

# **Catholic Junior College**

JC1 Promotional Examinations Higher 2

CANDIDATE NAME

CLASS

1T

### CHEMISTRY

## 9729/02

**Paper 2 Structured Questions** 

Wednesday 2 October 2019 1 hour

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

| READ THESE INSTRUCTIONS FIRST                                                                                                                                                                                                                                                                                                                                                                                                   | For Examiner's Use |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|
| <ul> <li>Write your name and class on all the work you hand in.</li> <li>Write in dark blue or black pen.</li> <li>You may use an HB pencil for any diagrams or graphs.</li> <li>Do not use staples, paper clips, glue or correction fluid.</li> <li>Answer <b>all</b> questions in the spaces provided on the Question Paper.</li> <li>The use of an approved scientific calculator is expected, where appropriate.</li> </ul> | Paper 1            | 15     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 | Paper 2            | Q1 / 8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | Q2 / 4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | Q3 / 3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | Q4 / 5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | Q5 / 6 |
| The number of marks is given in brackets [ ] at the end of each question or part question.                                                                                                                                                                                                                                                                                                                                      |                    | Q6 / 9 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | 35     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 | Paper 3            | Q1 /20 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | Q2 /20 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | 40     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 | Paper 4            | Q1 /15 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | Q2 /15 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | 30     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOTAL              | 120    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 | OVERALL/%          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 | Grade              |        |

#### Paper 2

#### Answer **all** the questions.

Write your answers in the spaces provided. You are advised to spend **not** more than one hour on this section.

- 1 Ethanedioic acid, is a dibasic, organic acid with the formula HO<sub>2</sub>CCO<sub>2</sub>H. It is commonly found in many leafy vegetables, fruits, nuts and seeds. It is able to react with a base such as sodium hydroxide, NaOH.
  - (a) FA 1 is a solution containing 5.00 g dm<sup>-3</sup> of a similar dibasic, organic acid, HO<sub>2</sub>C(CH<sub>2</sub>)<sub>n</sub>CO<sub>2</sub>H. When 25.0 cm<sup>3</sup> of FA 1 is titrated against NaOH of concentration 0.125 mol dm<sup>-3</sup>, 17.00 cm<sup>3</sup> of NaOH is required.

The equation for this reaction is given as follows.

$$HO_2C(CH_2)_nCO_2H(aq) + 2NaOH(aq) \rightarrow Na_2(O_2C(CH_2)_nCO_2) (aq) + 2H_2O(I)$$

(i) Calculate the amount in moles of NaOH required to react with 25.0 cm<sup>3</sup> of the acid solution in **FA 1**.

[1]

(ii) Calculate the amount in moles of the dibasic acid,  $HO_2C(CH_2)_nCO_2H$  in 25.0 cm<sup>3</sup> of **FA 1** that has reacted.

[1]

(iii) Calculate the concentration of the acid,  $HO_2C(CH_2)_nCO_2H$  in mol dm<sup>-3</sup> of solution in **FA 1**.

[1]

(iv) Hence, determine the value of n in the formula of the acid, HO<sub>2</sub>C(CH<sub>2</sub>)<sub>n</sub>CO<sub>2</sub>H.

(b) Ethanedioic acid, HO<sub>2</sub>CCO<sub>2</sub>H (or H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>), is also a reducing agent and reacts with an oxidising agent such as acidified potassium manganate(VII), KMnO<sub>4</sub>. It can be oxidised by acidified KMnO<sub>4</sub> to carbon dioxide, when heated to 60°C.

When a 25.0 cm<sup>3</sup> sample of ethanedioic acid is titrated against acidified KMnO<sub>4</sub> of concentration 0.0200 mol dm<sup>-3</sup>, 23.00 cm<sup>3</sup> of KMnO<sub>4</sub> is required.

(i) Derive a balanced half-equation for the oxidation of ethanedioic acid to carbon dioxide in acidic conditions.

.....[1]

(ii) By reference to the relevant half-equation from the *Data Booklet* for the reduction of acidified MnO<sub>4</sub><sup>-</sup>, derive an overall balanced equation for the reaction between ethanedioic acid and acidified manganate(VII) ion, MnO<sub>4</sub><sup>-</sup>.

[1]

(iii) Hence, calculate the amount in moles of the acid,  $HO_2CCO_2H$  (or  $H_2C_2O_4$ ) reacted and subsequently its concentration in mol dm<sup>-3</sup>.

[2]

[Total: 8]

2 The graph below shows the second ionisation energies of 10 unknown elements A - J, of consecutive proton numbers. The letters are not the atomic symbols of the elements. J, which has the largest  $A_r$ , has an proton number below 20.

4



(a) Write the ground state electronic configuration of element F.

(b) Generally the second ionisation energy (2<sup>nd</sup> I.E.) increases across the period. Explain the decrease in 2<sup>nd</sup> I.E. between element **F** and **G**.



(c) Sketch and label all the valence orbitals of F, clearly showing the labelled axes.

[1]

**3** Canisters of flammable gas are used as portable fuel, and may contain a few types of short chain hydrocarbons, which are liquefied under high pressure.

A canister was connected to a gas syringe and the valve opened to allow some of the gas into the syringe. It was found that 0.300 g of gas took up 144.0 cm<sup>3</sup> at temperature of 24°C and pressure of  $1.02 \times 10^5$  Pa.

Calculate the average  $M_r$  of the gas mixture assuming it behaves ideally.

[3] [Total: 3]

4 Nitroglycerin,  $C_3H_5(NO_3)_3$ , is a flammable liquid commonly used to manufacture dynamite. Upon ignition, nitroglycerin decomposes to produce nitrogen, oxygen, carbon dioxide and steam.

Given:

| Standard enthalpy change of formation of nitroglycerin(I) / kJ mol <sup>-1</sup> | -364 |
|----------------------------------------------------------------------------------|------|
| Standard enthalpy change of formation of $H_2O(g) / kJ \text{ mol}^{-1}$         | -242 |
| Standard enthalpy change of formation of $CO_2(g) / kJ \text{ mol}^{-1}$         | -394 |

(a) Write a balanced equation, with state symbols, for the decomposition of 1 mol of liquid nitroglycerin.

[1]

(b) With reference to the above data, calculate the standard enthalpy change of decomposition of 1 mol of nitroglycerin.

Hence, predict the spontaneity of the reaction at 298 K.

[2]

#### (d) Is the reaction spontaneous at all temperatures? Explain.

.....[1]

[Total: 5]

6

5 Pentenes are often produced as by-products of thermal cracking of petroleum. Pent-2-ene is one of the isomers of pentene and has the following formula:

#### CH<sub>3</sub>CH=CHCH<sub>2</sub>CH<sub>3</sub>

(a) Draw and **label clearly** the two different structural formulae of pent-2-ene that show *cistrans* isomerism.

One constitutional isomer of pent-2-ene is 1,2-dimethylcyclopropane, which consists of a cyclopropane ring substituted with two methyl groups attached to adjacent carbon atoms. Due to restricted ring rotation, *cis-trans* isomerism also exists in 1,2-dimethylcyclopropane.

The structure of 1,2-dimethylcyclopropane is shown below (the hydrogen atoms on the ring structure **are not displayed**):



1,2-dimethylcyclopropane

(b) State the hybridisation present at C<sub>1</sub>.

......[1]

(c) Label with an asterisk (\*), any chiral carbon atom(s) present in 1,2-dimethylcyclopropane.



[1]

- (d) The effect of plane-polarised light on 1,2-dimethylcyclopropane was investigated and three stereoisomers of 1,2-dimethylcyclopropane were identified.
  - (i) The following isomer was found to have no effect on plane-polarised light.



1,2-dimethylcyclopropane

Suggest a reason for this observation.

.....[1]

(ii) On the other hand, the remaining two isomers are optically active. Draw the 3-D structures for these isomers using wedged and dashed bonds.

| Structure of isomers |     |  |
|----------------------|-----|--|
| (1)                  | (2) |  |
|                      |     |  |
|                      |     |  |
|                      |     |  |
|                      |     |  |
|                      |     |  |
|                      |     |  |

[1]

[Total: 6]

**6** Propane,  $C_3H_8$ , reacts with excess chlorine gas,  $Cl_2$ , in the presence of uv light to form two monochloroalkanes.



(a) State the name of the reaction mechanism of the monochlorination of propane.

.....[1]

(b) The reaction between propane and chlorine gas proceeds via a three-stage reaction mechanism. The mechanism to form 2-chloropropane is illustrated below.

In the boxes provided below, fill in the blanks with the balanced equations for the propagation and termination steps.

**Initiation** 

$$c_l \longrightarrow c_l \longrightarrow 2C_l$$

**Propagation** 







 $\frac{\text{Termination}}{Cl^{\bullet} + Cl^{\bullet}} \longrightarrow Cl_2$ 



[Turn over

(c) Based on the different types of environment surrounding the hydrogen atoms, predict the relative proportions of 1-chloropropane and 2-chloropropane that are likely to be formed in the reaction.

(d) 2-chloropropane can also be formed when propene,  $C_3H_6$ , is reacted with HCl gas.



Name and describe the mechanism for the reaction between propene and hydrogen chloride, showing curly arrows, charges, dipoles and any relevant lone pairs.

(e) Suggest a simple chemical test to distinguish between propane and propene, clearly stating all observations for both compounds.

[2] [Total: 9]

#### [Turn over