1 It is given that $f(r) = \frac{1}{(r+1)(r+2)}$.

(a) Show that
$$f(r-1) - f(r) = \frac{2}{r(r+1)(r+2)}$$
 and find $\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}$ in terms of *n*. [4]

(b) (i) Deduce the exact value of
$$\sum_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)}$$
. [1]

(ii) For
$$n > 3$$
, deduce an expression for $\sum_{r=3}^{N-1} \frac{1}{r(r-1)(r-2)}$ in terms of N. [2]

- 2 (a) A geometric progression G has positive first term a, common ratio r and sum to infinity S. The sum to infinity of the even-numbered terms of G, i.e. the second, fourth, sixth, ... terms, is $-\frac{1}{2}S$.
 - (i) Find the value of r. [3]
 - (ii) In another geometric progression H, each term is the modulus of the corresponding term of G. Given that the third term of G is 2, show that the sum to infinity of H is 27. [3]
 - (b) An arithmetic progression has first term 1000 and common difference -1.4. Determine, with clear workings, the value of the first negative term of the sequence and the sum of all the positive terms.
 [4]
- 3 (a) Points *A* and *B* lie on a parabola such that the line segment *AB* passes through the focus. Points *R* and *S* are the feet of perpendiculars from *A* and *B* to the directrix respectively. It is given that *RS* is *m* units and the perimeter of *ABSR* is *n* units. Express the area of *ABSR* in terms of *m* and *n*. [3]

(b) The conic C has foci at (5, 2) and (5, 10) and it passes through the point (2, 6).

—(i)	Find the cartesian equation of C in standard form.	[3]
(ii)	When the variable v in the cartesian equation of C is replaced with 5v, the resultant e	quation
	represents another conic. Find the exact coordinates of the foci of this conic.	

- 4 Referring to the pole *O*, the curve *C* has polar equation $r = \cot \theta$, where $\frac{\pi}{6} < \theta < \frac{\pi}{2}$.
 - (a) Sketch the curve C. [2]
 - (b) Show that $\frac{dy}{dx} = \frac{1}{r(r^2 + 2)}$. Determine the exact range of values of the gradient of C. [5]
 - (c) Obtain a cartesian equation of C in the form y = f(x). [3]

5 Relative to an origin *O*, an object is placed at point *P* with coordinates (-4, c, c), where *c* is a positive real constant, and there is a mirror plane with equation x + y + z = 1, as shown in the diagram (not drawn to scale). It is known that the shortest distance between *P* and the mirror is $3\sqrt{3}$.

(a) Show that c = 7. [3]

A point A has coordinates (-15, 17, 5).

(b) Find the coordinates of A', the point of reflection of A in the mirror. [4]

A laser beam is directed from A towards a point on the mirror and is reflected to reach the object at P.(c) Find the acute angle that the laser beam makes with the mirror. [3]

6 Do not use a calculator in this question.

(a)	(i)	It is given that $w = -2 + i$ and $w^2 + iw^* = \frac{1}{z}$. Find the complex number z in the form $x + yi$		
		$x, y \in \mathbb{R}$, showing your workings.	-[3]	
	(ii)	Using the information in (i), determine two values of u that satisfy $u^3 - i u ^2 + \frac{iu}{z^*}$		
		justifying your answer clearly.	[3]	

(b) Given that $p = \sin \frac{2\pi}{5} - i \cos \frac{2\pi}{5}$, determine the three smallest positive integers *n* such that p^n is a negative real number. [4]

7 A straight street of width 20 metres is bounded on its parallel sides by two vertical walls, one of height 13 metres, the other of height 8 metres. The intensity of light at point P at ground level on the street is proportional to the angle θ radians, where $\theta = \angle APB$ as shown in the cross-sectional diagram below.

diagram not to scale

(a) Given that the distance of P from the base of the wall of height 8 metres is x metres ($0 \le x \le 20$), show that

$$\theta = \tan^{-1}\frac{x}{8} + \tan^{-1}\frac{20 - x}{13}.$$
 [1]

(b) Find an expression for
$$\frac{d\theta}{dx}$$
.

expression for
$$\frac{\mathrm{d}\theta}{\mathrm{d}x}$$
. [3]

- (c) Hence, determine the value of x corresponding to the maximum light intensity at P. Give your answer to four significant figures. You need not justify that the value of x obtained gives the maximum light intensity at *P*. [2]
- (d) Find the minimum value of θ as x varies.

- [2]
- The point P moves across the street from the base of A to the base of B with speed 0.5 ms⁻¹. **(e)** Determine the rate of change of θ with respect to time when P is at the midpoint of the street. [3]