	ST. PATRICK'S SCHOOL PRELIMINARY EXAMINATIONS 2018 SECONDARY 4 EXPRESS		
NAME			
CLASS		INDEX NUMBER	
COMPU Paper 2 Pi	TING ractical (Lab-based)	13	7155/02 September 2018 2 h 30 min

Additional Materials: Electronic version of JOBS.XLSX data file Electronic version of ANALYSIS.PY file Electronic version of ROBOT.PY file Insert Quick Reference Glossary

READ THESE INSTRUCTIONS FIRST

Write your name, class, index number in the spaces at the top of this page. Write in dark blue or black pen.

Answer all questions.

All tasks must be done in the computer laboratory. You are not allowed to bring in or take out any pieces of work or materials on paper or electronic media or in any other form.

Programs are to be written in Python. Save your work using the file name given in the question as and when necessary.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 50.

	For Exam	niner's Use
Parent's Signature :		
Date:	Marks	/50
Remarks (if any) :	Total	
		%

Quick Reference for Python

This quick reference shows some examples of the Python language constructs. The complete Python language is not limited to these examples.

1. Identifiers

When naming functions, variables and modules, the following rules must be observed:

- Names should begin with character 'a' -'z' or 'A' - 'Z' or '_'
- and followed by alphanumeric characters or '_'
- Reserved words should not be used.
- User-defined identifiers are case sensitive.

2. Comments and Documentation Strings

This is a comment

.....

This is a documentation string over multiple lines

3. Input/Output

print ("This is a string")

s = input ("Instructions to prompt for data entry.")

4. Import

import <module>

e.g. import math

5. Data Type

Data Type	Notes
int	integer
float	real number
Bool	boolean
str	string (immutable)
list	series of values

6. Assignment

Assignment Statement	Notes
a = 1	integer
b = c	variable
d = "This is a string"	string
mylist = [1, 2, 3, 5, 5]	list or array

7. Arithmetic Operators:

Operator	Notes
+ -	plus, subtract
* /	multiply, divide
%	remainder or modulus
**	exponential or power
//	quotient of the floor division

8. Relational Operators:

Operator	Notes
==	equality
!=	real number
> >=	greater than, greater than or equal to
< <=	less than, less than or equal to

9. Boolean Expression

Boolean Expression	Notes
a and b	logical and
a or b	logical or
not a	logical not

10. Iteration

while loop while condition(s): <statement(s)

for loop
for i in range(n):
<statement(s)></statement(s)>
for record in records: <statement(s)></statement(s)>

11. Selection

Туре 1	Туре 2	Туре 3
if condition(s): <statement(s)></statement(s)>	<pre>if condition(s): <statement(s)> else: <statement(s)></statement(s)></statement(s)></pre>	<pre>if condition(s): <statement(s)> elif condition(s): <statement(s)> else: <statement(s)></statement(s)></statement(s)></statement(s)></pre>

12. Built-in functions

(a) Basic functions

abs()	chr()	float()	input()	int()	
ord()	print()	range()	round()	str()	
format()					

(b) Mathematical functions

ceil()	exp()	fabs()	floor()	log()	
max()	min()	pow()	sqrt()	trunc()	

(c) String functions

endswith()	find()	isalnum()	isalpha()	isdigit()	$\neg \neg$
islower()	isspace()	isupper()	len()	lower()	
startswith()	upper()				

13. Reserved Words

Reserved words cannot be used as identifiers. They are part of the syntax of the language.

False	None	True	and	as	
assert	break	class	continue	def	
del	elif	else	except	finally	
for	from	global	if	import	
in	is	lambda	nonlocal	not	
or	pass	raise	return	try	
while	with	yield			

A solutions company uses spreadsheet software to record its jobs details. You are required to finish setting up the spreadsheet.

	А	В	С	D	E	F	G	Н
1			Ма	intenance l	Pte Ltd			
2	Job Details							
3	No.	Job type	Expertise Required	Job ID	Job Code	Hourly Rate	Hours Required	Cost
4	1	Plumbing	Home Maintenance	ABC001234-HM		15	2	
5	2	Electrical	Electrical Engineering	ABC002234-EE		12	2	
6	3	Carpentry	Home Maintenance	ABC001235-HM		18	4	
7	4		Mechanical Engineering	ABC002235-ME		22	4	
8	5	Business Reports	Business Administration	ABC003234-BA		10	5	
9	6	Interior Renewal	Home Maintenance	ABC001236-HM		20	3	
10	7	Marketing	Business Administration	ABC003234-BA		8	4	
11	8	Stock Inventory	Retail Sales	ABC004234-RS		7	3	
12	9	House Cleaning	Home Maintenance	ABC001237-HM		13	6	
13	10	Laboratory Cleaning	Chemical Processing	ABC005234-CP		17	3	
14								
15								
16		Job Code Fees				Staff Requ	ired	
17		Job Code	Fees		Exp	ertise	No.of Staff	
18		HM	10		Home Maintenance			
19		EE	25		Electrical E	ngineering		
20		BA	20		Mechanical	Engineering		
21		CP	30		Business A	dministration		
22		RS	22		Retail Sale:	S		
23		ME	27		Chemical P	rocessing		
24								

1 Save the file as **MYJOBS_**<Class>_<Class_Index_Number>_<Your_Name>

2	In the Job Code column, enter a function to extract the last 2 letters of the corresponding Job ID .	[2]
3	In the Cost column, enter a function to look up the Fees in the Job Code Fees table, add that with the corresponding Hourly Rate , and multiply it by Hours Required , i.e. [Cost = Job Code Fees + (Hourly Rate x Hours)]	[3]
4	Format the Cost column to automatically highlight those cells whose total cost is above \$50 with a blue background.	[1]
5	In the Staff Required table, enter a function in the No. of Staff column to compute the number of staff required for each expertise.	[2]
6	Enter "Total Cost" in G14 and bold it. In H14 , enter a function to calculate the total cost of all the jobs.	[2]

Save and close your file.

Task 2

The following program analyses a user password consisting of only digits and letters. The program then displays the list of digits and letters in the password.

```
digits = []
letters = []
password = input("Enter the password: ")
for index in range(len(password)):
    if password[index].isdigit():
        digits.append(int(password[index]))
    elif password[index].isalpha():
        letters.append(password[index])
print("Digits in the password: ", digits)
print("Letters in the password: ", letters)
```

7 Open the file ANALYSIS.py

Save the file as MYANALYSIS_<Class>_<Class_Index_Number>_<Your_Name>

Edit the program so that it:

(a) Displays the largest digit in the password.	[1]		
(b) Displays the list of uppercase letters.	[2]		
(c) Tests if the user password input is exactly 6 characters in length. If not, the asks the user for input again with a corresponding error message.	program [3]		
Save your program.			
Save your program as VARANALYSIS _ <class>_<class_index_number>_<your_< td=""><td>_Name></td></your_<></class_index_number></class>	_Name>		
Edit your program so that it displays the average of all digits in the password.			

Save your program.

8

Task 3

The following program should display the current location of a robot and the distance travelled, after a series of movement instructions by the user.

The program asks the user to enter the direction and the number of steps for each move. The program ends when the user types "exit". The program then displays the current location of the robot and the distance travelled.

There are several syntax errors and logical errors in the program.

```
number steps
current location = [0, 0]
print("Current location: ", current_location)
while True:
   direction = input("Enter the direction (up, down, left, right).
Type exit to end: ")
   if direction == exit:
        continue
    else:
        number steps = input ("Enter the number of steps to move: ")
        if direction = "up":
            current_location[1] += number_steps
        elif direction == "down":
           current location[1] -= number steps
        elif direction == "left":
            current location[0] += number steps
        else if direction == "right":
            current location[1] += number steps
        print("\nCurrent location: ", current location)
        print("Distance travelled: ",
round(math.sqrt(current location[0]**2 + current_location[1]**2),2)
```

Open the file ROBOT.py

```
9 Save the file as MYROBOT_<Class>_<Class_Index_Number>_<Your_Name>
```

Identify and correct the errors in the program so that it works correctly according to the rules above. [10]

Save your program.

You have been asked to write a program to record and analyse the competitive timing of swimmers in the men's heats of a National Swimming Championship.

The program should allow you to:

- Enter data in the format a, b, c, d where a, b, c, d are the time taken in seconds by a swimmer to complete a 100-metre race in the butterfly, backstroke, breaststroke and freestyle categories respectively. An example is 54.42, 56.00, 64.25, 51.01
- Only allow data entry of timing between 40.00 seconds to 70.00 seconds inclusive for any of the 100-metre categories.
- Calculate the projected 400-metre individual medley timing of the swimmer by taking the sum of the swimmer's race timing across all four 100-metre categories.
- Repeat this for a total of seven swimmers.
- Find the average swimmer race timing, rounded off to two decimal places, for each of the 100-metre categories.
- Determine the champion for each of 100-metre categories.
- Display this on the screen. Your output must look like this:

Category Butterfly Backstroke Breaststroke Freestyle	Ave Timing 57.32 55.47 63.00 54.28	Champion Swimmer 5 Swimmer 2 Swimmer 5 Swimmer 1	Champ Timing 53.53 53.20 59.88 51.01
Projected 400.	-metre Individ	ual Medley T	iming
Swimmer 1 22	25.68		
Swimmer 2 22	26.91		
Swimmer 3 23	34.54		
Swimmer 4 24	40.12		
Swimmer 5 23	19.04		
Swimmer 6 22	21.83		
Swimmer 7 24	42.42		

10 Write your program and test that it works.

Save your program as **HEATS1_**<Class>_<Index_Number>_<Your_Name>

11 When your program is working, use the following test data to show your test results:

54.42, 56.00, 64.25, 51.01 58.02, 53.20, 61.33, 54.36 60.12, 54.23, 62.16, 58.03 59.20, 58.34, 66.20, 56.38 53.53, 54.01, 59.88, 51.62 55.46, 53.43, 60.77, 52.17 60.51, 59.11, 66.39, 56.41

Take a screen shot of your results and save it as a bitmap HEATSRESULTS_<Class>_<Index_Number>_<Your_Name>

[3]

[10]

12 Save your program as HEATS2_<Class>_<Index_Number>_<Your_Name> Extend your program to allow race timing entered to be "-" if a swimmer happens not to be participating one or more of the 100-metre category, and if so, that particular swimmer would not have the projected 400-metre individual medley timing.

Use the following to show your test results:

54.42, 56.00, 64.25, 51.01 58.02, -, -, 54.36 -, 54.23, -, 58.03 59.20, -, -, 56.38 53.53, 54.01, 59.88, 51.62 55.46, 53.43, 60.77, 52.17 60.51, 59.11, 66.39, 56.41

Your output must look like this:

Category Butterfly Backstroke Breaststroke Freestyle	Ave Timing 56.86 55.36 62.82 54.28	Champion Swimmer 5 Swimmer 6 Swimmer 5 Swimmer 1	Champ Timing 53.53 53.43 59.88 51.01			
Projected 400-metre Individual Medley Timing						
Swimmer 1 22	5.68					
Swimmer 2 -						
Swimmer 3 -						
Swimmer 4 -						
Swimmer 5 21	9.04					
Swimmer 6 22	1.83					
Swimmer 7 242	2.42					

13 Save your program as HEATS3_<Class>_<Index_Number>_<Your_Name> A swimming competition would only be held if there are at least four participants. Extend your program to ensure that there are at least four participating swimmers. Save your program.

[2]

[5]