

# **Plane Geometry**

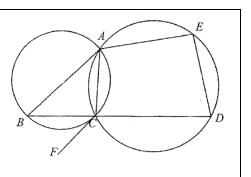
| 1 | In the figure, <i>XYZ</i> is a straight line that is tangent to the circle at <i>X</i> . <i>XQ</i> bisects $\angle RXZ$ and cuts the circle at <i>S</i> . <i>RS</i> produced meets <i>XZ</i> at <i>Y</i> and <i>ZR</i> = <i>XR</i> .<br>Prove that<br>a) $SR = SX$ ,                                                                                                                                                                                |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | b) a circle can be drawn passing through $Z, Y, S$ and $Q$ .                                                                                                                                                                                                                                                                                                                                                                                        |
| 2 | In the diagram, <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are points on the circle centre <i>O</i> . <i>AP</i> and <i>BP</i> are tangents to the circle at <i>A</i> and <i>B</i> respectively. <i>DQ</i> and <i>CQ</i> are tangents to the circle at <i>D</i> and <i>C</i> respectively. <i>POQ</i> is a straight line.<br>(i)Prove that angle $CPD = 2 \times angle CDQ$ .                                                                       |
|   | (ii)Make a similar deduction about angle $AOB$ .<br>(iii)Prove that 2 × angle $OAD$ = angle $CDQ$ + angle $BAP$                                                                                                                                                                                                                                                                                                                                     |
| 3 | The diagram shows two intersecting circles, $C_1$ and $C_2$ . $C_1$ passes through the vertices of the triangle <i>ABD</i> . The tangents to $C_1$ at <i>A</i> and <i>B</i> intersect at the point <i>Q</i> on $C_2$ . A line os drawn from <i>Q</i> to intersect the line <i>AD</i> at <i>E</i> on $C_2$ .<br>Prove that<br>(i) <i>QE</i> bisects angle <i>AEB</i> ,<br>(ii) <i>EB</i> = <i>ED</i> ,<br>(iii) <i>BD</i> is parallel to <i>QE</i> . |
| 4 | In the diagram, $A, B$ and $C$ are three points on the circle such that $AB$ is the diameter of the circle and $W$ is the midpoint of $AC.AB$ and $CK$ are parallel to each other and $KL$ is a tangent to the circle $A$<br>(i)Prove that $OW$ is parallel to $BC$ .<br>(ii)Prove that Angle $AWO$ = Angle $AKC$ .                                                                                                                                 |



| 5 | The diagram shows a point $P$ on a circle and $PQ$ is a tangent to the circle. Points $A, B$ and $C$ lie on the circle such that $PA$ bisects angle $QPB$ and $QAC$ is a straight line. The lines $QC$ and $PB$ intersect at $D$ . |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (i) Prove that $AP = AB$ .                                                                                                                                                                                                         |
|   | (ii) Prove that <i>CD</i> bisects angle <i>PCB</i> .                                                                                                                                                                               |
|   | (iii) Prove that triangles <i>CDP</i> and <i>CBA</i> are similar.                                                                                                                                                                  |
|   | В                                                                                                                                                                                                                                  |
| 6 | The diagram shows a circle passing through points $D, E, C$ and $F$ ,<br>where $FC = FD$ . The point $D$ lies on $AP$ such that $AD = DP.DC$<br>and $EF$ cut $PB$ at $T$ such that $PT = TB$ .                                     |
|   | (i) Show that <i>AB</i> is a tangent to the circle at point <i>F</i> .                                                                                                                                                             |
|   | (ii) By showing that triangle <i>DFT</i> and triangle <i>EFD</i> are similar show that $DF^2 - FT^2 = FT \times ET$ .                                                                                                              |
|   | A F B                                                                                                                                                                                                                              |
| 7 | Given that $AD$ and $BC$ are straight lines, $AC$ bisects angle $DAY$ and $AB$ bisects angle $DAX$ , show that                                                                                                                     |
|   | (i) $AC^2 = EC \times BC$ ,                                                                                                                                                                                                        |
|   | (ii) <i>BC</i> is a diameter of the circle,                                                                                                                                                                                        |
|   | (iii) <i>AD</i> and <i>BC</i> are perpendicular to each other.                                                                                                                                                                     |
|   | Ŷ                                                                                                                                                                                                                                  |
| 8 | In the diagram, two circles touch each other at $A$ .<br><i>TA</i> is tangent to both circles at $A$ and <i>FE</i> is a tangent to the                                                                                             |
|   | smaller circle at C. Chords AE and AF intersect the smaller circle at B and D respectively. Prove that $P$                                                                                                                         |
|   | (i) line <i>BD</i> is parallel to line <i>FE</i> ,                                                                                                                                                                                 |
|   | (ii) $\angle FAC = \angle CAE$ .                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                                                                                    |
| 9 | In the diagram, <i>ACDE</i> is a cyclic quadrilateral. Lines <i>GAB</i> and <i>FEHC</i> are parallel, and line <i>GAB</i> is a tangent to the circle at <i>A</i> . Lines <i>AD</i> and <i>EC</i> meet at <i>H</i> .                |
|   | Prove that                                                                                                                                                                                                                         |
|   | (i) triangle $ABD$ and triangle $CBA$ are similar,                                                                                                                                                                                 |
|   | (ii) triangle $ACH$ and triangle $ADC$ are similar,                                                                                                                                                                                |
|   | (iii) AD bisects angle CDE,                                                                                                                                                                                                        |
|   | (iv) $AB \times AH = AC \times BC$ .                                                                                                                                                                                               |
|   | D                                                                                                                                                                                                                                  |

## 🕽 🔎 Paradigm

- 10 The diagram shows two circles that intersect each other at points A and C. The points E and D lie on the circumference of the larger circle. The point B lies on the circumference of the smaller circle such that BCD is a straight line. Line CF is a tangent to the smaller circle at C. AC = BC and AE = ED.
  - (i) Prove that *AB* and *CF* are parallel.
  - (ii) Prove that  $\triangle ABC$  is similar to  $\triangle ADE$  and hence show that  $AB \times DE = AD \times BC$ .





#### Answers

| 1 | (a) $\angle ZXQ = \angle SRX$ (Alternate Segment Theorem)                                                                         |
|---|-----------------------------------------------------------------------------------------------------------------------------------|
| - | $\angle ZXQ = \angle QXR  (XQ \text{ is the angle bisector of } \angle RXZ)$                                                      |
|   | $\angle QXR = \angle SRX$                                                                                                         |
|   | By base angles of isosceles triangles, $SR = SX$                                                                                  |
|   | (b) Let $\angle QXR$ be x                                                                                                         |
|   | $\angle RSX = 180^{\circ} - 2x$ (Isosceles Triangle)                                                                              |
|   | $\angle YSQ = 180^{\circ} - 2x$ (Vertically Opposite Angles)                                                                      |
|   | $\angle RZX = \angle ZXR = 2x$ (Vertically Opposite Angles)<br>$\angle RZX = \angle ZXR = 2x$ (Base angles of Isosceles Triangle) |
|   |                                                                                                                                   |
|   | $\angle RZX + \angle YSQ = 180^{\circ} - 2x + 2x = 180^{\circ}$                                                                   |
|   | Since opposite angles are supplementary in cyclic quadrilaterals, a circle that passes through Z, Y, S                            |
|   | and Q can be drawn.                                                                                                               |
|   | Alternative                                                                                                                       |
| 2 | Similar but use of tangent secant theorem.                                                                                        |
| 2 | Let $\angle CDQ = a$                                                                                                              |
|   | $\angle ODQ = 90^{\circ} (\tan^{\perp} \operatorname{rad})$                                                                       |
|   | $\therefore \angle ODC = 90^{\circ} - a$                                                                                          |
|   | $\therefore \angle COD = 180^{\circ} - 2(90^{\circ} - a)(\angle \operatorname{sum}, \triangle COD)$                               |
|   | $\angle AOB = 2 \times \angle BAP$                                                                                                |
|   | From (i) and (ii),                                                                                                                |
|   | $2(\angle CDQ + \angle BAP = \angle COD + \angle AOB$                                                                             |
|   | $\angle CDQ + \angle BAP = \frac{1}{2}(\angle COD + \angle AOB)$                                                                  |
|   | $= \angle AOP + \angle DOQ \ (\perp \text{ prop of chord})$                                                                       |
|   | $= 180^{\circ} - \angle AOD$                                                                                                      |
|   | $= 2 \angle OAD$                                                                                                                  |
| 3 | (i) Let $\angle QEA = x^{\circ}$                                                                                                  |
|   | $\angle QBA = \angle QEA$ (angles in same segment in C <sub>2</sub> ) B1                                                          |
|   | $= x^{\circ}$                                                                                                                     |
|   | QB = QA (tangents to C <sub>1</sub> from external point Q) B1                                                                     |
|   | $\angle QAB = \angle QBA$ (base angles of isosceles triangle) B1                                                                  |
|   | $= x^{\circ}$                                                                                                                     |
|   | $\therefore \angle QEB = \angle QEA$                                                                                              |
|   | Hence, QE bisects angle AEB.                                                                                                      |
|   | (ii) $\angle QBA = x^{\circ}$ (from (i))                                                                                          |
|   | $\angle ADB = \angle QBA$ (angles in alternate segment in C <sub>1</sub> ) either                                                 |
|   | $= x^{\circ}$                                                                                                                     |
|   | $\angle AEB = 2x^{\circ} (\text{from (i)})$                                                                                       |
|   | $\angle DBE = \angle AEB - \angle ADB$ (exterior angle of triangle <i>BDE</i> ) or B1                                             |
|   | $=2x^{\circ}-x^{\circ}$                                                                                                           |
|   | $= x^{\circ}$                                                                                                                     |
|   | $\therefore \angle ADB = \angle EDB = \angle DBE = x^{\circ}$ (base angles of isosceles triangle BDE) B1                          |
|   | Hence $EB = ED$                                                                                                                   |
|   | (iii) [2] From (i) $\angle EBD = \angle QEB = x$ B1                                                                               |
|   | $\therefore \angle EBD$ and $\angle QEB$ are alternate angles of parallel lines. (alternate angles are equal) B1                  |
|   | BD is parallel to QE                                                                                                              |
|   | BD is parallel to QE                                                                                                              |

### 🕽 🗲 Paradigm

| 4 | O is the midpoint of AB and W is the midpoint of AC. By Midpoint Theorem, BC is parallel to OW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Angle $AOW$ = Angle $ABC$ (corr angles, $OW  BC$ )<br>Angle $ABC$ = Angle $CAK$ (alt segment theorem)<br>$\rightarrow Angle AOW$ = $Angle CAK$<br>Angle $BAC$ = $Angle ACK$ (alt angles, $AB  CK$ )<br>$\therefore$ Angle $AWO$<br>= $180^{\circ} - Angle BAC - Angle AOW$ (Angle sum of $\triangle$ )<br>= $180^{\circ} - Angle ACK - Angle CAK$<br>= $Angle AKC$ (shown)                                                                                                                                                                                                                             |
| 5 | (i) $\angle ABP = \angle APQ$ (alt. segment theorem)<br>Since PA bisects $\angle QPB$ ,<br>$\angle APQ = \angle APB$<br>$\therefore \angle ABP = \angle APB$ (base $\angle s$ of isosceles triangle APB)<br>Hence, $AP = AB$ .                                                                                                                                                                                                                                                                                                                                                                         |
|   | <ul> <li>(i) ∠ACB = ∠APB (∠s in the same segment)</li> <li>∠ACP = ∠ABP (∠s in the same segment)</li> <li>= ∠APB (shown)</li> <li>∠ACB = ∠ACP</li> <li>Hence, CD bisects ∠PCB.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | (ii) $\angle ACB = \angle ACP$ (from ii)<br>$\angle CPD = \angle CAB$ ( $\angle s$ in the same segment)<br>Hence, $\triangle CDX$ and $\triangle CBA$ are similar.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6 | (i) DT is parallel to AB. (Midpoint Theorem)<br>$\angle AFD = \angle TDF$ (alt angles)<br>$= \angle FED$<br>Since $\angle AFD$ and $\angle FED$ satisfies the alternate segment theorem, <i>AB</i> is a tangent at <i>F</i> .<br>(ii) $\angle DFE$ is common.<br>$\angle TDF = \angle DCF$ (base angles of an isos triangle)<br>$\angle DCF = \angle DEF$ (angles in the same segment)<br>$\therefore DFT$ and <i>EFD</i> are similar triangles (AA)<br>$\frac{DF}{EF} = \frac{FT}{FD}$<br>$DF^2 = FT \times EF$<br>$= FT \times (ET + TF)$<br>$= FT^2 + FT \times ET$<br>$DF^2 = FT^2 + FT \times ET$ |

### 🕽 🗲 Paradigm

| 7 | (i) $\angle BCA = \angle ACE$ (Common angle)                                                                           |
|---|------------------------------------------------------------------------------------------------------------------------|
|   | $\angle ABC = \angle CAY$ (Angles in the alternate segments)                                                           |
|   | $= \angle EAC \ (AC \ bisects \ \angle DAY)$                                                                           |
|   | $\therefore \triangle ABC$ and $\triangle AEC$ are similar.                                                            |
|   | $\frac{AC}{EC} = \frac{BC}{AC}$ (corresponding sides of similar triangles)                                             |
|   | $AC^2 = EC \times BC$ (shown)                                                                                          |
|   | (i) $\angle CAY = \angle EAC$ (AC bisects $\angle DAY$ )                                                               |
|   | $\angle BAX = \angle EAB$ (AB bisects $\angle BAX$ )                                                                   |
|   | $\angle BAX + \angle EAB + \angle EAC + \angle CAY = 180^{\circ}$ (angles on a straight line)                          |
|   | $2 \angle EAB + 2 \angle EAC = 180^{\circ}$<br>$\angle EAB + \angle BAC = 90^{\circ}, BC$ is a diameter of the circle. |
|   | (ii) $\angle ABE = \angle CAY$ (Angles in the alternate segments)                                                      |
|   | $\angle CAY = \angle EAC \ (AC \text{ bisects } \angle BAY)$                                                           |
|   | $\therefore \angle ABE = \angle EAC$                                                                                   |
|   | $\angle EAB + \angle EAC = \angle EAB + \angle ABE = 90^{\circ}$ (from (ii))                                           |
|   | $\angle AEB = 90^{\circ}$ (sum of $\angle s$ in a triangle)                                                            |
|   | $\therefore$ AD and BC are perpendicular.                                                                              |
| 8 | (i) To prove: $BD//FE$<br>Proof: Let $\angle TAF$ be $\boldsymbol{\theta}$ .                                           |
|   | $\angle ABD = \angle TAF = \theta$ (alt seg thm)                                                                       |
|   | $\angle AEF = \angle TAF = \theta$ (alt seg thm)                                                                       |
|   | $\therefore \angle ABD = \angle AEF = \theta$                                                                          |
|   | Using property of corresponding angles, <i>BD</i> // <i>EF</i> (shown)                                                 |
|   |                                                                                                                        |
|   | (ii) To prove: $\angle FAC = \angle CAE$<br>Proof: Let $\angle BCE = \alpha$                                           |
|   | $\angle CBD = \angle BCE = \alpha \text{ (alt } \angle s, BD / / EF)$                                                  |
|   | $\angle FAC = \angle CBD = \alpha \ (\angle s \text{ in same segment})$                                                |
|   | Also, $\angle CAE = \angle BCE = \alpha$ (alt seg thm)                                                                 |
|   | $\therefore \angle FAC = \angle CAE = \alpha \text{ (shown)}$                                                          |
| 9 | (i) $\angle CAB = \angle CDA$ (Alternate Segment Theorem)                                                              |
|   | And $\angle BDA = \angle CDA$ (same angle)                                                                             |
|   | $\angle ABC = \angle ABD$ (Common angle)                                                                               |
|   | Triangle ABD is similar to triangle CBA. (AA)                                                                          |
|   | (ii) $\angle CAB = \angle CDA$ (Alternate Segment Theorem)                                                             |
|   | $\angle CAB = \angle ACH$ (Alternate angles, $BAB//FEHC$ )                                                             |
|   | Hence $\angle ACH = \angle CDA$                                                                                        |
|   | $\angle HAC = \angle DAC$ (Common angle)                                                                               |
|   | Triangle ACH is similar to triangle ADC. (AA)                                                                          |
|   | (iii) From (ii), $\angle ACH = \angle CDA$                                                                             |
|   | $\angle ACH = ADE$ (Angles in the same segment)                                                                        |



|    | Hence $\angle ADE = \angle CDA$                                                 |
|----|---------------------------------------------------------------------------------|
|    | Therefore, AD bisects angle CDE.                                                |
|    | (iv) Triangle <i>ABD</i> is similar to triangle <i>CBA</i> .                    |
|    | $\frac{AB}{BC} = \frac{AD}{AC}$                                                 |
|    | Triangle ACH is similar to triangle ADC.                                        |
|    | $\frac{AC}{AH} = \frac{AD}{AC}$                                                 |
|    | Hence                                                                           |
|    | $\frac{AB}{BC} = \frac{AC}{AH}$                                                 |
|    | $AB \times AH = AC \times BC$                                                   |
| 10 | (i) Let $\angle ABC = x$                                                        |
|    | $\angle CAB = \angle ABC = x (AC = BC)$                                         |
|    | $\angle CAB = \angle FCB = x$ (tangent chord theorem)                           |
|    | Since $\angle FCB = \angle ABC = x$ , AB and CF are parallel, alternate angles. |
|    | (ii) $\angle ACB = 180^{\circ} - 2x$ (angle sum of triangle)                    |
|    | $\angle ACD = 2x$ (Supplementary angle)                                         |
|    | $\angle AED = 180^{\circ} - 2x$ (angle in opposite segment)                     |
|    | $= \angle ACB$                                                                  |
|    | Since, $\angle EAD = x$ (angle sum of isosceles triangle) = $\angle ABC$        |
|    | Triangle ABC is similar to triangle ADE                                         |
|    | $\frac{AB}{AD} = \frac{BC}{DE}$                                                 |
|    | $AB \times DE = BC \times AD$                                                   |
|    |                                                                                 |
| L  |                                                                                 |