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Mathematical Formulae 

 
 

1. ALGEBRA 

 

Quadratic Equation 
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2. TRIGONOMETRY 

Identities 

1cossin 22 =+ AA  

AA 22 tan1sec +=  

2 2cosec 1 cotA A= +  

BABABA sincoscossin)sin( =  
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Formulae for ABC 
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1 In triangle 𝐴𝐵𝐶 , the lengths of 𝐴𝐵  and 𝐵𝐶  are (√3 + √5) cm and (4√3 − 2√5) cm 

respectively. Given that angle 𝐴𝐵𝐶 is 120°, without using a calculator, find the value of  

 𝐴𝐶2. Leave your answer in the form of (𝑎 + 𝑏√15), where a and b are integers. [3] 
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2 A section of roller coaster track is parabolic in shape. The height, ℎ m, of the first 

carriage above the ground at time 𝑡 seconds is given by ℎ = 2𝑡2 − 36𝑡 + 164. 

 (a) Explain why this carriage cannot go below the height of 2 m. [2] 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 (b) Find the total duration for the carriage to be below 20 m for this section of the ride.  

   [2] 
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3 (a) Without using a calculator, show that cot 75° = 2 − √3 . [3] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 (b) Hence, show that cosec2 75° = 4 cot 75°. [2] 
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4 It is given that f(𝑥)  is the equation of the curve such that                                               

f ′(𝑥) =  
5

𝑥2 + cos2 𝑥 + tan2 2𝑥. Given that f (
𝜋

2
) = −

𝜋

4
, find the equation of the 

curve f(𝑥). [5] 
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5 Solve the equation (log5 𝑦)2 + log5
1

𝑦3
= 28 .  [4] 
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6 

 

 

The diagram shows the graph of f ′(𝑥) of a function 𝑦 = f(𝑥).  

f ′(𝑥) = acos 𝑏𝑥 + 𝑐  for 0 ≤ 𝑥 ≤ 𝜋 radians. The graph has maximum points at (0,
5

2
) 

and (𝜋,
5

2
) and a minimum point at (

𝜋

2
, −

5

2
) . 

 (a) Explain why 𝑐 = 0. [2] 

 

  

 

 

 

  

 (b) Explain why 𝑏 = 2. [2] 

 

  

 

 

 

  

 
(c) Without finding the function f(𝑥) and using the diagram above, state and 

explain at which x-coordinate does the maximum point of f(𝑥) occurs. [2] 

 

  

f ′(𝑥) 

𝑥 

൬0 ,
5

2
൰ 

𝑂 

൬𝜋 ,
5

2
൰ 

൬
𝜋

2
 , −

5

2
൰ 

𝜋

2
 𝜋 
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7 

 

 

The diagram shows a triangular field PQR, in which PQ is x m, QR is y m and                

angle PQR = 90° . Points M and N lie on PQ and PR respectively, such that                          

MN = MQ = 6 m and angle MNP = 90°. 

  

 

(a)  Show that the area of the triangular field PQR, A m2, is given by 

𝐴 =
3𝑥2

√𝑥2 − 12𝑥
  . 

[3] 

 

  

 

  

  

P 

Q R 

M 

N 

𝑦 m 

𝑥 m 
6 m 
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 (b) Given that 𝑥 can vary, find the stationary value of A and determine its nature. [5] 
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8 (a) Prove the identity sec4 𝑥 − tan4 𝑥 =
1+sin2 𝑥

cos2 𝑥
. [3] 
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(b) 

 

 

Hence solve the equation sec4(2𝑥 − 70°) − tan4(2𝑥 − 70°) = 4  for                   

0° ≤ 𝑥 ≤ 180°. [4] 
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9 A container with a capacity of 1200 cm3 was initially filled with water to the brim.     

When the depth of water is ℎ cm, the volume, 𝑉 cm3, of the water in the container is 

given by  𝑉 = ℎ2 − 10ℎ. Due to a leakage at the bottom of the container, the depth of 

water decreases at a rate of 𝑒  
1

2
𝑡
 cm/s, where 𝑡 is the time in seconds after the leakage 

started. 

  

 (a) Find the initial depth of water in the container. [1] 

 

  

 

 

 

  

 (b) Find the rate of change of the volume of water when ℎ = 15 cm. [6] 
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10 

 

 

In the diagram, triangle ACD is an isosceles triangle with AD = CD. Triangle ACF is also 

an isosceles triangle with AC = AF. The line CF intersects the circle at B. The tangent to 

circle at A meets CB produced at F. The tangent to the circle at B meets AF at E.         

Angle BAE = 𝜃. 

  

 
(a) Given that the line AC bisects angle DCB, what is the name of the special 

quadrilateral ABCD? Show your workings clearly. [3] 

 

  

 

 

 

 

 

  

  

A 

B 

C 

D 

E 

F 

𝜃 
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 (b) Prove that triangle ACB and triangle BFE are similar. [2] 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 (c) Show that BC × BE = AB × AF – AB × AE. [2] 
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11 

 

 

The diagram shows a quadrilateral ABCD with vertices A (−6, 0), B (2, −6), C (12, −1) 

and D. Point E lies along the line BC such that BE : BC is 2 : 5 . The line AB is parallel 

to line DE and angle DAO is equal to angle OAB. 

  

 Find 

 (a) the equation of DE, [3] 

  

𝑦 

𝑥 
𝐴 (−6,  0) 

𝐵 (2,  − 6) 

𝐸 

𝐶 (12, −1) 

𝐷 

𝑂 
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 (b) the coordinates of D,  [4] 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 (c) the area of the quadrilateral ABCD. [2] 
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12 

 

 
The diagram above shows the curve with equation 𝑦 = 3 ln(2𝑥 + 6) and the tangent to 

the curve at 𝑥 = −1. 

 (a) Show that the equation of the tangent to the curve 𝑦 = 3 ln(2𝑥 + 6) at 𝑥 = −1 is  

  2𝑦 = 3𝑥 + 6 ln 4 + 3. [3] 
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(b) Find the area of the shaded region bounded by the curve, the tangent to the 

curve at 𝑥 = −1 and the 𝑥-axis, leaving your answer to 2 decimal places. [5] 

 

 

  



20 
 

13 A polynomial, P(𝑥), is 2𝑥3 + 3𝑥2 − 8𝑥 + 𝑘, where 𝑘 is a constant.  

 
(a) Find the value of 𝑘  given that P(𝑥)  leaves a remainder of 14 when divided               

by 𝑥 − 2.                                                                                                                [2] 

    

    

 

  

 

 

 

  

 (b) In the case where 𝑘 = −12, 

  (i) find the value of the constant a, given that 𝑥2 + 𝑎 is a factor of P(𝑥). [3] 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  (ii) hence, solve the equation 
1

4
𝑥3 +

3

4
𝑥2 − 4𝑥 + 𝑘 = 0. [3] 
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14 (a) Express 
2𝑥2−18𝑥+44−6𝑥3

(𝑥2+4)(2−3𝑥)
 in partial fractions. [5] 



22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- End of Paper -  

 (b) Differentiate ln(𝑥2 + 4) with respect to 𝑥. [1] 

 

  

 

 

 

 

  

 (c) Hence, find ∫
2𝑥2−18𝑥+44−6𝑥3

(𝑥2+4)(2−3𝑥)
d𝑥.  [3] 
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1 Using cosine rule, 

𝐴𝐶2 = (√3 + √5)
2

+ (4√3 − 2√5)
2

− 2(√3 + √5)(4√3

− 2√5) cos 120° 

= 3 + 2√15 + 5 + 48 − 16√15 + 20

+
1

2
(24 − 4√15 + 8√15

− 20) 

= 78 − 12√15 

2a) ℎ = 2𝑡2 − 36𝑡 + 164 

= 2(𝑡 − 9)2 + 2 

2b) ℎ ≤ 20 

2𝑡2 − 36𝑡 + 164 ≤ 20 

2𝑡2 − 36𝑡 + 144 ≤ 0 

𝑡2 − 18𝑡 + 72 ≤ 0 

(𝑡 − 6)(𝑡 − 12) ≤ 0 

6 ≤ 𝑡 ≤ 12 

Total duration = 12 − 6 

= 6 ℎ 

3a) 
cot 75° =

1

tan(45° + 30°)
 

=
1 − tan 45° tan 30°

tan 45° + tan 30°
 

=
1 −

√3
3

1 +
√3
3

 

=
3 − √3

3 + √3
×

3 − √3

3 − √3
 

=
9 − 6√3 + 3

6
 

= 2 − √3 

3b) cosec2 75° = 1 + cot2 75° 

= 1 + (2 − √3)
2

 

= 1 + 4 − 4√3 + 3 

= 8 − 4√3 

= 4(2 − √3) 

= 4 cot 75° 

4 
f(𝑥) = ∫

5

𝑥2
+ cos2 𝑥 + tan2 2𝑥  d𝑥 

= ∫ 5𝑥−2 +
cos 2𝑥 + 1

2
+ sec2 2𝑥

− 1 d𝑥 

=
5𝑥−1

−1
+

1

2
 
sin 2𝑥

2
+

1

2
𝑥 +

tan 2𝑥

2
− 𝑥 + 𝑐 

= −
5

𝑥
+

1

4
sin 2𝑥 +

1

2
tan 2𝑥 −

1

2
𝑥

+ 𝑐 

 

When 𝑥 =
𝜋

2
, f(𝑥) = −

𝜋

4
, 

−
𝜋

4
= −

5

(
𝜋
2)

+
1

4
sin 𝜋 +

1

2
tan 𝜋 −

1

2
(

𝜋

2
)

+ 𝑐 

−
𝜋

4
= −

10

𝜋
−

𝜋

4
+ 𝑐 

𝑐 =
10

𝜋
 

 

∴  f(𝑥) = −
5

𝑥
+

1

4
sin 2𝑥 +

1

2
tan 2𝑥

−
1

2
𝑥 +

10

𝜋
 

5 (log5 𝑦)2 + log5 1 − log5 𝑦3 = 28 

(log5 𝑦)2 − 3 log5 𝑦 = 28 

Let 𝑢 = log5 𝑦, 

𝑢2 − 3𝑢 − 28 = 0 

(𝑢 − 7)(𝑢 + 4) = 0 

 

𝑢 = 7 

log5 𝑦 = 7 

𝑦 = 57 

= 78125 

 

𝑢 = −4 

log5 𝑦 = −4 

𝑦 = 5−4 

=
1

625
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6a) c is the centre of the maximum and 

minimum range of the f ′(𝑥) graph. 

𝑐 =

5
2 + (−

5
2)

2
 

= 0 

6b) 1 period of the graph = 𝜋 

2𝜋

𝑏
= 𝜋 

𝑏 = 2 

6c) Maximum point occurs when f ′(𝑥) =

0, f ′′(𝑥) < 0. 

 

From the graph, f ′(𝑥) = 0  at 𝑥 =
𝜋

4
 and 

𝑥 =
3𝜋

4
, 

Since gradient of f ′(𝑥) at 𝑥 =
𝜋

4
< 0, thus 

the maximum occurs at 𝑥 =
𝜋

4
. 

7a) Using similar triangles, 

6

𝑦
=

√(𝑥 − 6)2 − 62

𝑥
 

6

𝑦
=

√𝑥2 − 12𝑥

𝑥
 

𝑦 =
6𝑥

√𝑥2 − 12𝑥
 

 

𝐴 =
1

2
𝑥𝑦 

=
1

2
𝑥 (

6𝑥

√𝑥2 − 12𝑥
) 

=
3𝑥2

√𝑥2 − 12𝑥
 

 

7b) d𝐴

d𝑥
=

(𝑥2 − 12𝑥)
1
2(6𝑥) − 3𝑥2 1

2
(𝑥2 − 12𝑥)−

1
2(2𝑥 − 12) 

𝑥2 − 12𝑥
 

=
(𝑥2 − 12𝑥)−

1
2[6𝑥(𝑥2 − 12𝑥) − 3𝑥2(𝑥 − 6)]

𝑥2 − 12𝑥
 

=
6𝑥3 − 72𝑥2 − 3𝑥3 + 18𝑥2

(𝑥2 − 12𝑥)
3
2

 

=
3𝑥3 − 54𝑥2

(𝑥2 − 12𝑥)
3
2

 

 

When 
d𝐴

d𝑥
= 0, 

3𝑥3 − 54𝑥2 = 0 

3𝑥2(𝑥 − 18) = 0 

𝑥 = 0 (rej)   𝑜𝑟   𝑥 = 18 

 

∴ 𝐴 =
3(18)2

√(18)2 − 12(18)
= 93.5 m2 

 

Using first derivative test, 

 18− 18 18+ 

d𝐴

d𝑥
 

−ve 0 +ve 

Tangent 

sketch 

   

 

∴ A is minimum value 

8a) LHS = sec4 𝑥 − tan4 𝑥 

= (sec2 𝑥 − tan2 𝑥)(sec2 𝑥 + tan2 𝑥) 

 

          = (1) (
1

cos2 𝑥
+

sin2 𝑥

cos2 𝑥
) 

=
1 + sin2 𝑥

cos2 𝑥
 

= RHS 

8b) 1 + sin2(2𝑥 − 70°)

cos2(2𝑥 − 70°)
= 4 

 

0° ≤ 𝑥 ≤ 180° 



2022 NCHS AM Prelim Paper 1 Worked Solutions 
 

−70° ≤ (2𝑥 − 70°) ≤ 290° 

 

1 + sin2(2𝑥 − 70°)

= 4(1 − sin2(2𝑥 − 70°)) 

5 sin2(2𝑥 − 70°) = 3 

sin(2𝑥 − 70°) = ±√
3

5
 

𝛼 = sin−1 √
3

5
 

= 50.768° 

(2𝑥 − 70°) lies in all quad. 

 

(2𝑥 − 70°)

= 50.768°, 129.2315°, 230.768°, −50.768° 

𝑥 = 9.6°, 60.4°, 99.6°, 150.4° 

9a) 1200 = ℎ2 − 10ℎ 

0 = ℎ2 − 10ℎ − 1200 

0 = (ℎ − 40)(ℎ + 30) 

ℎ = 40   or    ℎ = −30 (rej) 

9b) d𝑉

dℎ
= 2ℎ − 10 

When h = 15, 
d𝑉

dℎ
= 20 

 

dℎ

d𝑡
=  −𝑒  

1
2

𝑡
 

ℎ = −2𝑒
1
2

𝑡 + 𝑐 

When t = 0, h = 40, 

𝑐 = 42 

ℎ = −2𝑒
1
2

𝑡 + 42 

 

When h = 15, 

15 = −2𝑒
1
2

𝑡 + 42 

𝑡 = 5.20538 s 

 

When 𝑡 = 5.20538, 

dℎ

d𝑡
=  −𝑒  

1
2

(5.20538)
= −

27

2
 

 

∴
d𝑉

d𝑡
=

d𝑉

dℎ
×

dℎ

d𝑡
 

           = 20 × (−
27

2
) 

           = −270 cm3/𝑠 

10a

) 

∠𝐴𝐶𝐵

= ∠𝐵𝐴𝐹 (alternate segment theorem) 

= 𝜃 

∠𝐷𝐶𝐴 = ∠𝐴𝐶𝐵 (given) 

= 𝜃 

∠𝐶𝐴𝐷 = ∠𝐷𝐶𝐴 (base ∠s of isos. ∆) 

= 𝜃 

Since ∠𝐵𝐶𝐴 = ∠𝐶𝐴𝐷 = 𝜃, by property of 

alternate angles, BC ∥ AD, ∴ 𝐴𝐵𝐶𝐷 is a 

trapezium. 

10b

) 

∠𝐴𝐶𝐵 = ∠𝐵𝐹𝐸 (base ∠s of isos. ∆) 

= 𝜃 

Let ∠𝑃𝐵𝐶 = 𝛼, 

∠𝐶𝐴𝐵 = 𝛼 (alternate segment theorem) 

∠𝐹𝐵𝐸 = 𝛼 (vertically opposite angles) 

∴ ∠𝐶𝐴𝐵 = ∠𝐹𝐵𝐸 

∴ ∆ACB is similar to ∆BFE. (AA Similarity) 

10c

) 

𝐵𝐶

𝐹𝐸

=
𝐴𝐵

𝐵𝐸
  (corresponding sides of similar triangles) 

𝐵𝐶 × 𝐵𝐸 = 𝐴𝐵 × 𝐹𝐸 

= 𝐴𝐵 × (𝐴𝐹 − 𝐴𝐸) 

= 𝐴𝐵 × 𝐴𝐹 − 𝐴𝐵 × 𝐴𝐸 

11a

) 
grad 𝐴𝐵 =

0 − (−6)

−6 − 2
 

= −
3

4
 

grad 𝐷𝐸 = −
3

4
 

Given BE : BC is 2 : 5, 

𝐸(6, −4) 

Equation DE 
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𝑦 − (−4) = −
3

4
(𝑥 − 6) 

𝑦 = −
3

4
𝑥 +

1

2
 

10b

) 
grad 𝐴𝐵 =

3

4
 

Equation AD 

𝑦 − 0 =
3

4
(𝑥 − (−6)) 

𝑦 =
3

4
𝑥 +

9

2
   − (1) 

 

𝑦 = −
3

4
𝑥 +

1

2
    − (2) 

 

(1) = (2) 

3

4
𝑥 +

9

2
= −

3

4
𝑥 +

1

2
 

3

2
𝑥 = −4 

𝑥 = −
8

3
 

𝑦 =
5

2
 

∴ 𝐷 (−
8

3
,
5

2
) 

10c

) 

area of 𝐴𝐵𝐶𝐷

=
1

2
|
−6 2 12
0 −6 −1

    
−

8

3
−6

5

2
0

| 

=
1

2
(64 − (−

253

3
)) 

=
445

6
units2 

 

 

 

 

 

11a) 𝑦 = 3 ln(2𝑥 + 6) 

d𝑦

d𝑥
= 3 (

2

2𝑥 + 6
) 

=
3

𝑥 + 3
 

When 𝑥 = −1, 

d𝑦

d𝑥
=

3

2
 

𝑦 = 3 ln 4 

Equation of tangent 

𝑦 − 3 ln 4 =
3

2
(𝑥 − (−1)) 

2𝑦 − 6 ln 4 = 3𝑥 + 3 

2𝑦 = 3𝑥 + 6 ln 4 + 3 

10b) 𝑦 = 3 ln(2𝑥 + 6) 

ln(2𝑥 + 6) =
𝑦

3
 

𝑥 =
𝑒

𝑦
3 − 6

2
=

1

2
𝑒

𝑦
3 − 3 

 

Area = − ∫
1

2
𝑒

𝑦
3 − 3 

3 ln 4

0

d𝑥  

= − [
3

2
𝑒

𝑦
3 − 3𝑦]

0

3 ln 4

 

= − [(
3

2
(4) − 3(3 ln 4))

− (
3

2
− 0)] 

= − (
9

2
− 9 ln 4) 

 

When 𝑦 = 0, 

0 = 3𝑥 + 6 ln 4 + 3 

𝑥 = −2 ln 4 − 1 
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Area of trapezium

=
1

2
× 3 ln 4

× (1 + (2 ln 4 + 1)) 

= 9.9243 

 

∴ Shaded region

= 9.9243 − (9 ln 4 −
9

2
) 

 

                                  = 1.94767 

                                  = 1.95 units2 

13a) P(2) = 2(2)3 + 3(2)2 − 8(2) + 𝑘 

14 = 12 + 𝑘 

𝑘 = 2 

13b)i) P(𝑥) = 2𝑥3 + 3𝑥2 − 8𝑥 + 12 

 

2𝑥3 + 3𝑥2 − 8𝑥 + 12

= (𝑥2 + 𝑎 )(𝐵𝑥 + 𝐶) 

Comparing coefficients: 

𝑥3: 2 = 𝐵 

𝑥2: 3 = 𝐶 

𝑘: −12 = 𝑎𝑐 

−12 = 𝑎(3) 

𝑎 = −4 
 

13b)ii) 
2 (

1

2
𝑥)

3

+ 3 (
1

2
𝑥)

2

− 8 (
1

2
𝑥) + 𝑘 = 0 

 

P(𝑥) = (𝑥2 − 4)(2𝑥 + 3) 

0 = (𝑥2 − 4)(2𝑥 + 3) 

 

𝑥 = ±2 

1

2
𝑥 = ±2 

𝑥 = ±4 

or 
𝑥 = −

3

2
 

1

2
𝑥 = −

3

2
 

𝑥 = −3 
 

14a) (𝑥2 + 4)(2 − 3𝑥)

= 2𝑥3 − 3𝑥3 − 12𝑥 + 8 

 

 
 

∴
2𝑥2 − 18𝑥 + 44 − 6𝑥3

(𝑥2 + 4)(2 − 3𝑥)
=

𝐴𝑥 + 𝐵

𝑥2 + 4
+

𝐶

2 − 3𝑥
 

 

2𝑥2 − 18𝑥 + 44 − 6𝑥3

= (𝐴𝑥 + 𝐵)(2 − 3𝑥)

+ 𝐶(𝑥2 + 4) 

 

When 𝑥 =
2

3
, 

280

9
=

40

9
𝐶 

𝐶 = 7 

 

Comparing coefficients, 

𝑥2: −2 = −3𝐴 + 𝐶 

3𝐴 = 7 + 2 

𝐴 = 3 

𝑘: 28 = 2𝐵 + 4𝐶 

2𝐵 = 28 − 4(7) 

𝐵 = 0 

 

∴ 2 +
3𝑥

𝑥2 + 4
+

7

2 − 3𝑥
 

14b) d

d𝑥
( ln(𝑥2 + 4)) =

2𝑥

𝑥2 + 4
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14c) Hence, 

∫
2𝑥2 − 18𝑥 + 44 − 6𝑥3

(𝑥2 + 4)(2 − 3𝑥)
d𝑥 

= ∫ 2 +
3𝑥

𝑥2 + 4
+

7

2 − 3𝑥
d𝑥 

= 2𝑥 +
3

2
ln(𝑥2 + 4) −

7

3
ln(2 − 3𝑥)

+ 𝐶 

 


