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Mathematical Formulae

1. ALGEBRA
Quadratic Equation
For the equation ax” +bx+c=0,
‘= —b++b? —4ac
2a

Binomial expansion

(a+b)"=a" +(nJ a”‘lb+(n] a"’b’ +«~+(nj a""b" +---
1 2 r

n I — _
where n is a positive integer and - nn-1)..0=r+1
r) (n—r)ir! r!

2. TRIGONOMETRY
Identities

sin® A+cos’ A=1
sec’ A=1+tan’ A
cosec’A=1+cot’ A
sin(A+ B) =sin AcosB + cosAsin B
cos(A+ B) =cosAcosB Fsin Asin B

tan At tan B
1¥tan Atan B

sin2A = 2sin AcosA

tan(A£B) =

cos2A=cos’ A—sin? A=2cos* A—1=1-2sin? A

tan 2A = ﬂ
1-tan® A
Formulae for AABC
a b c

sin A B sin B - sinC
a? =b%+c’—2bccosA

A =£bcsin A
2

+b",



1 In triangle ABC, the lengths of AB and BC are (¥/3 +V/5) cm and (4v3 — 2v5) cm
respectively. Given that angle ABC is 120°, without using a calculator, find the value of

AC?. Leave your answer in the form of (a + bv15), where aand b are integers.  [3]



2 A section of roller coaster track is parabolic in shape. The height, h m, of the first
carriage above the ground at time t seconds is given by h = 2t? — 36t + 164.

(a) Explain why this carriage cannot go below the height of 2 m. [2]

(b) Find the total duration for the carriage to be below 20 m for this section of the ride.

[2]



3 (a) Without using a calculator, show that cot 75° = 2 — /3 . [3]

(b) Hence, show that cosec? 75° = 4 cot 75°. [2]



It is given that f(x) is the -equation of the curve such that
f'(x) = xiz + cos? x + tan? 2x. Given that f(g) = —g, find the equation of the

curve f(x). [5]



1
5  Solve the equation (logs ¥)? + log5? =28. [4]



f'(x)
()

[ .

|
s

/
o
N | vl
N——

NI

-3

2’ 2

The diagram shows the graph of f’(x) of a function y = f(x).

f'(x) = acos bx + ¢ for 0 < x < m radians. The graph has maximum points at (Og)
and (n, 2) and a minimum point at (g —g) .

(a) Explainwhy ¢ = 0. [2]

(b) Explainwhy b = 2. [2]

(c) Without finding the function f(x) and using the diagram above, state and

explain at which x-coordinate does the maximum point of f(x) occurs. [2]



P

The diagram shows a triangular field PQR, in which PQ is x m, QR is y m and
angle PQR = 90°. Points M and N lie on PQ and PR respectively, such that
MN = MQ =6 m and angle MNP = 90°.

(@) Show that the area of the triangular field PQR, A m?, is given by
3x?

4= VxZ —12x [3]



10

(b) Given that x can vary, find the stationary value of A and determine its nature. [5]



8

11

(@) Prove the identity sec* x — tan* x =

1+sin? x

cos2x '

[3]



12

(b) Hence solve the equation sec*(2x — 70°) —tan*(2x —70°) =4 for
0° < x <180°. [4]



13

A container with a capacity of 1200 cm?® was initially filled with water to the brim.
When the depth of water is h cm, the volume, V cm?, of the water in the container is

given by V = h? — 10h. Due to a leakage at the bottom of the container, the depth of

1
water decreases at a rate of e 2 cm/s, where t is the time in seconds after the leakage

started.

(a) Find the initial depth of water in the container. [1]

(b) Find the rate of change of the volume of water when h = 15 cm. [6]



10

14

In the diagram, triangle ACD is an isosceles triangle with AD = CD. Triangle ACF is also
an isosceles triangle with AC = AF. The line CF intersects the circle at B. The tangent to
circle at A meets CB produced at F. The tangent to the circle at B meets AF at E.

Angle BAE = 6.

() Given that the line AC bisects angle DCB, what is the name of the special
quadrilateral ABCD? Show your workings clearly. [3]



15

(b) Prove that triangle ACB and triangle BFE are similar. [2]

(c) Show that BC x BE = AB x AF — AB x AE. [2]



11

16

<

A ,

C(12,-1)

A (-6, 0) 0

B(2, —6)

The diagram shows a quadrilateral ABCD with vertices A (—6,0),B (2,-6),C (12,—-1)
and D. Point E lies along the line BC such that BE : BC is 2 : 5. The line AB is parallel
to line DE and angle DAO is equal to angle OAB.

Find
(a) the equation of DE, [3]
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(b) the coordinates of D, [4]

(c) the area of the quadrilateral ABCD. [2]



18

12 ,

//_( v =3In(2x + 6)

X
[

The diagram above shows the curve with equation y = 3 1n(2x + 6) and the tangent to

the curve at x = —1.

(@) Show that the equation of the tangent to the curve y = 3In(2x + 6) at x = —1 is
2y =3x+6In4+ 3. [3]
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(b) Find the area of the shaded region bounded by the curve, the tangent to the

curve at x = —1 and the x-axis, leaving your answer to 2 decimal places. [5]
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13 A polynomial, P(x), is 2x3 + 3x2? — 8x + k, where k is a constant.
(a) Find the value of k given that P(x) leaves a remainder of 14 when divided
by x — 2. [2]

(b) Inthe case where k = —12,

(i) find the value of the constant a, given that x2 + a is a factor of P(x). [3]

(ii) hence, solve the equation ix3 + %xz —4x +k = 0. 3]



21

2x2%—-18x+44—6x3
(x%2+4)(2-3x%)

14 (a) Express in partial fractions. [5]
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(b) Differentiate In(x? + 4) with respect to x. [1]

x%2-18x+44—6x3
(x2+4)(2-3x) X [3]

(c) Hence, findf2

- End of Paper -



2022 NCHS AM Prelim Paper 1 Worked Solutions

1

Using cosine rule,
AC? = (V3 +V5)" + (4V3 - 2v5)
—2(v3++5)(4V3
— 2v5) cos 120°
=34 2V15+ 5+ 48 — 16V15 + 20

1
+§(24—4\/E+8\/1_5
— 20)

=78 — 12V/15

2a)

h = 2t? — 36t + 164
=2(t—-9)?%+2

2b)

h <20

2t2 — 36t + 164 < 20
2t2 — 36t +144 <0
t2—18t+72<0
t—6)(t—-12)<0
6<t<12

Total duration = 12 — 6
=6h

3a)

1
tan(45° + 30°)
B 1 — tan45°tan 30°
" tan45° + tan 30°

V3
173

~3-v3 3-43
T34v3 3-43
9—-6vV3+3
-

=2-3

cot75° =

5
f(x) = JF + cos? x + tan? 2x dx

_, Cos2x+1 )
=f5x + —— + sec” 2x

2
—1dx
_5x"1+1 sin2x+1 +tan2x
— 1 T2 72 2T
—x+c
= + in 2 +1t 2 -
= 4smx 2anx 2x
+c
T T
When x = —, f(x) = ——,
en x > (%) 2
T 5 1 . 1 1/
—Z——@+Zsmn+§tann—§(z)
2
+c
T 10 n+
4= " 4" ¢
10
c=—
T

5 1 1
o fx) = —;+—sm2x+§tan2x

4
1 +10
Zx T

3b)

cosec? 75° = 1 + cot? 75°
=1+(2-v3)
=1+4—-4V3+3
=8-43

=4(2-3)

= 4 cot75°

(logs y)? + logs 1 — logs y3 = 28

(logs y)* —3logsy = 28
Letu = logs y,

u?—-3u—-28=0
(u—-7)(u+4)=0

u=17
logsy =7
y=5

= 78125

u=-4
logsy = —4
y=5"

1

~ 625
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6a)

c is the centre of the maximum and
minimum range of the f’(x) graph.
5 5
C:7+(—7)
2
=0

6b)

1 period of the graph =1

2T
—_— =T

b
b=2

6¢)

Maximum point occurs when f'(x) =
0,f"(x) <0.

From the graph, f'(x) =0 at x = % and

X ==,
4

Since gradient of f'(x) at x = % < 0, thus

the maximum occurs at x =

NE

7a)

Using similar triangles,
_N(x—6)*—6?
x

6
y
6 Vx%z-—12x
y
y

X
6x

x2 —12x

7b)

1 1
da (% —12x)2(6x) — Z«’,)cz%(ac2 —12x)72(2x — 12)

dx x2 —12x
1
_ (x* —12x)7z[6x(x* — 12x) — 3x*(x — 6)]
N x% —12x
B 6x3 — 72x% — 3x3 + 18x?
= 3
(x2 —12x)2
B 3x3 — 54x2
- 3
(x%2 —12x)2
dAa
When — = 0,
dx
3x3 —54x2 =0

3x2(x—18) =0
x=0(rej) or x =18

3(18)?
= (18) = 93.5 m?
J(18)2 — 12(18)
Using first derivative test,
18~ 18 18*
d_A —ve 0 +ve
dx
Tangent
sketch B

~ A'is minimum value

8a)

LHS = sec* x — tan* x

= (sec? x — tan? x)(sec? x + tan? x)

1 sin? x
=<1)< AL )
cos? x

cos? x

1+ sin®x
"~ cos?x
= RHS

8b)

1+ sin?(2x —70°) A
cos?(2x —70°)

0° <x <180°
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—70° < (2x — 70°) < 290°

1 + sin?(2x — 70°)
= 4(1 — sin?(2x — 70°))
5sin?(2x — 70°) = 3

3
sin(2x — 70°) = i\/;

= 50.768°
(2x — 70°) lies in all quad.

(2x — 70°)
= 50.768°,129.2315°,230.768°, —50.768°
x = 9.6° 60.4°,99.6°,150.4°

When t = 5.20538,

dh _ _o3(s20538) _ _27
dt 2
~dV_dV _dh
nT =2 X P
~ 27
=20x(-5)
= —270cm3/s
10a | <£ACB
) = £BAF (alternate segment theorem)
=0
2DCA = £LACB (given)
=0
£CAD = £DCA (base £s of isos. A)
=6

Since £BCA = £CAD = 6, by property of
alternate angles, BC || AD, .- ABCD is a
trapezium.

9a)

1200 = h? — 10h

0 = h? — 10h — 1200

0= (h—40)(h+ 30)
h=40 or h = -30 (rej)

ob)

v _ 2h — 10
dh

Whenh=15 & = 20
dh

dh B %t
a ©

1
h=-2e2 +¢
When t =0, h =40,
c=42

1
h=—-2e2" +42
When h = 15,

ot
15 = —2e2" 4 42
t = 5.20538's

10b | LACB = £BFE (base 4s of isos.A)
) =0
Let PBC = «,
£CAB = «a (alternate segment theorem)
2FBE = a (vertically opposite angles)
~ LCAB = £FBE
~ AACB is similar to ABFE. (AA Similarity)
10c | BC
) | FE
AB
=3F (corresponding sides of similar tria
BC X BE = AB X FE
= AB x (AF — AE)
= AB X AF — AB X AE
1la 0—(—6)
) gradAB:—_6_2
_ 3
T4
_ 3
grad DE = ~2
Given BE: BCis 2: 5,
E(6,—4)

Equation DE
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3
y— (-4 =~-7(x—6)
3 N 1
Y=Y
10b 3
) grad AB = 1
Equation AD

3
y—Ozz(x—(—6))

3 +9 .
y=zx+3 €Y

y=——=x+- —(2)
1M =0©
3 9 3 1
4x+2— 4x+2
3
EX=—4

8
¥="3

5
Y=2

'D( 8 5)
- 3’2

11a)

y =3In(2x + 6)

= 3(5g)
dx 2x+ 6

3
“x+3
When x = —1,

dy 3
dx 2
y=3In4

Equation of tangent

y—31n4=%(x—(—1))

2y —6In4 =3x+3
2y =3x+6In4+3

10c | area of ABCD

_1l-6 2 12 73 °
2|0 -6 -1 5
> 0
1 253
Afoe(2)
445
=Tun1ts

10b)

y =3In(2x + 6)

3 y 31114
= _|2e3-3
[ze y]o

:—[(;(4)—3(31n4)>
--)
- (C-oms)

When y = 0,
0=3x+6In4+3
x=-2In4-1
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Area of trapezium

—1x314
= E n
X(1+ (2In4+ 1))
=9.9243
=~ Shaded region
9
= 9.9243 — (9 In4 — E)
= 1.94767
= 1.95 units?
13a) P(2) =2(2)3+3(2)>-8(12)+k
14=12+k
k=2
13b)i) | P(x) = 2x3 + 3x% — 8x + 12
2x3 4+ 3x2 — 8x + 12
=(x*+a)Bx+0C)
Comparing coefficients:
x3: 2=B
x2: 3=C
k: —-12 = ac
—12 =a(3)
a=-4
13b)ii)

2 3 )"’+3(1 )2 8 (3x) k=0
Zx Zx ZX =

P(x) = (x2 —4)(2x + 3)
0=(x*>-4)2x+3)

x=42 or x__%
1 2
Exziz 3

- = ——

14a)

(x%2+4)(2 —3x)
=2x3—-3x3-12x+8

2

2x%* —3x° —12x+8 —6x% + 2x% — 18x + 44

—(—6x® +4x? — 24x + 16)

—2x% 4 6x + 28

.2x2—18x+44—6x3_Ax+B+ C
x2+4)(2-3x)  x2+4 2-3x

2x% — 18x + 44 — 6x3
= (Ax + B)(2 — 3x)
+C(x%+4)

Comparing coefficients,

x2: —2=-34+C
3A=7+2
A=3

k: 28 = 2B + 4C
2B = 28 — 4(7)
B=0

3x 7

s 2
+x2+4+2—3x

14b)

d
— 2 =
e (In(x* +4)) 214
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14c¢) Hence,

3 7
=2x + Eln(x2 +4) — §ln(2 — 3x)
+C




