Qn	Suggested Solutions
1	Let A , B and C be the selling price of 1 kg of salmon,
	1 kg of tuna and 1 kg of swordfish respectively before discount.
	$2A + B + 3C = 246 \cdots (1)$
	A + C = B + 18
	$\therefore A - B + C = 18 \cdots (2)$
	$0.85A + 0.9B + 0.95C = 123.3 \dots (3)$
	By G.C., $A = 48, B = 60, C = 30$
	The selling price of 1 kg of salmon, tuna and swordfish before discount is \$48, \$60 and \$30 respectively.

Qn	Suggested Solutions
4 (a)	$\int \frac{x+1}{4+3x^2} \mathrm{d}x.$
	$= \int \frac{x}{4+3x^2} \mathrm{d}x + \int \frac{1}{4+3x^2} \mathrm{d}x$
	$= \frac{1}{6} \int \frac{6x}{4+3x^2} \mathrm{d}x + \frac{1}{\sqrt{3}} \int \frac{\sqrt{3}}{2^2 + \left(\sqrt{3}x\right)^2} \mathrm{d}x$
	$= \frac{1}{6} \ln \left(4 + 3x^2 \right) + \frac{1}{2\sqrt{3}} \tan^{-1} \left(\frac{\sqrt{3}x}{2} \right) + A$
(b)	$y = 1$ $(y-1)^{2} = x$ $(y-1)^{2} = x$ $y-1 = \pm \sqrt{x}$ $y = \sqrt{x}+1 \text{ or } y = -\sqrt{x}+1$ Volume required = $\pi \int_{0}^{1} (\sqrt{x}+1)^{2} dx - \pi \int_{0}^{1} (-\sqrt{x}+1)^{2} dx$
	= 8.3776 (4 d.p.) by GC
	Alternatively (Shell Method) – For Teacher's Ref only
	Volume required = $2\pi \int_0^2 y \left[1 - (y - 1)^2\right] dy$
	= 8.3 / 16 (4 d.p.) by GC

Qn	Suggested Solutions
6(i)	$x = m \tan t \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = m \mathrm{sec}^2 t$
	$\int \frac{1}{\sqrt{m^2 + x^2}} \mathrm{d}x$
	$= \int \frac{1}{\sqrt{m^2 + m^2 \tan^2 t}} m \sec^2 t \mathrm{d}t$
	$= \frac{1}{m}m \int \frac{1}{\sqrt{1 + \tan^2 t}} \sec^2 t \mathrm{d}t \because \sqrt{m^2} = m = m \text{ since } m > 0$
	$= \int \frac{1}{\sqrt{\sec^2 t}} \sec^2 t \mathrm{d}t$
	$= \int \sec t dt \because \sqrt{\sec^2 t} = \sec t = \sec t \text{ since } 0 < t < \frac{\pi}{2}$
	$= \ln \left \sec t + \tan t \right + C$
	$=\ln\left \frac{\sqrt{x^2+m^2}+x}{m}\right +C$
	OR $\ln \left \sqrt{x^2 + m^2} + x \right + A$
(ii)	$\int \frac{x}{\sqrt{m^2 + x^2}} \mathrm{d}x = \frac{1}{2} \frac{\left(m^2 + x^2\right)^2}{\frac{1}{2}} + C$ $= \sqrt{m^2 + x^2} + C$
(iii)	$\int \frac{x}{1-x} \tan^{-1}\left(\frac{x}{x}\right) dx$
	$\int \sqrt{m^2 + x^2} \left(\begin{array}{c} m \end{array} \right) \left(\begin{array}{c} m \end{array} \right) \left$
	$u = \tan^{-1}\left(\frac{x}{m}\right), \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{x}{\sqrt{m^2 + x^2}}$
	$u = \tan^{-1}\left(\frac{x}{m}\right) \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\frac{1}{m}}{1 + \left(\frac{x}{m}\right)^2} = \frac{m}{m^2 + x^2}$
	From part (ii),
	$\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{1}{2} (2x) (m^2 + x^2)^{-\frac{1}{2}} \Longrightarrow v = \frac{1}{2} \frac{(m^2 + x^2)^{\frac{1}{2}}}{\frac{1}{2}} = \sqrt{m^2 + x^2}$

Qn	Suggested Solutions
	$\int \frac{x}{\sqrt{m^2 + x^2}} \tan^{-1} \left(\frac{x}{m}\right) \mathrm{d}x$
	$= \left[\tan^{-1}\left(\frac{x}{m}\right)\right]\sqrt{m^2 + x^2} - \int\sqrt{m^2 + x^2} \frac{m}{m^2 + x^2} dx$
	$= \left[\tan^{-1}\left(\frac{x}{m}\right)\right]\sqrt{m^2 + x^2} - m\int \frac{1}{\sqrt{m^2 + x^2}} dx$
	$=\sqrt{m^2+x^2}\tan^{-1}\left(\frac{x}{m}\right)-m\ln\left \frac{\sqrt{x^2+m^2}+x}{m}\right +D \text{ from (i)}$
	OR $\sqrt{m^2 + x^2} \tan^{-1}\left(\frac{x}{m}\right) - m \ln\left \sqrt{x^2 + m^2} + x\right + K$ from (i)

Qn	Suggested Solutions
7(i)	$3x^2 + 2xy - y^2 + k = 0$
	Differentiating with respect to <i>x</i> :
	$6x + (2x)\frac{dy}{dx} + y(2) - 2y\frac{dy}{dx} = 0$
	$6x + 2y = \left(2y - 2x\right)\frac{\mathrm{d}y}{\mathrm{d}x}$
	dy = 3x + y
	$\frac{1}{\mathrm{d}x} = \frac{1}{y-x}$
(ii)	At stationary points, $\frac{dy}{dx} = \frac{3x+y}{y-x} = 0$.
	$\Rightarrow 3x + y = 0 \Rightarrow y = -3x$
	Sub $y = -3x$ into equation of C:
	$3x^{2} + 2x(-3x) - (-3x)^{2} + k = 0$
	$3x^2 - 6x^2 - 9x^2 + k = 0$
	$12x^2 = k$
	$k^2 - k$
	$x = \frac{1}{12}$
	For <i>C</i> to have no stationary points, $x^2 = \frac{k}{12}$ has no solution.
	Since $x^2 \ge 0$, therefore $k < 0$.
(iii)	Tangents parallel to the y-axis $\Rightarrow \frac{dy}{dx}$ is undefined (or $\frac{dx}{dy} = 0$).
	Thus, we have $y - x = 0 \Rightarrow y = x$.
	Sub $y = x$ into equation of <i>C</i> :
	$3x^2 + 2x^2 - x^2 + k = 0$
	$4x^2 = k$
	$x^2 = -\frac{k}{4}$
	$x = \sqrt{\frac{-k}{4}}$ or $x = -\sqrt{\frac{-k}{4}}$
	$r = \sqrt{-k}$ or $r = \sqrt{-k}$
	$\frac{x - \frac{1}{2}}{\sqrt{2}} \text{or} x - \frac{1}{2}$
	$\therefore \beta = \frac{\sqrt{-k}}{2}, \alpha = -\frac{\sqrt{-k}}{2}$
	(Given that $k < -1$ so $-k > 1$. Thus $\sqrt{-k}$ is well-defined.)
	Sub $x = \frac{\sqrt{-k}}{2}$ into C:

Qn	Suggested Solutions
	$3\left(\frac{\sqrt{-k}}{2}\right)^2 + 2\left(\frac{\sqrt{-k}}{2}\right)y - y^2 + k = 0$
	$3\left(-\frac{k}{4}\right) + \sqrt{-k}y - y^2 + k = 0$
	$y^2 - \sqrt{-k}y - \frac{k}{4} = 0$
	$\left(y - \frac{\sqrt{-k}}{2}\right)^2 = 0 \Longrightarrow y = \frac{\sqrt{-k}}{2}$
	OR
	Discriminant $=\left(-\sqrt{-k}\right)^2 - 4\left(-\frac{k}{4}\right) = 0$, thus only one solution.
	Since there is only one solution, the tangent meets C at exactly one point. Therefore, the tangent does not intersect C again.

Qn	Suggested Solutions
	For $x \le 1$, the range for $y = x - 4$ is $(-\infty, -3]$.
	Since $(-\infty, -3] \subseteq (-\infty, -1]$,
	$f^{2}(x) = f(x-4) = (x-4)-4$ for $x \le 1$.
	For $1 < x \le \pi$, the range for $y = \cos x - 4$ is $[-1, 0.540)$.
	Since $[-1, 0.540) \subseteq (-\infty, -1]$,
	$f^{2}(x) = f(\cos x - 4) = (\cos x - 4) - 4 = \cos x - 8$ for $1 < x \le \pi$
	Hence $f^2(x) = \begin{cases} x-8 & \text{for } x \le 1, \end{cases}$
	$\cos x - 4 \text{for } 1 < x \le \pi$
(iv)	When $x \le 1$, we apply the rule $f(x) = x - 4$.
	By observing pattern:
	$f^{2022}(0) = f^{2021}(0-4)$
	$= f^{2020} (-4 - 4)$
	$=-4 \times 2022$
	= -8088

Qn	Suggested Solutions
9(i)	$\frac{dy}{dy} - \frac{dy}{dx} \frac{dx}{dx} = \frac{-2k\cos 2\theta}{dx}$
	$\frac{dt}{dt} = \frac{dt}{dt} = \frac{dt}{dt} = k(-2\sin\theta + 2\sin 2\theta)$
	Let $\frac{dy}{dx} = 0$. We have $\cos 2\theta = 0$.
	$2\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \Longrightarrow \theta = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}$
	For $\theta = \frac{\pi}{4}$, $x = k \left(2\cos\frac{\pi}{4} - \cos\frac{\pi}{2} \right) = \sqrt{2}k$, $y = -k\sin\frac{\pi}{2} = -k$
	For $\theta = \frac{3\pi}{4}$, $x = k \left(2\cos\frac{3\pi}{4} - \cos\frac{3\pi}{2} \right) = -\sqrt{2}k$, $y = -k\sin\frac{3\pi}{2} = k$
	Therefore the stationary points are $(\sqrt{2}k, -k)$ and $(-\sqrt{2}k, k)$.
(ii)	A V
	-3k O k x
(iii)	Area of required region is π
	$\int_{-3k}^{k} y \mathrm{d}x = \int_{\pi}^{\overline{2}} -k\sin 2\theta \left[k \left(-2\sin\theta + 2\sin 2\theta \right) \right] \mathrm{d}\theta$
	$= \int_{\frac{\pi}{2}}^{\pi} k \sin 2\theta \left[k \left(-2\sin\theta + 2\sin 2\theta \right) \right] d\theta$
	$=k^{2}\int_{\frac{\pi}{2}}^{\pi} \left(2\sin^{2}2\theta - 2\sin\theta\sin2\theta\right) d\theta$
(iv)	From part (iii), area of required region
	$=k^{2}\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}2\sin^{2}2\theta-2\sin\theta\sin2\theta \mathrm{d}\theta$
	$=k^{2}\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}(1-\cos 4\theta)-2\sin \theta(2\sin \theta\cos \theta)\mathrm{d}\theta$
	$=k^2\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}1-\cos 4\theta-4\cos \theta \sin^2 \theta \mathrm{d}\theta$
	$=k^{2}\left[\theta-\frac{\sin 4\theta}{4}-4\left(\frac{\sin^{3} \theta}{3}\right)\right]_{\frac{\pi}{2}}^{\pi}$
	$=k^{2}\left[\left(\pi-0-0\right)-\left(\frac{\pi}{2}-0-\frac{4}{3}\right)\right]$
	$=k^2\left(\frac{4}{3}+\frac{\pi}{2}\right)$

Qn	Suggested Solutions
10(i)	Let the plane representing the ground be p_g .
	$p_g: \mathbf{r} \cdot \begin{pmatrix} 0\\0\\1 \end{pmatrix} = 0, p_1: \mathbf{r} \cdot \begin{pmatrix} 1\\0\\-5 \end{pmatrix} = -2, p_2: \mathbf{r} \cdot \begin{pmatrix} 4\\1\\-n \end{pmatrix} = 30.$
	Let θ_{gp_1} be the acute angle between the ground and p_1 .
	Let θ_{gp_2} be the acute angle between the ground and p_2 .
	Since p_2 is steeper than p_1 relative to the ground,
	$\theta_{gp_2} > \theta_{gp_1}$
	$\cos\theta_{gp_2} < \cos\theta_{gp_1}$
	(Note the change in inequality sign, because $\cos \theta$ is a decreasing function for acute angle θ .)
	$\frac{\begin{vmatrix} 0\\0\\1 \end{vmatrix} \cdot \begin{pmatrix} 4\\1\\-n \end{vmatrix}}{\sqrt{1}\sqrt{4^2 + 1^2 + (-n)^2}} < \frac{\begin{vmatrix} 0\\0\\1 \end{vmatrix} \cdot \begin{pmatrix} 1\\0\\-5 \end{vmatrix}}{\sqrt{1}\sqrt{1^2 + (-5)^2}}$
	n -5
	$\frac{ n }{\sqrt{17+n^2}} < \frac{ 5 }{\sqrt{26}}$
	$\left(\frac{ n }{\sqrt{17+n^2}}\right)^2 < \left(\frac{ -5 }{\sqrt{26}}\right)^2$
	n^2 25
	$17 + n^2 = 26$
	$26n^2 < 25(17+n^2)$
	<i>n</i> ² < 425
	<u>Alternative Method</u> (consider $\sin \theta$)
	$\sigma_{gp_2} > \sigma_{gp_1}$
	$\sin\theta_{gp_2} > \sin\theta_{gp_1}$
	(Note that there is NO change in inequality sign, because $\sin \theta$ is a increasing function for acute angle θ .)
	$\frac{\begin{vmatrix} 0\\0\\1 \end{vmatrix} \times \begin{pmatrix} 4\\1\\-n \end{vmatrix}}{\sqrt{1}\sqrt{1}\sqrt{4^2 + 1^2 + (-n)^2}} > \frac{\begin{vmatrix} 0\\0\\1 \end{vmatrix} \times \begin{pmatrix} 1\\0\\-5 \end{vmatrix}}{\sqrt{1}\sqrt{1}\sqrt{1^2 + (-5)^2}}$
(ii)	(30)(4)
	$ \begin{vmatrix} 30\\40 \end{vmatrix} \cdot \begin{vmatrix} 1\\-n \end{vmatrix} = 30 \Rightarrow 120 + 30 - 40n = 30 \Rightarrow n = 3 $

Qn	Suggested Solutions
(iii)	(1) (4)
	$p_1: \mathbf{r} \cdot \begin{vmatrix} 0 \\ -5 \end{vmatrix} = -2, p_2: \mathbf{r} \cdot \begin{vmatrix} 1 \\ -3 \end{vmatrix} = 30$
	VEDIEV (Method 1)
	$\frac{4 - 17\lambda}{2 + \lambda} \cdot \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix} = 8 + 5\lambda - 10 - 5\lambda = -2$
	$ \begin{pmatrix} 8+5\lambda \\ 4-17\lambda \\ 2+\lambda \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1 \\ -3 \end{pmatrix} = 32+20\lambda+4-17\lambda-6-3\lambda = 30 $
	Hence <i>l</i> lies in both p_1 and p_2 .
	VEDIEV (Mothod 2)
	$\underbrace{\mathbf{VERIF1}}_{(5)} (1) \qquad (5) (4)$
	$ \begin{pmatrix} -17 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix} = 5 - 5 = 0 \text{ and } \begin{pmatrix} -17 \\ -17 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -3 \end{pmatrix} = 20 - 17 - 3 = 0 $
	$\therefore \begin{pmatrix} 5\\ -17\\ 1 \end{pmatrix}$ is parallel to both p_1 and p_2 .
	$\begin{pmatrix} 8 \\ 4 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix} = 8 - 10 = -2 \text{ and } \begin{pmatrix} 8 \\ 4 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1 \\ -3 \end{pmatrix} = 32 + 4 - 6 = 30$
	$\therefore \begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix} \text{ is on both } p_1 \text{ and } p_2.$
	Hence <i>l</i> lies in both p_1 and p_2 .
	SHOW
	SHOW To find a direction vector of line <i>l</i> :
	$\begin{pmatrix} 1 \\ \end{pmatrix} \begin{pmatrix} 4 \\ \end{pmatrix} \begin{pmatrix} (0)(-3)-(-5)(1) \\ \end{pmatrix} \begin{pmatrix} 5 \\ \end{pmatrix}$
	$\begin{vmatrix} 0 \\ -5 \end{vmatrix} \times \begin{vmatrix} 1 \\ -3 \end{vmatrix} = \begin{vmatrix} (-7)(4) - (1)(-3) \\ (1)(1) - (0)(4) \end{vmatrix} = \begin{vmatrix} -17 \\ 1 \end{vmatrix}$
	To find a position vector of a point on l :
	$x - 5z = -2 \qquad (1)$
	4x + y - 3z = 30 (2)
	Let $x = 8$
	From (1): $8-5z = -2 \implies z = 2$
	From (2): $4(8) + y - 3(2) = 30 \Rightarrow y = 30 - 32 + 6 = 4$
	\therefore (8, 4, 2) is a point of intersection between p_1 and p_2 .
	Hence, $l: \mathbf{r} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} -17 \\ 1 \end{bmatrix}, \lambda \in \mathbb{R}.$

Qn	Suggested Solutions
(iv)	For BT to be minimum, BT must be perpendicular to
	boundary i.e. B is the foot of perpendicular from T to l .
	$\overrightarrow{OB} = \begin{pmatrix} 8+5\mu\\ 4-17\mu\\ 2+\mu \end{pmatrix} \text{ for some } \mu \in \mathbb{R}$ $\overrightarrow{BT} = \overrightarrow{OT} - \overrightarrow{OB} = \begin{pmatrix} 30\\ 30\\ 40 \end{pmatrix} - \begin{pmatrix} 8+5\mu\\ 4-17\mu\\ 2+\mu \end{pmatrix} = \begin{pmatrix} 22-5\mu\\ 26+17\mu\\ 38-\mu \end{pmatrix}$ $\overrightarrow{BT} \cdot \begin{pmatrix} 5\\ -17\\ 1 \end{pmatrix} = 0$ $\begin{pmatrix} 22-5\mu\\ 26+17\mu\\ 38-\mu \end{pmatrix} \cdot \begin{pmatrix} 5\\ -17\\ 1 \end{pmatrix} = 0$ $110 - 25\mu - 442 - 289\mu + 38 - \mu = 0$
	$\overrightarrow{OB} = \begin{pmatrix} 8+5\left(-\frac{14}{15}\right) \\ 4-17\left(-\frac{14}{15}\right) \\ 2-\frac{14}{15} \end{pmatrix} = \begin{pmatrix} \frac{10}{3} \\ \frac{298}{15} \\ \frac{16}{15} \end{pmatrix}$
	Total distance travelled from <i>B</i> to <i>T</i>
	=BT
	$=\sqrt{\left(\frac{10}{3}-30\right)^{2}+\left(\frac{298}{15}-30\right)^{2}+\left(\frac{16}{15}-40\right)^{2}}$
	$=\sqrt{2329.6}$
	Stamina expended = $\frac{\sqrt{2329.6}}{2}$ = 24.1 (3 s.f.)
(v)	Let l_{TR} be the line representing journey taken from T to R.

Qn	Suggested Solutions
	$\begin{pmatrix} 30+10\gamma\\ 30+\frac{15\gamma}{54}\\ 40+\frac{45\gamma}{54} \end{pmatrix} = \begin{pmatrix} 90\\ 0\\ 45 \end{pmatrix}$ $30+10\gamma = 90 (1)$ $30+\frac{15\gamma}{54} = 0 (2)$ $40+\frac{45\gamma}{54} = 45 (3)$
	From (1): $10\gamma = 60 \Rightarrow \gamma = 6$
	From (2): $\frac{15\gamma}{54} = -30 \Longrightarrow \gamma = -108 \neq 6$
	Since there is no consistent solution for γ , avatar will not
	be able to reach the treasure.

QnSuggested Solutions(iii)
$$\tan \angle AXE = \frac{480}{x}$$

Since $\angle AXE + \theta = \pi$,
 $\tan(\pi - \theta) = \frac{480}{x}$
 $x = \frac{480}{\tan(\pi - \theta)} = 480 \cot(\pi - \theta)$ Algebraic Method $\frac{2\pi}{3} \le \theta \le \frac{3\pi}{4}$
 $\frac{\pi}{4} \le \pi - \theta \le \frac{\pi}{3}$
 $1 \le \tan(\pi - \theta) \le \sqrt{3}$
 $\frac{1}{\sqrt{3}} \le \tan(\pi - \theta) \le 1$
 $\frac{480}{\sqrt{3}} \le \frac{480}{\tan(\pi - \theta)} \le 480$
Hence, $\frac{480}{\sqrt{3}} \le x \le 480$.Graphical MethodWe can use the GC to sketch the graph of $x = \frac{1}{\tan(\pi - \theta)}$, then
apply scale factor of 480 to obtain the answer.Image: Constraint of the fact factor of 480 to obtain the answer.Image: Constraint of the fact factor for the fact factor fact

Qn	Suggested Solutions
(iv)	$\frac{dC}{dt} = \frac{dC}{dt} \times \frac{dx}{dt}$
	$\frac{1}{d\theta} - \frac{1}{dx} \wedge \frac{1}{d\theta}$
	To explain $\frac{dx}{d\theta} > 0$:
	From part (iii), $x = \frac{480}{\tan(\pi - \theta)} = 480 \cot(\pi - \theta)$.
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -480 \Big[-\mathrm{cosec}^2 (\pi - \theta) \Big] = 480 \mathrm{cosec}^2 (\pi - \theta) > 0$ OR
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \frac{\mathrm{d}}{\mathrm{d}\theta} 480 \left[\tan\left(\pi - \theta\right) \right]^{-1} = 480 \left[\tan\left(\pi - \theta\right) \right]^{-2} \sec^{2}\left(\pi - \theta\right) > 0$
	To explain $\frac{\mathrm{d}C}{\mathrm{d}x} > 0$:
	From part (ii), we know that when $x > \sqrt{9600}$, $\frac{dC}{dx} > 0$.
	From part (iii), for $\frac{2\pi}{3} \le \theta \le \frac{3\pi}{4}$, we have $\frac{480}{\sqrt{3}} \le x \le 480$.
	Therefore, for $\frac{2\pi}{3} \le \theta \le \frac{3\pi}{4}$, since $\left\lfloor \frac{480}{\sqrt{3}}, 480 \right\rfloor \subseteq \left(\sqrt{9600}, \infty\right)$,
	then we have $\frac{\mathrm{d}C}{\mathrm{d}x} > 0$.
	Hence for $\frac{2\pi}{3} \le \theta \le \frac{3\pi}{4}$,
	since $\frac{\mathrm{d}C}{\mathrm{d}x} > 0$ and $\frac{\mathrm{d}x}{\mathrm{d}\theta} > 0$,
	we have $\frac{dC}{d\theta} = \frac{dC}{dx} \times \frac{dx}{d\theta} > 0$.
(v)	The value of θ that gives the minimum total cost is $\frac{2\pi}{3}$.