iii) $(50,\infty)$                                                                                                        |
| <b>5</b> (i) $D_g = (-\infty, 0), R_g = (-\infty, \infty)$                                                                 |
| (iii) $g^{-1}: x \mapsto -\sqrt{e^x}, x \in \mathbb{R}, R_{g^{-1}} = (-\infty, 0)$                                         |
| <b>6</b> gf : $x \mapsto \ln\left[\left((x-2)^2 - 1\right)^2 + 1\right], x \in \mathbb{R}, x < 2$                          |
| <b>7 (ii)</b> $R_{fg} = \left(-1, \frac{3}{4}\right)$ (iii) $\left(fg\right)^{-1} \left(\frac{1}{2}\right) = -\frac{3}{2}$ |
| <b>8</b> (i) 2 (ii) $f(1) = 2, f(-2) = 3$                                                                                  |
| <b>9</b> (ii) $f^{-1}: x \mapsto 2 + \sqrt{x+9}, x \ge -9$ (iii) $y = x$ (iv) $x = \frac{5+3\sqrt{5}}{2}$                  |
| <b>10 (iii)</b> Greatest $k = -3$ (iv) $h^{-1}(x) = \frac{4x+3}{x-1}$ , $D_{h^{-1}} = [0,1)$                               |
| <b>11 (ii)</b> $x = 2$ (iii) $1 < x \le 3$ (iv) $R_{gf} = \left[\frac{5+a}{6}, \frac{1+a}{2}\right]$                       |
| <b>12 (i)</b> 10 °C (ii) $c^{-1}: x \mapsto \frac{9}{5}x + 32, x > -273.15$                                                |
| (iii) kc: $x \mapsto \frac{5}{9}(x-32) + 273.15,  x > -459.67$                                                             |
| <b>13 (i)</b> 12                                                                                                           |
| <b>14 (b)(i)</b> $g(4) = 6$ , $g(7) = 8$ , $g(12) = 9$                                                                     |