

Parents' signature:

NAN CHIAU HIGH SCHOOL

PRELIMINARY EXAMINATION 2022 SECONDARY FOUR EXPRESS

ADDITIONAL MATHEMATICS Paper 1

4049/01 24 August 2022, Wednesday

Candidates answer on the Question Paper.

2 hours 15 minutes

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces at the top of this page. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 90.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

 $\sin^{2} A + \cos^{2} A = 1$ $\sec^{2} A = 1 + \tan^{2} A$ $\csc^{2} A = 1 + \cot^{2} A$ $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$ $\sin 2A = 2\sin A \cos A$ $\cos 2A = \cos^{2} A - \sin^{2} A = 2\cos^{2} A - 1 = 1 - 2\sin^{2} A$ $\tan 2A = \frac{2 \tan A}{1 - \tan^{2} A}$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

Identities

1 In triangle *ABC*, the lengths of *AB* and *BC* are $(\sqrt{3} + \sqrt{5})$ cm and $(4\sqrt{3} - 2\sqrt{5})$ cm respectively. Given that angle *ABC* is 120°, without using a calculator, find the value of *AC*². Leave your answer in the form of $(a + b\sqrt{15})$, where *a* and *b* are integers. [3]

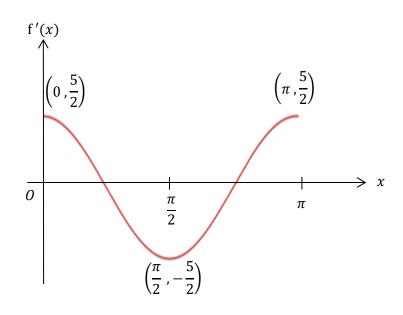
- 2 A section of roller coaster track is parabolic in shape. The height, h m, of the first carriage above the ground at time t seconds is given by $h = 2t^2 36t + 164$.
 - (a) Explain why this carriage cannot go below the height of 2 m. [2]

(b) Find the total duration for the carriage to be below 20 m for this section of the ride.

(b) Hence, show that $\csc^2 75^\circ = 4 \cot 75^\circ$.

4 It is given that f(x) is the equation of the curve such that $f'(x) = \frac{5}{x^2} + \cos^2 x + \tan^2 2x$. Given that $f(\frac{\pi}{2}) = -\frac{\pi}{4}$, find the equation of the curve f(x). [5]

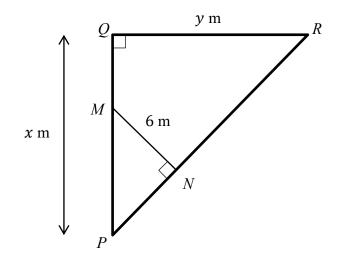
5 Solve the equation
$$(\log_5 y)^2 + \log_5 \frac{1}{y^3} = 28$$
. [4]



The diagram shows the graph of f'(x) of a function y = f(x). $f'(x) = a\cos bx + c$ for $0 \le x \le \pi$ radians. The graph has maximum points at $\left(0, \frac{5}{2}\right)$ and $\left(\pi, \frac{5}{2}\right)$ and a minimum point at $\left(\frac{\pi}{2}, -\frac{5}{2}\right)$. (a) Explain why c = 0. [2]

(b) Explain why
$$b = 2$$
. [2]

(c) Without finding the function f(x) and using the diagram above, state and explain at which x-coordinate does the maximum point of f(x) occurs. [2]



The diagram shows a triangular field *PQR*, in which *PQ* is x m, *QR* is y m and angle $PQR = 90^{\circ}$. Points *M* and *N* lie on *PQ* and *PR* respectively, such that MN = MQ = 6 m and angle $MNP = 90^{\circ}$.

(a) Show that the area of the triangular field PQR, $A m^2$, is given by

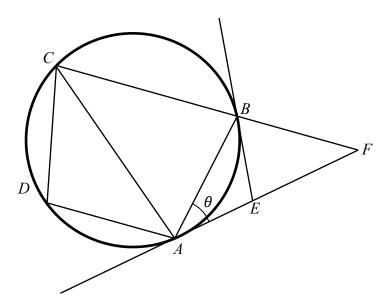
$$A = \frac{3x^2}{\sqrt{x^2 - 12x}} \,. \tag{3}$$

(b) Given that x can vary, find the stationary value of A and determine its nature. [5]

8 (a) Prove the identity
$$\sec^4 x - \tan^4 x = \frac{1 + \sin^2 x}{\cos^2 x}$$
. [3]

9 A container with a capacity of 1200 cm³ was initially filled with water to the brim. When the depth of water is h cm, the volume, V cm³, of the water in the container is given by $V = h^2 - 10h$. Due to a leakage at the bottom of the container, the depth of water decreases at a rate of $e^{\frac{1}{2}t}$ cm/s, where t is the time in seconds after the leakage started.

(b) Find the rate of change of the volume of water when h = 15 cm. [6]

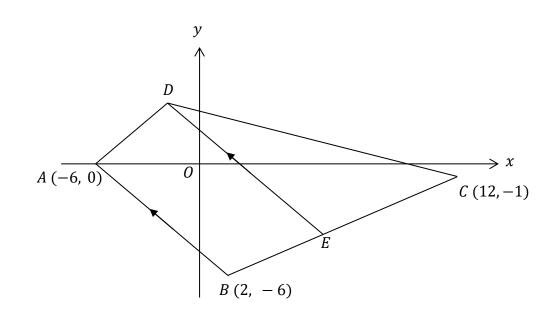


In the diagram, triangle *ACD* is an isosceles triangle with AD = CD. Triangle *ACF* is also an isosceles triangle with AC = AF. The line *CF* intersects the circle at *B*. The tangent to circle at *A* meets *CB* produced at *F*. The tangent to the circle at *B* meets *AF* at *E*. Angle $BAE = \theta$.

(a) Given that the line AC bisects angle DCB, what is the name of the special quadrilateral ABCD? Show your workings clearly. [3]

(b) Prove that triangle ACB and triangle BFE are similar. [2]

(c) Show that $BC \times BE = AB \times AF - AB \times AE$.



The diagram shows a quadrilateral *ABCD* with vertices A(-6,0), B(2,-6), C(12,-1) and D. Point E lies along the line BC such that BE : BC is 2 : 5. The line AB is parallel to line *DE* and angle *DAO* is equal to angle *OAB*.

Find

11

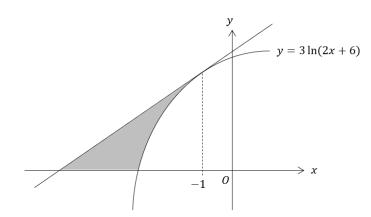
(a) the equation of DE,

[3]

(b) the coordinates of D,

[4]

(c) the area of the quadrilateral *ABCD*.



The diagram above shows the curve with equation $y = 3 \ln(2x + 6)$ and the tangent to the curve at x = -1.

(a) Show that the equation of the tangent to the curve $y = 3 \ln(2x + 6)$ at x = -1 is $2y = 3x + 6 \ln 4 + 3.$ [3] (b) Find the area of the shaded region bounded by the curve, the tangent to the curve at x = -1 and the *x*-axis, leaving your answer to 2 decimal places. [5]

- 13 A polynomial, P(x), is $2x^3 + 3x^2 8x + k$, where k is a constant.
 - (a) Find the value of k given that P(x) leaves a remainder of 14 when divided by x 2. [2]

- (b) In the case where k = -12,
 - (i) find the value of the constant a, given that $x^2 + a$ is a factor of P(x). [3]

(ii) hence, solve the equation
$$\frac{1}{4}x^3 + \frac{3}{4}x^2 - 4x + k = 0.$$
 [3]

14 (a) Express
$$\frac{2x^2 - 18x + 44 - 6x^3}{(x^2 + 4)(2 - 3x)}$$
 in partial fractions. [5]

(b) Differentiate $\ln(x^2 + 4)$ with respect to x. [1]

(c) Hence, find
$$\int \frac{2x^2 - 18x + 44 - 6x^3}{(x^2 + 4)(2 - 3x)} dx$$
.

[3]

1	Using cosine rule,
	$AC^{2} = (\sqrt{3} + \sqrt{5})^{2} + (4\sqrt{3} - 2\sqrt{5})^{2}$
	$-2(\sqrt{3}+\sqrt{5})(4\sqrt{3})$
	$-2\sqrt{5}\cos 120^{\circ}$
	$= 3 + 2\sqrt{15} + 5 + 48 - 16\sqrt{15} + 20$
	$+\frac{1}{2}(24-4\sqrt{15}+8\sqrt{15})$
	-20)
	$= 78 - 12\sqrt{15}$
2a)	$h = 2t^2 - 36t + 164$
	$= 2(t-9)^2 + 2$
2b)	$h \le 20$
	$2t^2 - 36t + 164 \le 20$
	$2t^2 - 36t + 144 \le 0$
	$t^2 - 18t + 72 \le 0$
	$(t-6)(t-12) \le 0$
	$6 \le t \le 12$
	Total duration $= 12 - 6$
	= 6 h
3a)	$\cot 75^\circ = \frac{1}{\tan (45^\circ + 20^\circ)}$
	$\tan(45^\circ + 30^\circ)$ 1 - tan 45° tan 30°
	$=$ $\frac{1}{\tan 45^\circ + \tan 30^\circ}$
	$1 - \frac{\sqrt{3}}{2}$
	$= \frac{3}{3}$
	$1 + \frac{\sqrt{3}}{3}$
	$=\frac{3-\sqrt{3}}{3+\sqrt{3}}\times\frac{3-\sqrt{3}}{3-\sqrt{3}}$
	$=\frac{9-6\sqrt{3}+3}{6}$
	$= 2 - \sqrt{3}$
3b)	$\csc^2 75^\circ = 1 + \cot^2 75^\circ$
	$=1+\left(2-\sqrt{3}\right)^2$
	$= 1 + 4 - 4\sqrt{3} + 3$
	$= 8 - 4\sqrt{3}$
	$=4(2-\sqrt{3})$
	$=4 \cot 75^{\circ}$

$$f(x) = \int \frac{5}{x^2} + \cos^2 x + \tan^2 2x \, dx$$

$$= \int 5x^{-2} + \frac{\cos 2x + 1}{2} + \sec^2 2x$$

$$-1 \, dx$$

$$= \frac{5x^{-1}}{-1} + \frac{1}{2} \frac{\sin 2x}{2} + \frac{1}{2}x + \frac{\tan 2x}{2}$$

$$-x + c$$

$$= -\frac{5}{x} + \frac{1}{4} \sin 2x + \frac{1}{2} \tan 2x - \frac{1}{2}x$$

$$+ c$$
When $x = \frac{\pi}{2}$, $f(x) = -\frac{\pi}{4}$,

$$-\frac{\pi}{4} = -\frac{5}{(\frac{\pi}{2})} + \frac{1}{4} \sin \pi + \frac{1}{2} \tan \pi - \frac{1}{2}(\frac{\pi}{2})$$

$$+ c$$

$$-\frac{\pi}{4} = -\frac{10}{\pi} - \frac{\pi}{4} + c$$

$$c = \frac{10}{\pi}$$

$$\therefore f(x) = -\frac{5}{x} + \frac{1}{4} \sin 2x + \frac{1}{2} \tan 2x$$

$$-\frac{1}{2}x + \frac{10}{\pi}$$

$$(\log_5 y)^2 + \log_5 1 - \log_5 y^3 = 28$$

$$(\log_5 y)^2 - 3 \log_5 y = 28$$

$$\text{Let } u = \log_5 y,$$

$$u^2 - 3u - 28 = 0$$

$$(u - 7)(u + 4) = 0$$

$$u = 7$$

$$\log_5 y = 7$$

$$y = 5^7$$

$$= 78125$$

$$u = -4$$

$$\log_5 y = -4$$

$$y = 5^{-4}$$

$$= \frac{1}{625}$$

2022 NCHS AM Prelim Paper 1 Worked Solutions

6a)	c is the centre of the maximum and
	minimum range of the $f'(x)$ graph.
	$\frac{5}{5} + (-\frac{5}{5})$
	$c = \frac{\frac{5}{2} + \left(-\frac{5}{2}\right)}{2}$
	=0
6b)	1 period of the graph = π
	$\frac{2\pi}{b} = \pi$
	D
	b=2
6c)	Maximum point occurs when $f'(x) =$
	0, f''(x) < 0.
	From the graph, $f'(x) = 0$ at $x = \frac{\pi}{4}$ and
	$x = \frac{3\pi}{4},$
	_
	Since gradient of $f'(x)$ at $x = \frac{n}{4} < 0$, thus
	the maximum occurs at $x = \frac{\pi}{4}$.
7a)	Using similar triangles,
	$6 \sqrt{(x-6)^2-6^2}$
	$\frac{1}{y} = \frac{1}{x}$
	$6 \sqrt{x^2 - 12x}$
	$\frac{1}{y} = \frac{1}{x}$
	6 <i>x</i>
	$\frac{6}{y} = \frac{\sqrt{(x-6)^2 - 6^2}}{x}$ $\frac{6}{y} = \frac{\sqrt{x^2 - 12x}}{x}$ $y = \frac{6x}{\sqrt{x^2 - 12x}}$
	1
	$A = \frac{1}{2}xy$ $= \frac{1}{2}x\left(\frac{6x}{\sqrt{x^2 - 12x}}\right)$ $= \frac{3x^2}{\sqrt{x^2 - 12x}}$
	1 (6x)
	$= \frac{1}{2} x \left(\frac{1}{\sqrt{x^2 - 12x}} \right)$
	$3x^2$
	$=\frac{1}{\sqrt{x^2-12x}}$
L	1

r				
7b)	$\frac{\mathrm{d}A}{\mathrm{d}x} = \frac{(x^2 - 12x)}{x^2 - 12x}$	$(x)^{\frac{1}{2}}(6x) - 3x^{2}$	$\frac{1}{2}(x^2-12x)$	$(x)^{-\frac{1}{2}}(2x-12)$
	d <i>x</i>	$\frac{1}{x^2}$	-12x	
	$=\frac{(x^2-12x)}{x^2-12x}$	$(x)^{-\frac{1}{2}}[6x(x^2 - x^2)^{-\frac{1}{2}}]$	$12x) - 3x^2$	(x-6)]
		$r^2 - 1$	2~	
	$=$ $(x^2$	$\frac{x^2 - 3x^3 + 18}{x^2 - 12x)^{\frac{3}{2}}}$		
	$3x^3 - 54$	x^2		
	$=\frac{3x^3-54x}{(x^2-12x)^3}$	$(2)^{\frac{3}{2}}$		
	When $\frac{\mathrm{d}A}{\mathrm{d}x} = 0$	0,		
	$3x^3 - 54x^2$	= 0		
	$3x^2(x-18) = 0$			
	x = 0 (rej)	or $x = 1$.8	
	$\therefore A = \frac{1}{\sqrt{18}}$	$3(18)^2$ $3(18)^2 - 12(1)^2 - 12(1)^2$	= 93.5	5 m ²
	Using first d	erivative te	est,	
		18-	18	18+
	dA	-ve	0	+ve
	dx			
	d <i>x</i> Tangent			
				-
	Tangent		 	-
	Tangent sketch			-
82)	Tangent sketch ∴ A is minin			-
8a)	Tangent sketch ∴ A is minin LHS = sec ⁴	$x - \tan^4 x$		- /
8a)	Tangent sketch ∴ A is minin LHS = sec ⁴	$x - \tan^4 x$		$(+ \tan^2 x)$
8a)	Tangent sketch ∴ A is minin LHS = sec ⁴	$x - \tan^4 x$		$(+\tan^2 x)$
8a)	Tangent sketch \therefore A is minim LHS = sec ⁴ = (sec ²	$x - \tan^4 x$ $x^2 - \tan^2 x$	x)(sec ² x	$x + \tan^2 x$
8a)	Tangent sketch \therefore A is minim LHS = sec ⁴ = (sec ²) = (1)	$\frac{x - \tan^4 x}{x - \tan^2}$ $\left(\frac{1}{\cos^2 x} + \frac{1}{\cos^2 x}\right)$	x)(sec ² x	$(+ \tan^2 x)$
8a)	Tangent sketch \therefore A is minim LHS = sec ⁴ = (sec ²) = (1)	$\frac{x - \tan^4 x}{x - \tan^2}$ $\left(\frac{1}{\cos^2 x} + \frac{1}{\cos^2 x}\right)$	x)(sec ² x	$(+ \tan^2 x)$
8a)	Tangent sketch \therefore A is minim LHS = sec ⁴ = (sec ²) = (1) $= \frac{1 + \sin^2 x}{\cos^2 x}$ = RHS	$\frac{x - \tan^4 x}{x - \tan^2}$ $\left(\frac{1}{\cos^2 x} + \frac{1}{\cos^2 x}\right)$	$\frac{x}{\sec^2 x}$ $\frac{\sin^2 x}{\cos^2 x}$	$(\pm \tan^2 x)$
8a) 8b)	Tangent sketch \therefore A is minim LHS = sec ⁴ = (sec ²) = (1) $= \frac{1 + \sin^2 x}{\cos^2 x}$	$\frac{x - \tan^4 x}{x - \tan^2}$ $\left(\frac{1}{\cos^2 x} + \frac{1}{\cos^2 x}\right)$	$\frac{x}{\sec^2 x}$ $\frac{\sin^2 x}{\cos^2 x}$	$(+ \tan^2 x)$

 $0^{\circ} \le x \le 180^{\circ}$

	$-70^{\circ} \le (2x - 70^{\circ}) \le 290^{\circ}$
	$1 + \sin^2(2x - 70^\circ)$
	$= 4(1 - \sin^2(2x - 70^\circ))$
	$5\sin^2(2x-70^\circ)=3$
	3
	$\sin(2x-70^\circ) = \pm \sqrt{\frac{3}{5}}$
	$\alpha = \sin^{-1} \sqrt{\frac{3}{5}}$
	$\alpha = \sin^{-1}\sqrt{\frac{5}{5}}$
	= 50.768°
	$(2x - 70^\circ)$ lies in all quad.
	$(2x - 70^{\circ})$
	= 50.768°, 129.2315°, 230.768°, -50.768°
	x = 9.6°, 60.4°, 99.6°, 150.4°
9a)	$1200 = h^2 - 10h$
	$0 = h^2 - 10h - 1200$
	0 = (h - 40)(h + 30)
	h = 40 or $h = -30$ (rej)
9b)	$\frac{\mathrm{d}V}{\mathrm{d}h} = 2h - 10$
	When $h = 15, \frac{\mathrm{d}V}{\mathrm{d}h} = 20$
	$\frac{\mathrm{d}h}{\mathrm{d}t} = -e^{\frac{1}{2}t}$
	$h = -2e^{\frac{1}{2}t} + c$
	When $t = 0, h = 40,$
	c = 42
	$h = -2e^{\frac{1}{2}t} + 42$
	$n = -2e^2 + 42$
	When $h = 15$,
	$15 = -2e^{\frac{1}{2}t} + 42$
	t = 5.20538 s

When $t = 5.20538$, $\frac{dh}{dt} = -e^{\frac{1}{2}(5.20538)} = -\frac{27}{2}$ $\therefore \frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ $= 20 \times \left(-\frac{27}{2}\right)$ $= -270 \text{ cm}^3/s$ 10a $\angle ACB$
$ \begin{array}{l} \therefore \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} \\ = 20 \times \left(-\frac{27}{2}\right) \\ = -270 \ \mathrm{cm}^3/s \end{array} $ $ \begin{array}{l} 10a \qquad \angle ACB \end{array} $
$ \begin{array}{l} \therefore \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} \\ = 20 \times \left(-\frac{27}{2}\right) \\ = -270 \ \mathrm{cm}^3/s \end{array} $ $ \begin{array}{l} 10a \qquad \angle ACB \end{array} $
$= 20 \times \left(-\frac{27}{2}\right)$ $= -270 \text{ cm}^3/s$ $10a \angle ACB$
$= 20 \times \left(-\frac{27}{2}\right)$ $= -270 \text{ cm}^3/s$ $10a \angle ACB$
$= -270 \text{ cm}^3/s$ 10a $\angle ACB$
$= -270 \text{ cm}^3/s$ 10a $\angle ACB$
10a $\angle ACB$
- $ -$
) = $\angle BAF$ (alternate segment theorem) = θ
$\angle DCA = \angle ACB$ (given)
$= \theta$
$\angle CAD = \angle DCA$ (base $\angle s$ of isos. \triangle)
$= \theta$
Since $\angle BCA = \angle CAD = \theta$, by property of
alternate angles, $BC \parallel AD$, $\therefore ABCD$ is a
trapezium.
10b $\angle ACB = \angle BFE$ (base $\angle s$ of isos. \triangle)
) $= \theta$
Let $\angle PBC = \alpha$,
$\angle CAB = \alpha$ (alternate segment theorem)
$\angle FBE = \alpha$ (vertically opposite angles)
$\therefore \angle CAB = \angle FBE$
\therefore ΔACB is similar to ΔBFE. (AA Similarity)
10c BC
) \overline{FE}
$=\frac{AB}{BE}$ (corresponding sides of similar tria
$BE = AB \times FE$
$= AB \times (AF - AE)$
$= AB \times AF - AB \times AE$
$\begin{cases} 11a \\ \end{pmatrix} \text{ grad } AB = \frac{0 - (-6)}{-6 - 2} \end{cases}$
$=-\frac{3}{4}$
grad $DE = -\frac{3}{4}$
1
Given $BE : BC$ is $2 : 5$,
E(6, -4)
Equation DE

2022 NCHS AM Prelim Paper 1 Worked Solutions

	$y - (-4) = -\frac{3}{4}(x - 6)$
	$y = -\frac{3}{4}x + \frac{1}{2}$
10b)	grad $AB = \frac{3}{4}$
)	Equation AD
	$y - 0 = \frac{3}{4} \left(x - (-6) \right)$
	$y = \frac{3}{4}x + \frac{9}{2} - (1)$
	$y = -\frac{3}{4}x + \frac{1}{2} -(2)$
	(1) = (2)
	$\frac{3}{4}x + \frac{9}{2} = -\frac{3}{4}x + \frac{1}{2}$
	$\frac{3}{2}x = -4$
	$x = -\frac{8}{3}$
	$y = \frac{5}{2}$
	$\therefore D\left(-\frac{8}{3},\frac{5}{2}\right)$
10c	area of ABCD
)	$-\frac{8}{-6}$
	$=\frac{1}{2}\begin{vmatrix} -6 & 2 & 12 & -\frac{6}{3} & -6\\ 0 & -6 & -1 & \frac{5}{2} & 0 \end{vmatrix}$
	$=\frac{1}{2}\left(64-\left(-\frac{253}{3}\right)\right)$
	$=\frac{445}{6}$ units ²

11a)	$y = 3\ln(2x+6)$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\left(\frac{2}{2x+6}\right)$
	3
	$=\frac{3}{x+3}$
	When $x = -1$,
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2}$
	$y = 3\ln 4$
	Equation of tangent
	$y - 3\ln 4 = \frac{3}{2}(x - (-1))$
	$2y - 6\ln 4 = 3x + 3$
101	$2y = 3x + 6 \ln 4 + 3$
10b)	$y = 3\ln(2x+6)$
	$\ln(2x+6) = \frac{y}{3}$
	$x = \frac{e^{\frac{y}{3}} - 6}{2} = \frac{1}{2}e^{\frac{y}{3}} - 3$
	2 2
	$\int \frac{3\ln 4}{1} v$
	Area = $-\int_0^{3\ln 4} \frac{1}{2}e^{\frac{y}{3}} - 3 dx$
	$= -\left[\frac{3}{2}e^{\frac{y}{3}} - 3y\right]_{0}^{3\ln 4}$
	$=-\left[\left(\frac{3}{2}(4)-3(3\ln 4)\right)\right]$
	$-\left(\frac{3}{2}-0\right)$
	$= -\left(\frac{9}{2} - 9\ln 4\right)$
	When $y = 0$,
	$0 = 3x + 6 \ln 4 + 3$
	$0 = 3x + 6 \ln 4 + 3$ x = -2 ln 4 - 1

	Area of trapezium
	$=\frac{1}{2}\times 3\ln 4$
	$\times (1 + (2 \ln 4 + 1))$
	= 9.9243
	\therefore Shaded region
	$= 9.9243 - \left(9\ln 4 - \frac{9}{2}\right)$
	= 1.94767
	$= 1.95 \text{ units}^2$
13a)	$P(2) = 2(2)^3 + 3(2)^2 - 8(2) + k$
	14 = 12 + k $k = 2$
13b)i)	$\frac{x-2}{P(x) = 2x^3 + 3x^2 - 8x + 12}$
100)1)	
	$2x^3 + 2x^2 = 0x + 12$
	$2x^{3} + 3x^{2} - 8x + 12$ = (x ² + a)(Bx + C)
	-(x + u)(bx + c) Comparing coefficients:
	x^3 : $2 = B$
	$\begin{array}{ccc} x & 2 = D \\ x^2 & 3 = C \end{array}$
	k: -12 = ac
	-12 = a(3)
	a = -4
13b)ii)	$2\left(\frac{1}{2}x\right)^{3} + 3\left(\frac{1}{2}x\right)^{2} - 8\left(\frac{1}{2}x\right) + k = 0$
	$P(x) = (x^2 - 4)(2x + 3)$
	$0 = (x^2 - 4)(2x + 3)$
	$x = \pm 2 \qquad \text{or} \qquad x = -\frac{3}{2}$
	1
	$\frac{1}{2}\lambda = -\frac{1}{2}$
	$x = \pm 4 \qquad \qquad 2 \qquad 2 \qquad 2 \\ x = -3 \qquad $

$1(1_{0})$	$(u^2 + 4)(2 - 2u)$
14a)	$(x^2 + 4)(2 - 3x)$
	$= 2x^3 - 3x^3 - 12x + 8$
	2
	$2x^3 - 3x^3 - 12x + 8$ $-6x^3 + 2x^2 - 18x + 44$
	$-(-6x^3+4x^2-24x+16)$
	$-2x^2 + 6x + 28$
	$\therefore \frac{2x^2 - 18x + 44 - 6x^3}{(x^2 + 4)(2 - 3x)} = \frac{Ax + B}{x^2 + 4} + \frac{C}{2 - 3x}$
	$\therefore \frac{1}{(x^2+4)(2-3x)} = \frac{1}{x^2+4} + \frac{1}{2-3x}$
	$2x^2 - 18x + 44 - 6x^3$
	= (Ax + B)(2 - 3x)
	$+C(x^2+4)$
	2
	When $x = \frac{2}{3}$,
	280 40
	$\frac{280}{9} = \frac{40}{9}C$
	5 5
	C = 7
	Comparing coefficients,
	x^2 : $-2 = -3A + C$
	3A = 7 + 2
	A = 3
	$k: \qquad 28 = 2B + 4C$
	2B = 28 - 4(7)
	B = 0
	D = 0
	$3x + \frac{7}{7}$
	$x^{2} + \frac{1}{x^{2} + 4} + \frac{1}{2 - 3x}$
14b)	$\therefore 2 + \frac{3x}{x^2 + 4} + \frac{7}{2 - 3x}$ $\frac{d}{dx}(\ln(x^2 + 4)) = \frac{2x}{x^2 + 4}$
	$\int dx (x^2 + 4) x^2 + 4$

2022 NCHS AM Prelim Paper 1 Worked Solutions

14c)	Hence,

$= 2x + \frac{3}{2}\ln(x^2 + 4) - \frac{7}{3}\ln(2 - 3x)$
+ <i>C</i>