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Remarks

1i n 1
F (0)=
(0) ;r(r+1)
—Z( L)
= +1
1 11 1 1
(‘z) (5‘5)* -*(ﬁ‘m)
11
n+1
As N — o0, —1— 50 and so0 F.(0)—>1.
n+1
Lii n
(11 2 2
(@) F"(X)_rz_l:(r r+1+(r—1)x+1 rx+1]
B I O TP 1__1
‘[(1 2)*(2 3)+"'(n n+1)}
(g_z)+(2_2)+ 2 2
1 x+1) \x+1 2x+1) " (n-1)x+1 nx+1
-1 . 2
=1 n+1Jr2 nx+1
_3_ 1 2
n+1 nx+1
i S i 1 0 and | 2 2,ifx=0 There’s a need to
(b) | Since nm(nﬂ) an nm(nxﬂ)_ 0,ifx %0’ d|3t|ng|sh the
Lifx—0 special case when
if x= _
limF, (x)= x=0.
n— 3,ifx=0
2i | Letu=a-x.
J.af(a—x)dx:.[o— )du = J. (u)du= I
2i Since f is symmetrical about x —%
f(x)=f(a—x) for 0<x<a.  -----ommmmmmmmees *)

Since f is continuous and x is also continuous, the function given by xf (x) is

also continuous on [0,a].

I X)dx = _[ (a— x)f dx (by (i))

=a.|‘0 (x) x—jox (x)dx

ZIoaxf (x)dx = aJ.Oaf (x)dx
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Alternative
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Since f is symmetrical about x=%a : f(x+la)=f(—x+la) for

1 1
—=a< <=
2:’:1 X_2

Let v=x—-=

a.

N

Note that g(v) :=vf( %) = —[—vf (—v+§)} =—g(-v), which shows that g is

2
an odd function on [— %J
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af(:z a . .
= 0+§fgf (v+§)dv (since g is odd)
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Since sinx and 1

1+cos” x

h(x)=_3SnXx
() 1+cos® X

We can also show that h is symmetrical about x = %:

Sin(T[—X) sin X
h — — = =h
(m=x) 1+cos’(m—x) 1+cos”X (x)

Applying the result in (ii):

Xsin X T sin X T n
202 dx=—=| —22% dx==|—tan*(cosx
0 1+ C0s” X 2 )0 1+c0s® X 2[ ( )]0

= %[—tan‘l(—l)ﬂan‘1 (1)} = %[_(_%)+ﬂ =

——=—— are continuous on [0,x], so is their product
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A triangle with sides of lengths p, g and r exists iff p+q>r,

r+p>q.

g+r>p and

3i

WLOG, let c>b>a>0.

c b a
>bh> > >
Notethatc_b_a:>1 C_1+b_1+a'

b c
It suffices to show that 1 +1+b > Toc
Indeed, + b >_a b a+b C

1+b~14c 14c 1+c ~ 1+c’




3ii

WLOG, let c>b>a>0.
Note that c2b2a:>\/62\/52\/5.
It suffices to show that ~/a ++/b >+/c.

Indeed, we have (\/5+\/5)22a+b+2\/£>a+b>c which implies that
Ja+vb>c.

3iii | By (ii), if a triangle with sides of lengths a(b+c-a), b(c+a-b) and
c(a+b—c) exists, then so does a triangle with side of lengths \/a(b+c-a),
b(c+a-b) and \/c(a+b—c).
By symmetry, it suffices to show that
a(b+c-a)+b(c+a-h)>c(a+b-c).
a(b+c—-a)+b(c+a-b)-c(a+b—c)
=ab+ac—a’+bc+ab—-b*—ac—bc+c’
=c’+2ab-a*-b?
=c?~(a-b)’
=(c+a-b)(c+b-a)
>0 (. aofsides of lengths a, b, ¢ exists, .. c+a>bandc+b>a)
4i | Bijection: Place 7 identical balls (counters to select T-shirts) into 4 distinct boxes
(@) | (T-shirts of different colours).
Number of ways = ***C, , ='°C, =120
4i | Bijection: With 1 ball in each of the four boxes, place 3 more identical balls
(b) | (counters to select T-shirts) into the 4 distinct boxes (T-shirts of different
colours).
Number of ways = ***C, , =°C, =20
?i; Number of ways = 4" =16384
a
?tl)l) Number of ways = 4x3° = 2916
4ii | Let A be the set of arrangements without using T-shirts of colour i.
(©) | Number of ways

=4"-|AUA UA UA|
=4 — Z|A|_Z‘AmAj‘+ Z ‘AmAij}

i#] i#],i=k, j=k
=47-"C,(37)+“C,(2")-"C,(1)
=8400




5i | If a tessellation exists, then the pxq rectangle is formed completely by axb
() | rectangles. Hence, the area of the pxq rectangle, pq, is a multiple of the area of
the axb rectangle, ab.
Hence, ab is a factor of pqg.
5i | If a tessellation exists, then the leftmost column of p squares must be formed by
(b) | columns and/or rows of axb rectangles, i.e. ax1l and/or bx1l . Hence,
p=Aa+ ub forsome A, ueZsy.
Similarly, the bottommost row of q squares is also formed by columns and/or
rows of axb rectangles. Hence, q=Aa+ ub forsome A, ueZ.
5i | If a tessellation using axb rectangles exists, then there is a tessellation using
(c) | ax1 rectangles. Each of these ax1 rectangles has 1 shaded square.
Similar to the argument in (i)(a), the number of ax1 rectangles is %, and
hence, the number of shaded squares is %.
5ii | Place the rxs rectangle in the bottom left corner of the pxq rectangle. This
(@ | rxs rectangle will have t shaded squares, namely (11), (2,2), ..., (t,t).
The remainder of the pxq rectangle can be tessellated with ax1 rectangles that
contain exactly 1 shaded square each. [The s columns above the rxs rectangle
fitted with ax1 rectangles, and the remaining px(q—s) rectangle to be fitted
with 1xa rectangles.] Using the argument in (i)(a), the number of such ax1
rectangles is %.
Hence, the total number of shaded squares is given by %H .
5ii | Using the results in (i)(c) and (ii)(a),
(b) pa-rs ,_P9
a a

This yields %S =t and we claim that t =0.
Suppose instead that t >1, and since t=r or t =s, then we must have %zl or

% =1, which are both impossible since r,s<a.

Hence, %S:t =0 which gives r=0 or s=0. Consequently, p=0 (moda) or

q=0 (moda), i.e. ais a factor of either p or q.




6a

Assumption: We will assume that friendship is symmetric relation (i.e. if Ais a
friend of B, then B is a friend of A).

In a group of n>2 students, if a student has O friends, there cannot be a student
with n—1 friends; and similarly, if a student has n—1 friends, there cannot be a
student with 0O friends.

Hence, the number of friends each of the n students can possibly have must be
froman (n—1)- element set ({1,2,...,n—1} or {0,1....,n—2}). By the pigeonhole
principle, there must be at least 2 students with the same number of friends.

6b

Let A be the interval [Tl l) fori=12,.

These A ’s form the n pigeonholes, while the fractional parts form the n pigeons.

Case 1: There is a fractional part, say px—L pr (with 1< p<n)in A.

LpJ

0< px— pr_|< =[x —

pn
Take a=| px| and b= p.

Case 2: There is no fractional part in A .
By the pigeonhole principle, there must exist two fractional parts, say px—| px |
and gx—| gx | (with n> p>qg=>1)insome A,.

x—| px]e [k —1 k)and gx—| ax | e [k —1 lri)
DKp—Q)X—(LPXJ—quJ)\=\px—prJ—(qx—quJ)\<l

I 2 s 3 |
pP-q (p—a)n
As 1< p-qg<n,we may take a=| px |-| qx | and b= p—q.




71 2
(2): y%:x(d—yj +1, x>0 and let t:d—y.

dx dx

yt=xt? +1
Differentiating w.r.t. x on both sides:
dy, . dt dt

i t+y0I =t° +2xtd—

dt dt Ldy, o
yO| 2xtdX (.dxt_tj

dt

(y- 2xt)d =0

_ dt o (e .. dt oy
y =2xt or dx_o [rej. v 7&0)
y= 2xdy
i3

In|x|=2In|y|+C

2
y7: A, where A=e™© or —e©

y® = AX

2
Hence, Zygy A and by (1), %z (Z_ij +1= X(fa\ j+1:>A 4.

Therefore, y* =4x.

AL P dy _2
=7 S:y? _4X:>dx_y

Equation of tangent: y -y, :yi(x—xo), where (X,,Y,) lieson S
0

This satisfies (1):

(e )

2
=x(d—y] 11 ( 2% _ 1]
dx y0

“<=" Suppose a straight line | with gradient m satisfies (1).

Then ym = xm* +1 which implies that I:y:mx+% and m=0.

dy

y _4x:>dx




When d_y_ m, y_g and x=i. It suffices to check that i,é lieson I.
dX m m2 2
Indeed, 2 m(%}ri , SO (%gj satisfies |:y = mX+ = .
m m m m° m m
8i | & 11 4 1 5
;n(7r)_n(l7)+n(37)+n 47)_2+3+5_10
8il in(lr) :n(l)+n(l§)+n(1@)+n(2£)+n(3£)
~\11 11 11 1 11 11
=1+1+2+3+3
=10
> (7 : : 7.1
Zn — | gives the total number of points underneath y =—x+= for
~ \11 117 2
1<x<5 (and y >1).
8l Let the equation of the new line be y = 111x+b since this line is parallel to
AN
y=11%+5-
Furthermore, since y :111x+% passes through (O%) , the new line must pass
through (6%) because (3,2) is the midpoint of (O%) and (3%)
[le. (6%) is the point when (O%) is rotated 180" about (3,2).]
r_7 __
Hence, E_11(6)+b:>b_ 55"
i ine- vo Ly L oy 11
Equation of the new line: y = 11x 55 = X 7 y+ 5
Alternative
Rotation about (3, 2) can be seen via the following transformations.
_ l l translate by (:g) _ l l
y=11%*5 y+2_11(x+3)+2
rotate 180° about origin =l _ l
>—y+2 11( X+3)+ >
translate by (2) 7 1
—(y—2)+2=1—1(—(x—3)+3)+E
11,1
X=ZY+5

3
Z n (171 r) counts the number of points to the left of x = 171 y +% , which are just

r=1
1

the points beneath y:111X+§ in (ii) rotated 180" about (3,2) . Hence,




8iv

We check that y =%x+l and x = g y+% are rotations of each other by 180

2
p+1 q+1).
about (—4 T )

_p+l
translate by qil
4 N

_9,.1 2 _9 1
y—px+2 Y+ _p(x+ 2 )+2

rotate 180° about origin q+ :ﬂ _ l
>—y+ 7] p( x+—4 j+2

9+

4
p+1}
w), (yoa+ly e+l _af (o p+l), ptl) 1
O Gy
1

translate by {

q q
_p,.1
x_qy+2

Each point (X, y) between the two lines has an image (x',y"') also lying between

the two lines, where (x',y") is a 180" rotation of (x, y) about (pTHqTJrlj
Case 1: p=q=3(mod4)
Then (pTHqTHj is a point that lies between the two lines, and by the above
argument, N is must be odd, i.e. N =1(mod2).
p-1)(gq-1)_ (4m+2)(4n+2) v

N+(—2 j( 5 j_N+ 5 5 for some m,neZ;

=1+1 (mod 2)

=0 (mod 2)

Case 2: p =3 (mod4) or q =3 (mod4)
Then since p and g are odd, either p=4m+1 or q=4n+1 for some m,neZ;.

Hence, Io—_1=2m50 (mod2) or q—_l:ano (mod2).

2 2
Also, (pTHqTHj is not a point with integer coordinates, and by the above

argument, N is must be even, i.e. N =0 (mod?2).




Alternative

Using the same argument as in (ii), both lines have gradlent P and

) lies

I\)lQ ~~

q,.1 p+1_p(9).1 p+
ony= px+2 while 5 q(2j+2 which implies that( 5 ) lies on
N URVIN Y idpoi 01} ang (P2 A p+1
x_qy+2.S|ncethem|dp0|ntof( ,2) [ > 2) ( 7 4 j we

can conclude that y_% +— and x_gy+§ are rotations of each other by

‘ p+1 g+1
180 about( 1 4j

The total number of points is ( p2 1)(%)

This value is also gotten by taking the sum of the number of points beneath

y= % X +l and the number of points to the left of x = g y +l , then subtracting

2 2
the number of points between these lines due to double counting.
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