

LOYANG VIEW SECONDARY SCHOOL

Preliminary Examination 2023 Secondary Four Normal (Academic)

:

CANDIDATE NAME

CLASS

INDEX NUMBER

SCIENCE (CHEMISTRY)

5105/04

3 Aug 2023

:

Paper 4

Papers 3 and 4: 1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer **all** questions in Section A and any **two** questions in Section B. The use of an approved scientific calculator is expected, where appropriate. In calculations, you should show all the steps in your working, giving your answer at each stage. You are advised to spend no more than **30 minutes** on **Paper 3**. You may proceed to answer Paper 4 as soon as you have completed Paper 3. A copy of the Periodic Table is printed on page **11**.

At the end of the examination hand in your answers to Paper 3 and Paper 4 separately. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
Section A	/ 14
Section B	/ 16
Total	/ 30

Setter: Mdm Elvina Abu Hasan

Section A

Answer **all** the questions in the spaces provided.

1 The positions of 8 elements in the Periodic Table are shown in Fig. 1.1.

The letters \mathbf{A} to \mathbf{H} do not represent the chemical symbols of the elements.

]						
Α]							Ε		Н
	В						D			O	
									F		
			С								

(a) Which element, A to H, forms an ion with a charge of +2?

.....[1]

- (b) Explain why element **H** is unreactive?
 -[1]
- (c) An atom of element **X** has an electronic structure of 2,7.

Which element, A to H, will have properties most similar to X?

......[1]

[Total: 3]

2 Reacting an acid with a base is a common method of preparing salts. This is known as an *acid-base* reaction.

Table 2.1 gives details of three salts that can be prepared by acid-base reactions.


Table 2.	1
	-

salt	formula	relative formula mass, <i>M</i> r
copper(II) sulfate	CuSO ₄	160
magnesium nitrate	Mg(NO ₃) ₂	
sodium sulfate	Na ₂ SO ₄	

(a) Use data from the Periodic Table to complete Table 2.1 by calculating the relative formula mass, M_r , of magnesium nitrate and sodium sulfate.

		mass of magnesium nitrate = g [1]
(c)	(i)	Identify the acid and base required to produce sodium sulfate.
		acid
		base[1]
	(ii)	At the end of the reaction between the acid and base from (c)(i) , a solution of sodium sulfate is produced.
		Describe how pure and dry crystals of sodium sulfate can be obtained from its solution.
		[2]
	(iii)	State the pH of a pure solution of sodium sulfate.
		[1]
		[Total: 7]

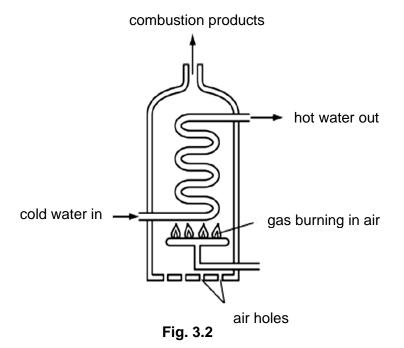
3 Some of the substances found in the exhaust fumes of a motorcar are shown in Fig. 3.1.

(a) Complete Table 3.1 using the names of the substances shown.

Each substance can be used only once.

Table 3.1

description	name of substance
a greenhouse gas	
causes acid rain	
a noble gas	


[2]

(b) (i) Carbon monoxide is a toxic gas.

Explain why carbon monoxide is harmful to human beings.

......[1]

(ii) Fig. 3.2 shows a water heater.

Carbon monoxide can be formed when some of the air holes in a water heater get blocked.

Explain why this is so.

......[1]

[Total: 4]

Section B (16 marks)

Answer any **two** question in the spaces provided. Write your answers in the spaces provided.

4 Fig. 4.1 shows how iron is extracted in a blast furnace with coke and limestone.

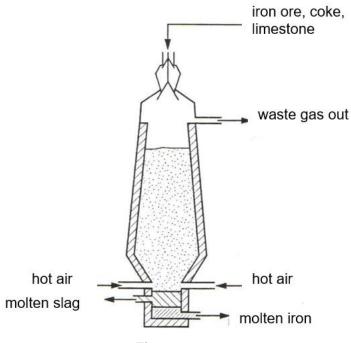


Fig. 4.1

(a) (i) State the purpose of adding limestone to the blast furnace.

......[1]

(ii) The chemical equation below shows the reaction between iron(III) oxide and carbon monoxide that occurs in the blast furnace.

Balance the chemical equation by writing the correct numerals in the blanks provided.

 $\dots Fe_2O_3 + \dots CO \rightarrow \dots Fe + \dots CO_2$ [1]

(b) An experiment was set up to investigate the rusting of iron.

Five identical iron nails, each weighing 5 g, were used. Each nail was given a different treatment. The nails were left outside in the air for ten weeks, and then reweighed. The results are shown in Table 4.1.

nail	treatment	mass at start / g	mass after ten weeks / g
Р	covered in grease	5.0	5.2
Q	coated with zinc	5.0	5.1
R	painted	5.0	5.3
S	plastic coated	5.0	5.0
Т	untreated	5.0	6.3

Table 4.1

- (i) State the conditions required for iron to rust.
 [1]
 (ii) Bicycle frames are made from steel which is an iron alloy.
 Based on the results in Table 4.1, suggest which treatment gives the best protection against rusting for the frames and explain why.
 [2]
- (iii) Steel is an alloy which contains some carbon atoms mixed with iron atoms.

The diagram below shows the arrangement of atoms in steel.

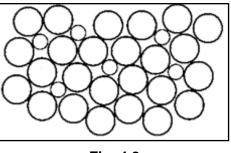


Fig. 4.2

Using the diagram shown, explain why steel is harder than pure iron.

(c) Aluminium is a metal which does not rust. It can be recycled many times without losing its properties.

State another advantage of recycling aluminium metal.

[1]

[Total: 8]

- 5 Fluorine, chlorine and bromine are Group VII elements found in the Periodic Table. They are also commonly known as halogens. Halogens exist as *diatomic* molecules.
 - (a) State the meaning of 'diatomic'.

 - (c) Draw a 'dot and cross' diagram to show the arrangement of **all** the electrons in a molecule of fluorine.

[2]

(d) (i) Halogens can undergo displacement reaction.

Put a tick (\checkmark) if there is a reaction between chlorine and aqueous solutions of sodium chloride, sodium bromide and sodium iodide.

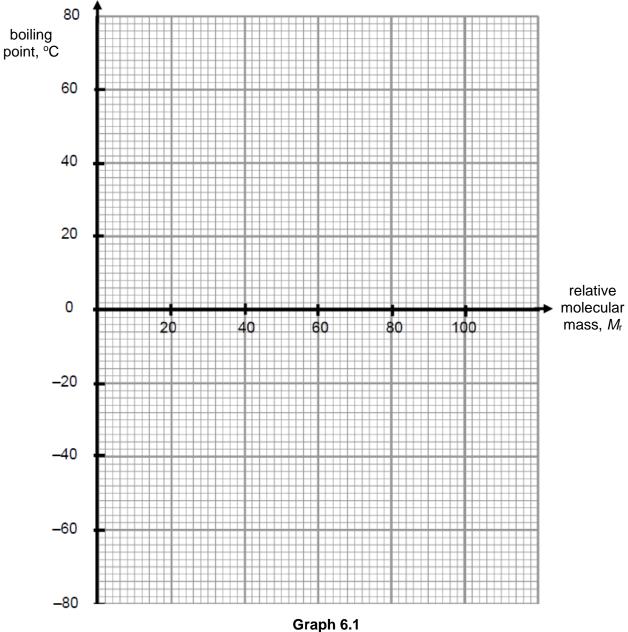
halogen	reaction with sodium chloride	reaction with sodium bromide	reaction with sodium iodide	
chlorine				[1]

(ii) Write a balanced chemical equation for any of the reactions that occur in (d)(i).

.....[2]

[Total: 8]

Table 6.1 shows the relative molecular masses and boiling points of substances (a) A to D which are members of the same homologous series.


substance	relative molecular mass, Mr	boiling point, °C
Α	30	-62
В	58	0
С	72	32
D	88	69

Tabl	e 6.	1
IUNI	•••	

Using the data from Table 6.1, plot the boiling points against relative molecular masses of the substances on Graph 6.1, marking each point with a cross (x).

Draw a line through your plotted points.

6

(b)		stance E , a member of the same homologous series, has a relative ecular mass of 44.
	Use	the graph to predict the boiling point of substance E .
		[1]
(c)	State	e one property that members in the same homologous series have.
		[1]
(d)		bane is a gas at room temperature and pressure. formed when substance ${f X}$ undergoes an addition reaction with hydrogen.
	(i)	State the catalyst and temperature needed for the addition reaction.
		catalyst
		temperature[1]
	(ii)	Describe a test to differentiate between propane and substance X.
		test
		observation with propane
		observation with propene
		[2]
(e)	Nam	e the products formed when propane undergoes complete combustion.
		[1]
		[Total: 8]

END OF PAPER

lts
Ъ
Ξ
Ð
ш
<u> </u>
Ö
e
0
a
Ĕ
C
5
×
.≚
5
~
Ц
Ð
Ĕ.
F
-

																										,	_						_	
	0	۲ °	helium	4	10	Ne	neon	20	18	Ar	argon 40	36	Ϋ́	krypton	84	54	Xe	xenon 131	86	R	radon	ì					71	L	Iutetium 175	103	5	lawrencium	1	
	VII				6	ш	fluorine	19	17	Cl	chlorine 35.5	35	Ъ	bromine	ßÜ	53	Ι	iodine 127	85	At	astatine	ı					70	Υb	ytterbium 173	102	No	nobelium	1	
	VI				8	0	oxygen	16	16	S	sulfur 32	34	Se	selenium	۶/	52	Te	tellurium 128	84	Ъ	polonium	1	116	Lv			69	Tm	thulium 169	101	pM	mendelevium	1	
	>				7	z	nitrogen	14	15	٩.	phosphorus 31	33	As	arsenic	5	51	Sb	antimony 122	83	ï	bismuth	508							erbium 167					
	2				9	υ	carbon	12	14	N.	silicon 28	32	Ge	germanium	5	20	Sn	tin 119	82	Pp	lead	20/	114	F/ flarovium	I		67	۴	holmium 165	66	ЕS	einsteinium	1	
	=				5	в	boron	11	13	Al	aluminium 27	31	Ga	gallium	5	49	Ц	115	81	11	thallium	204					99	D	dysprosium 163	98	ç	californium	,	
												30	Zn	zinc	ŝ	48	ö	cadmium 112	80	Hg	mercury	201	112	Cn	1				159				-	
																		silver 108									64	Ъd	gadolinium 157	96	C	curium	'	
dn						Ds D											63	Ш	europium 152	95	Am	americium	,											
Group												⊢			-+			rhodium 103	+			-			-		62	Sm	samarium 150	94	Pu	plutonium	'	
		- 1	hvdrogen	1								26	Fe	iron	g	44	Ru	ruthenium 101	76	So	osmium	190	108	Hs haceium			61	Pm	promethium -	93	dN	neptunium	'	
												25	Mn	manganese	ន	43	р	technetium -	75	Re	rhenium	186	107	Bh	1		60	pN	F	92		uranium		
					umber	0		relative atomic mass					24	ບັ	Ę		42	Mo	molybdenum 96	74	N	tungsten	184	106	Sg			59	Pr	praseodymium neodymiur 141 144	91	Ра	protactinium	231
				Key	proton (atomic) number	atomic symbol	name					23	>	vanadium	2	41		niobium r 93	1		ε	- 1		Db			58	Se	cerium 140	60		thorium		
					proton	ato		relativ					22	F	titanium	48	40	Z	zirconium 91	72	Ŧ	hafnium	1/8	104	Rf			57	La	lanthanum 139	68	Ac	actinium	1
				1									Sc	scandium	65	39	~	yttrium 89	57 - 71	lanthanoids			89 - 103	actinoids						-				
	=				4	Be	beryllium	6	12	Mg	n magnesium 24	20	Ca	calcium	40	38	പ്	strontium 88		Ba	barium	13/	88	Ra			anthanoids			actinoids				
	_				ო	:	lithium	7	11	Na sodium		19	¥	potassium	5	37	8 0 2	rubidium 85	55	S	caesium	133	87	Fr										

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.).

BLANK PAGE