H2 Chemistry 9746/2 JJ 2009 Preliminary Examination Paper 2 (Suggested Answers)

- 1. (a) (i)

Bent/ angular/ v-shape [1]

trigonal planar [1]

(ii)	P/ kPa	V/ m ³	PV/ kPa m³	
	6.0	0.375	2.3	[1] for 3
	12.0	0.188	2.3	values to
	18.0	0.125	2.3	T d.p

(iii) Since <u>PV</u> is <u>constant</u>, SO₂ behaves <u>ideally</u>. [1]

(iv) At <u>low pressure</u>, the <u>volume of</u> (SO₂) <u>molecules become negligible</u> <u>compared to the volume of gas/container.</u> [1]

OR

At <u>low pressure</u>, molecules are <u>well spaced-out</u>, resulting in <u>negligible intermolecular attraction</u>. [1]

(b)	(i)		2SO ₂ (g) ·	+ O ₂ (g) =	= 2SO ₃ (g)
		Initial p.p	10	5	-
		Eqm p.p	10-2x	5-x	2x

At eqm, $\underline{10 - 2x + 5 - x + 2x = 11}$ [1] x = 4 $P_{SO2} = 10 - 2(4) = \underline{2 \text{ atm}} (\checkmark)$ $P_{O2} = 5 - 4 = \underline{1 \text{ atm}} (\checkmark)$ $P_{SO3} = 2(4) = \underline{8 \text{ atm}} (\checkmark)$

- (ii) $K_p = \frac{8^2}{2^2(1)} = 16 \text{ atm}^{-1}$ [1] with correct units; ecf from (b)(i)
- (iii) When pressure is lowered, <u>eqm position is shifted to the left</u> to <u>increase the number of gaseous molecules</u>. [1]

Yield/ amount of SO₃ decreases. [1]

OR

(ii) 6E(S=O) = 4E(S=O) + 2(248) - (-197) or 2E(S=O) = 2(248) - (-197)E(S=O) = 346.5 kJ mol⁻¹ or 347 kJ mol⁻¹ [1]

2. (a)
$$Fe(H_2O)_6^{3+} = Fe(H_2O)_5(OH)^{2+} + H^+$$
 [1]

- (b) (i) $1s^22s^22p^63s^23p^63d^{10}$ [1]
 - (ii) <u>Colourless</u> [1] because <u>Cu[±] does not have unfilled/ partially filled d-orbital</u> [1]

- **3.** (a) Concentration of vanillin may be followed by <u>measuring the colour</u> <u>intensity</u> of vanillin [1]
 - (b) Using the graph [HCN] = 5.00 mol dm^{-3} ,

 $(t_{1/2})_1 = (t_{1/2})_2 = 0.095 \text{ min}$ [1]

Since half-lives is constant, it is 1st order w.r.t vanillin. [1]

(c) When the <u>concentration of HCN increased by 50 times</u> (from 0.1 mol dm⁻³ to 5.00 mol dm⁻³), <u>half life decreased by 50 times.</u> [1]

Order of reaction with respect to HCN is one. [1]

(d) Type of reaction: <u>esterification/ ester formation</u> [1]
Structure of R

4.	(a)	(i)		Mn	0		
			Mass	63.8	36.2		
			Ar	54.9	16.0		
			Mole	1.16	2.26		
			Ratio	1	2		
			Empirical Formula: MnO ₂ [1]				
		(ii)	Identity of Z : <u>MnO₄</u> [1]				
			Type of reaction <u>Disproportionation</u> [1] Equation <u>3MnO₄²⁻ + 2H₂O \rightarrow 2MnO₄⁼ + MnO₂ + 4OH⁻ [1]</u>				
	(b)	(i)	Anode $Zn \rightarrow Zn^{2+}$ + Cathode $2MnO_2 + 2$	<u>2e</u> [1] <u>2H[±] + 2e → Mn₂</u>	<mark>O<u>₃ + H</u>₂O</mark> [1]		
		(ii)	$E_{cell}^{*} = E(MnO_2/Mn_2O_3) - (-0.76) = 1.5$ $E(MnO_2/Mn_2O_3) = 0.74 V$ [1]				
5.	(a)	(i)	X is <u>Na/ Mg</u> [1]				
			W is <u>Si</u> [1]				
		(ii)	$\underline{\text{SiC}I_4 + 2\text{H}_2\text{O} \rightarrow \text{Sic}}$	<u>O₂ + 4HC/</u> [1]			

(b) To 2 separate samples of the powder, <u>add in dilute HC/</u> and <u>dilute NaOH</u> [1] respectively.

If the **powder dissolves in both dilute HC/ and dilute NaOH** to **form colourless solution**, it is <u>AI₂O₃</u>. [1]

If the **powder dissolves only in dilute HC/ to form colourless solution,** it [1] is <u>MgO</u>.

If the **powder does not dissolve in both dilute HC/ and dilute NaOH**, it is **SiO**₂. [1]

6. (a) <u>Phenol and secondary alcohol</u>

(b) (i)

[1]

[1]

- 6. (c) (ii) Excess NH₃, heat under reflux in ethanol. [1]
 - (d) **F**, an aromatic amine, is a <u>weaker base</u> than D, an aliphatic amine. [1]

The <u>lone pair of electrons</u> on N atom of F is delocalised into the benzene ring, and hence is <u>less available for protonation</u> as compared to that of D. [1]

- 7. (a) <u>Ile-His-Cys-Pro-Gly-Val-Leu-Pro-Val-Lys-Val</u> [1]
 - (b) At low pH, <u>-N / -NH becomes -NH[±] / -NH₂[±]</u>. This <u>disrupts</u> the <u>hydrogen</u> <u>bonds</u> in the tertiary structure, and hence lead to denaturation. [1]
 - (c) (i) <u>Glu</u> forms a <u>peptide bond</u> to cysteine, through the <u>-COOH group of</u> <u>its side chain</u> rather than its main carboxylic acid group [1]
 - (ii) Zn²⁺ ions bind tightly to the –SH group of the cysteine residues. This <u>disrupts the disulphide bridges</u> in the tertiary structure, [1]

This disruption results in the <u>shape of the cartiliage protein being</u> <u>altered/ causes cartiliage protein to fold differently</u> and hence, leads to denaturation of cartiliage protein. [1]