	Suggested Solution	Remarks
1i	$F_n(0) = \sum_{r=1}^{n} \frac{1}{r(r+1)}$	
	$=\sum_{r=1}^{n} \left(\frac{1}{r} - \frac{1}{r+1} \right)$	
	$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$	
	$=1-\frac{1}{n+1}$	
	As $n \to \infty$, $\frac{1}{n+1} \to 0$ and so $F_n(0) \to 1$.	
1ii (a)	$F_n(x) = \sum_{r=1}^n \left(\frac{1}{r} - \frac{1}{r+1} + \frac{2}{(r-1)x+1} - \frac{2}{rx+1} \right)$	
	$= \left[\left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \dots \left(\frac{1}{n} - \frac{1}{n+1} \right) \right] +$	
	$\left[\left(\frac{2}{1} - \frac{2}{x+1}\right) + \left(\frac{2}{x+1} - \frac{2}{2x+1}\right) + \dots \left(\frac{2}{(n-1)x+1} - \frac{2}{nx+1}\right) \right]$	
	$=1-\frac{1}{n+1}+2-\frac{2}{n+1}$	
	$=3 - \frac{1}{n+1} - \frac{2}{nx+1}$	
1ii (b)	Since $\lim_{n \to \infty} \left(\frac{1}{n+1} \right) = 0$ and $\lim_{n \to \infty} \left(\frac{2}{nx+1} \right) = \begin{cases} 2, \text{ if } x = 0\\ 0, \text{ if } x \neq 0 \end{cases}$,	There's a need to distinguish the
	$\lim_{n\to\infty} \mathbf{F}_n(x) = \begin{cases} 1, \text{ if } x = 0\\ 3, \text{ if } x \neq 0 \end{cases}.$	x = 0.
2i	Let $u = a - x$.	
	$\int_{0}^{a} f(a-x) dx = \int_{a}^{0} -f(u) du = \int_{0}^{a} f(u) du = \int_{0}^{a} f(x) dx$	
2ii	Since f is symmetrical about $x = \frac{1}{2}a$,	
	$f(x) = f(a-x)$ for $0 \le x \le a$ (*)	
	Since f is continuous and x is also continuous, the function given by $xf(x)$ is	
	also continuous on $[0, a]$.	
	$\int_0^a x f(x) dx = \int_0^a (a-x) f(a-x) dx \qquad (by (i))$	
	$= \int_0^a (a-x) f(x) dx \qquad (by (*))$	
	$= a \int_0^a \mathbf{f}(x) dx - \int_0^a x \mathbf{f}(x) dx$	
	$2\int_{0}^{a} x f(x) dx = a \int_{0}^{a} f(x) dx$	
	$\int_0^a x f(x) dx = \frac{a}{2} \int_0^a f(x) dx$	

	Alternative	
	Since f is symmetrical about $x = \frac{1}{2}a$, $f\left(x + \frac{1}{2}a\right) = f\left(-x + \frac{1}{2}a\right)$ for	
	$-\frac{1}{2}a \le x \le \frac{1}{2}a.$	
	Let $v = x - \frac{1}{2}a$.	
	Note that $g(v) \coloneqq v f\left(v + \frac{a}{2}\right) = -\left[-v f\left(-v + \frac{a}{2}\right)\right] = -g(-v)$, which shows that g is	
	an odd function on $\left[-\frac{a}{2},\frac{a}{2}\right]$.	
	$\int_0^a x f(x) dx = \int_{-\frac{a}{2}}^{\frac{a}{2}} \left(v + \frac{a}{2} \right) f\left(v + \frac{a}{2} \right) dv$	
	$=\int_{-\frac{a}{2}}^{\frac{a}{2}} v f\left(v+\frac{a}{2}\right) dv + \int_{-\frac{a}{2}}^{\frac{a}{2}} \frac{a}{2} f\left(v+\frac{a}{2}\right) dv$	
	$= 0 + \frac{a}{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} f\left(v + \frac{a}{2}\right) dv \qquad \text{(since g is odd)}$	
	$=\frac{a}{2}\int_{0}^{a}f(x)dx$	
2iii	Since sin x and $\frac{1}{1+\cos^2 n}$ are continuous on $[0,\pi]$, so is their product	
	$h(x) = \frac{\sin x}{1 + \cos x}$	
	$1 + \cos^2 x$	
	We can also show that h is symmetrical about $x = \frac{\pi}{2}$:	
	$h(\pi - x) = \frac{\sin(\pi - x)}{1 + \cos^2(\pi - x)} = \frac{\sin x}{1 + \cos^2 x} = h(x)$	
	Applying the result in (ii):	
	$\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} dx = \frac{\pi}{2} \left[-\tan^{-1} \left(\cos x \right) \right]_{0}^{\pi}$	
	$=\frac{\pi}{2}\left[-\tan^{-1}\left(-1\right)+\tan^{-1}\left(1\right)\right]=\frac{\pi}{2}\left[-\left(-\frac{\pi}{4}\right)+\frac{\pi}{4}\right]=\frac{\pi^{2}}{4}$	
3	A triangle with sides of lengths p , q and r exists iff $p+q>r$, $q+r>p$ and	
	r+p>q.	
3i	WLOG, let $c \ge b \ge a > 0$.	
	Note that $c \ge b \ge a \Longrightarrow \frac{c}{1+c} \ge \frac{b}{1+b} \ge \frac{a}{1+a}$.	
	It suffices to show that $\frac{a}{1+a} + \frac{b}{1+b} > \frac{c}{1+c}$.	
	Indeed, $\frac{a}{1+a} + \frac{b}{1+b} \ge \frac{a}{1+c} + \frac{b}{1+c} = \frac{a+b}{1+c} > \frac{c}{1+c}$.	

3ii	WLOG, let $c \ge b \ge a > 0$.	
	Note that $c \ge b \ge a \Longrightarrow \sqrt{c} \ge \sqrt{b} \ge \sqrt{a}$.	
	It suffices to show that $\sqrt{a} + \sqrt{b} > \sqrt{c}$.	
	Indeed, we have $\left(\sqrt{a} + \sqrt{b}\right)^2 \ge a + b + 2\sqrt{ab} > a + b > c$ which implies that	
	$\sqrt{a} + \sqrt{b} > \sqrt{c}$.	
3iii	By (ii), if a triangle with sides of lengths $a(b+c-a)$, $b(c+a-b)$ and	
	$c(a+b-c)$ exists, then so does a triangle with side of lengths $\sqrt{a(b+c-a)}$,	
	$\sqrt{b(c+a-b)}$ and $\sqrt{c(a+b-c)}$.	
	By symmetry, it suffices to show that a(b+c-a)+b(c+a-b)>c(a+b-c).	
	a(b+c-a)+b(c+a-b)-c(a+b-c)	
	$= ab + ac - a^{2} + bc + ab - b^{2} - ac - bc + c^{2}$	
	$=c^2+2ab-a^2-b^2$	
	$=c^2-(a-b)^2$	
	=(c+a-b)(c+b-a)	
	>0 (:: \triangle of sides of lengths a, b, c exists, $\therefore c + a > b$ and $c + b > a$)	
4i	Bijection: Place 7 identical balls (counters to select T-shirts) into 4 distinct boxes	
(a)	(1-snirts of different colours).	
	Number of ways = ${}^{7+4-1}C_{4-1} = {}^{10}C_3 = 120$	
4i (b)	Bijection: With 1 ball in each of the four boxes, place 3 more identical balls (counters to select T-shirts) into the 4 distinct boxes (T-shirts of different colours).	
	Number of ways = ${}^{3+4-1}C_{4-1} = {}^{6}C_{3} = 20$	
4ii (a)	Number of ways = $4^7 = 16384$	
4ii	Number of ways = $4 \times 3^6 = 2916$	
(b) 4ii	Let A be the set of arrangements without using T shirts of colour :	<u> </u>
(c)	Let A_i be the set of an angements without using 1-snifts of colour <i>i</i> . Number of ways	
	$=4^7 - A_1 \cup A_2 \cup A_2 \cup A_4 $	
	$=4'-\left\lfloor\sum_{i} A_{i} -\sum_{i\neq j} A_{i}\cap A_{j} +\sum_{i\neq j,i\neq k,j\neq k} A_{i}\cap A_{j}\cap A_{k} \right\rfloor$	
	$=4^{7}-{}^{4}C_{1}(3^{7})+{}^{4}C_{2}(2^{7})-{}^{4}C_{3}(1^{7})$	
	= 8400	

5i	If a tessellation exists, then the $p \times q$ rectangle is formed completely by $a \times b$	
(a)	rectangles. Hence, the area of the $p \times q$ rectangle, pq , is a multiple of the area of	
	the $a \times b$ rectangle, ab .	
	Hence, <i>ab</i> is a factor of <i>pq</i> .	
5i	If a tessellation exists, then the leftmost column of p squares must be formed by	
(b)	columns and/or rows of $a \times b$ rectangles, i.e. $a \times 1$ and/or $b \times 1$. Hence,	
	$p = \lambda a + \mu b$ for some $\lambda, \mu \in \mathbb{Z}_0^+$.	
	Similarly, the bottommost row of q squares is also formed by columns and/or	
	rows of $a \times b$ rectangles. Hence, $q = \lambda a + \mu b$ for some $\lambda, \mu \in \mathbb{Z}_0^+$.	
5i	If a tessellation using $a \times b$ rectangles exists, then there is a tessellation using	
(c)	$a \times 1$ rectangles. Each of these $a \times 1$ rectangles has 1 shaded square.	
	Similar to the argument in (i)(a), the number of $a \times 1$ rectangles is $\frac{pq}{a}$, and	
	hence, the number of shaded squares is $\frac{pq}{p}$	
	a a	
5ii	Place the $r \times s$ rectangle in the bottom left corner of the $p \times q$ rectangle. This	
(a)	$r \times s$ rectangle will have t shaded squares, namely $(1,1), (2,2),, (t,t)$.	
	The remainder of the $p \times q$ rectangle can be tessellated with $a \times 1$ rectangles that	
	contain exactly 1 shaded square each. [The s columns above the $r \times s$ rectangle	
	fitted with $a \times 1$ rectangles, and the remaining $p \times (q-s)$ rectangle to be fitted	
	with $1 \times a$ rectangles.] Using the argument in (i)(a), the number of such $a \times 1$	
	pq - rs	
	rectangles is $\frac{1}{a}$.	
	Hence, the total number of shaded squares is given by $\frac{pq-rs}{a}+t$.	
5ii	Using the results in (i)(c) and (ii)(a),	
(b)	$\frac{pq-rs}{t}+t=\frac{pq}{t}$	
	a a	
	This yields $\frac{rs}{a} = t$ and we claim that $t = 0$.	
	Suppose instead that $t \ge 1$, and since $t = r$ or $t = s$, then we must have $\frac{s}{a} = 1$ or	
	$\frac{r}{a} = 1$, which are both impossible since $r, s < a$.	
	Hence, $\frac{rs}{a} = t = 0$ which gives $r = 0$ or $s = 0$. Consequently, $p \equiv 0 \pmod{a}$ or	
	$q \equiv 0 \pmod{a}$, i.e. <i>a</i> is a factor of either <i>p</i> or <i>q</i> .	

6а	Assumption: We will assume that friendship is symmetric relation (i.e. if A is a friend of B then B is a friend of A)	
	In a group of $n \ge 2$ students, if a student has 0 friends, there cannot be a student with $n-1$ friends; and similarly, if a student has $n-1$ friends, there cannot be a student with 0 friends.	
	Hence the number of friends each of the visturdants can reactibly have much be	
	Hence, the number of friends each of the <i>n</i> students can possibly have must be from an $(n + 1)$ -demonstrate $((1, 2) - n + 1)$ or $(0, 1)$. Dettermine whether	
	from an $(n-1)$ - element set $(\{1, 2,, n-1\}$ or $\{0, 1,, n-2\}$). By the pigeonnoie	
	principle, there must be at least 2 students with the same number of friends.	
6b	Let A_i be the interval $\left\lfloor \frac{i-1}{n}, \frac{i}{n} \right\rfloor$, for $i = 1, 2,, n$.	
	These A_i 's form the <i>n</i> pigeonholes, while the fractional parts form the <i>n</i> pigeons.	
	<u>Case 1</u> : There is a fractional part, say $px - \lfloor px \rfloor$ (with $1 \le p \le n$) in A_1 .	
	$0 \le px - \lfloor px \rfloor < \frac{1}{n} \Longrightarrow \left x - \frac{\lfloor px \rfloor}{p} \right < \frac{1}{pn}$	
	Take $a = \lfloor px \rfloor$ and $b = p$.	
	<u>Case 2</u> : There is no fractional part in A_1 .	
	By the pigeonhole principle, there must exist two fractional parts, say $px - \lfloor px \rfloor$	
	and $qx - \lfloor qx \rfloor$ (with $n \ge p > q \ge 1$) in some A_k .	
	$px - \lfloor px \rfloor \in \left[\frac{k-1}{n}, \frac{k}{n}\right)$ and $qx - \lfloor qx \rfloor \in \left[\frac{k-1}{n}, \frac{k}{n}\right)$	
	$\Rightarrow \left \left(p - q \right) x - \left(\left\lfloor px \right\rfloor - \left\lfloor qx \right\rfloor \right) \right = \left px - \left\lfloor px \right\rfloor - \left(qx - \left\lfloor qx \right\rfloor \right) \right < \frac{1}{n}$	
	$\Rightarrow \left x - \frac{\lfloor px \rfloor - \lfloor qx \rfloor}{p - q} \right < \frac{1}{(p - q)n}$	
	As $1 \le p - q \le n$, we may take $a = \lfloor px \rfloor - \lfloor qx \rfloor$ and $b = p - q$.	

Siv We check that
$$y = \frac{q}{p}x + \frac{1}{2}$$
 and $x = \frac{p}{q}y + \frac{1}{2}$ are rotations of each other by 180'
about $\left(\frac{p+1}{4}, \frac{q+1}{4}\right)$:
 $y = \frac{q}{p}x + \frac{1}{2}$ $\xrightarrow{\text{translerby}\left[\frac{p+1}{q+1}\right]} + \frac{q}{4} = \frac{q}{p}\left(x + \frac{p+1}{4}\right) + \frac{1}{2}$
 $\xrightarrow{\text{translerby}\left[\frac{q+1}{q+1}\right]} + \frac{q+1}{4} = \frac{q}{p}\left(-x + \frac{p+1}{4}\right) + \frac{1}{2}$
 $\xrightarrow{\text{translerby}\left[\frac{q+1}{p+1}\right]} - y + \frac{q+1}{4} = \frac{q}{p}\left(-x + \frac{p+1}{4}\right) + \frac{1}{2}$
 $\xrightarrow{\text{translerby}\left[\frac{q+1}{p+1}\right]} - \left(y - \frac{q+1}{4}\right) + \frac{q+1}{4} = \frac{q}{p}\left(-x + \frac{p+1}{4}\right) + \frac{1}{2}\right)$
 $x = \frac{p}{q}\left(y - \frac{q+1}{2}\right) + \frac{p+1}{2} + \frac{p}{2q}$
 $x = \frac{p}{q}y + \frac{1}{2}$
Each point (x, y) between the two lines has an image (x', y') also lying between the two lines, where (x', y') is a 180' rotation of (x, y) about $\left(\frac{p+1}{4}, \frac{q+1}{4}\right)$.
Case 1: $p = q = 3 \pmod{4}$
Then $\left(\frac{p+1}{4}, \frac{q+1}{4}\right)$ is a point that lies between the two lines, and by the above argument, N is must be odd, i.e. $N \equiv 1 \pmod{2}$.
 $N + \left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right) = N + \left(\frac{4m+2}{2}\right)\left(\frac{4n+2}{2}\right)$ for some $m, n \in \mathbb{Z}_0^+$
 $= 1 + 1 \pmod{2}$
 $= 0 \pmod{2}$
Case 2: $p \neq 3 \pmod{4}$ or $q \neq 3 \pmod{4}$
Then since p and q are odd, either $p = 4m + 1$ or $q = 4m + 1$ for some $m, n \in \mathbb{Z}_0^+$.
Hence, $\frac{p-1}{2} = 2m = 0 \pmod{2}$ or $\frac{q-1}{2} = 2n \equiv 0 \pmod{2}$.
Also, $\left(\frac{p+1}{4}, \frac{q+1}{4}\right)$ is not a point with integer coordinates, and by the above argument, N is must be even, i.e. $N = 0 \pmod{2}$.

$$\therefore N + \left(\frac{p-1}{2}\right) \left(\frac{q-1}{2}\right) = 0 \pmod{2}$$

Alternative
Using the same argument as in (ii), both lines have gradient $\frac{p}{q}$ and $\left(0, \frac{1}{2}\right)$ lies
on $y = \frac{q}{p}x + \frac{1}{2}$, while $\frac{p+1}{2} = \frac{p}{q}\left(\frac{q}{2}\right) + \frac{1}{2}$ which implies that $\left(\frac{p+1}{2}, \frac{q}{2}\right)$ lies on
 $x = \frac{p}{q}y + \frac{1}{2}$. Since the midpoint of $\left(0, \frac{1}{2}\right)$ and $\left(\frac{p+1}{2}, \frac{q}{2}\right)$ is $\left(\frac{p+1}{4}, \frac{q+1}{4}\right)$, we
can conclude that $y = \frac{q}{p}x + \frac{1}{2}$ and $x = \frac{p}{q}y + \frac{1}{2}$ are rotations of each other by
180° about $\left(\frac{p+1}{4}, \frac{q+1}{4}\right)$.
The total number of points is $\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)$.
This value is also gotten by taking the sum of the number of points beneath
 $y = \frac{q}{p}x + \frac{1}{2}$ and the number of points to the left of $x = \frac{p}{q}y + \frac{1}{2}$, then subtracting
the number of points between these lines due to double counting.
 $\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right) = \sum_{r=1}^{\frac{p-1}{r}} n\left(\frac{q}{p}r\right) + \sum_{r=1}^{\frac{q-1}{r}} n\left(\frac{p}{q}r\right) - N$
 $N + \left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right) = 2\sum_{r=1}^{\frac{p-1}{r}} n\left(\frac{q}{p}r\right)$