1 The number of units, D(x) of a particular product that people are willing to purchase per week in city A at a price \$x is given by the function $D(x) = \frac{40320}{g(x)}$, where g(x) is a quadratic polynomial in x. The following table shows the number of units people are willing to purchase at different prices.

x	5	8	10
D(x)	384	224	168

Find the number of units of the product that people are willing to purchase at a price of \$18. [4]

2 It is given that $p_n = \ln \frac{1 + x^n}{1 + x^{n+1}}$, where -1 < x < 1 and *n* is a positive integer.

(i) Find
$$\sum_{n=1}^{N} p_n$$
, giving your answer in terms of N and x. [3]

- (ii) Hence find the sum to infinity of the series in part (i) in terms of x. [2]
- 3 In the triangle *ABC*, *AB* = 1, *AC* = 2 and angle *ABC* = $\left(\frac{\pi}{2} x\right)$ radians. Given that x is sufficiently small for x^3 and higher powers of x to be ignored, show that $BC \approx p + qx + rx^2$, where p, q, r are constants to be determined in exact form. [5]

4 A part of a hyperbola has equation given by $f(x) = \sqrt{\frac{(x+5)^2}{36} - 1}$, $x \in D$, where $D \subseteq \mathbb{R}$.

- (i) State the largest possible set D.
- (ii) State the equations of the asymptotes of y = f(x). [1]

[1]

(iii) Sketch the graph of y = f(x) for D in part (i), showing clearly all the features of the curve. [2]

(iv) On separate diagrams, sketch the graphs of $y = \frac{1}{f(x)}$ and y = f'(x), showing clearly all the features of the curves. [4]

- 5 Referred to the origin *O*, points *A* and *B* have position vectors **a** and **b** respectively. Point *C* lies on *OB* produced such that $\overrightarrow{OC} = \lambda \overrightarrow{OB}$ where $\lambda > 1$. Point *D* is such that OCDA is a parallelogram. Point *M* lies on *AD*, between *A* and *D*, such that AM : MD = 1 : 2. Point *N* lies on *OC*, between *O* and *C*, such that ON : NC = 4 : 3.
 - (i) Find the position vectors of M and N, in terms of \mathbf{a} , \mathbf{b} and λ . [2]
 - (ii) Show that the area of triangle *OMD* is $k\lambda |\mathbf{a} \times \mathbf{b}|$, where k is a constant to be determined. [4]
 - (iii) The vector \mathbf{p} is a unit vector in the direction of \overrightarrow{OD} . Give a geometrical meaning of $|\mathbf{p}.\mathbf{a}|$. [1]
- 6 A curve C is defined by the parametric equations

$$x = 25\sin^2 t \,, \ y = 2\cos t$$

where $0 \le t \le \pi$.

(i) Find
$$\frac{dy}{dx}$$
. [2]

- (ii) The tangent to C at the point where $t = \frac{\pi}{4}$ cuts the x-axis at P and the y-axis at Q, find the exact area of the triangle OPQ, where O is the origin. [4]
- (iii) State the equation of the normal to C where the normal is parallel to the x-axis. [1]

7 (a) (i) Find
$$\frac{d}{dx} \left(2e^{\cos \frac{x}{2}} \right)$$
. [1]

(ii) Hence find
$$\int \frac{1}{2} \sin x e^{\cos \frac{x}{2}} dx$$
. [4]

(b) Using the substitution
$$u = 1 - e^x$$
, find $\int \frac{1}{1 - e^x} dx$. [4]

- 8 The function f is defined by $f: x \mapsto \sqrt{a^2 \frac{(x-a)^2}{4}}$ for $x \in \mathbb{R}$, $-a \le x \le 3a$, where a is a positive constant.
 - (i) Sketch the graph of y = f(x), giving the coordinates of any stationary points and the points where the graph meets the axes. [2]
 - (ii) If the domain of f is further restricted to $-a \le x \le k$, state the greatest value of k for which the function f^{-1} exists. [1]
 - (iii) Using the restricted domain found in part (ii), find f^{-1} in similar form. [3]

The function g is defined by $g(x) = f\left(\frac{3}{2}x\right)$ for $x \in \mathbb{R}$, $-\frac{2}{3}a \le x \le 2a$.

- (iv) Explain why the composite function gf exists and find the range of gf. [3]
- 9 A company produces festive decorative Light Emitting Diode (LED) string lights, where micro LEDs are placed at intervals along a thin wire. In a particular design, the first LED (LED 1) is placed on one end of a wire with the second LED (LED 2) placed at a distance of d cm from LED 1, and each subsequent LED is placed at a distance $\frac{4}{5}$ times the preceding distance as shown.

- (i) If the distance between LED 8 and LED 9 is 56.2 cm, find the value of *d* correct to 1 decimal place. [2]
- (ii) Find the theoretical maximum length of the wire, giving your answer in centimetres correct to 1 decimal place. [2]

The LEDs consisting of three colours red, orange and yellow, are arranged in that order in a repeated manner, that is, LED 1 is red, LED 2 is orange, LED 3 is yellow, LED 4 is red, LED 5 is orange, LED 6 is yellow, and so on.

- (iii) Find the colour of the LED nearest to a point on the wire 12.9 m from LED 1. [3]
- (iv) If the minimum distance between any two consecutive LEDs is 1 cm so that they can be mounted on the wire, find the colour of the last LED. [3]

- 10 (a) Solve the simultaneous equations v + iu = 2 and av 2u = 3i, where *a* is a real constant. Simplify your answers to cartesian form x + iy, where *x* and *y* are in terms of *a*. [4]
 - (b) It is given that (x+k) is a factor of the equation,

$$bx^{3} + (12b + i)x^{2} + (b + 12i)x + 12b = 0,$$

[2]

where k and b are non-zero real constants.

- (i) Find the value of k.
- (ii) Show that the roots of the equation $bx^2 + ix + b = 0$ are purely imaginary. [2]
- (iii) Hence express $f(x) = bx^3 + (12b+i)x^2 + (b+12i)x + 12b$ as a product of three linear factors, leaving your answers in terms of b. [2]

11 A container is made up of a cylinder and an inverted right circular cone as shown in the diagram below. The height and the diameter of the cylinder are 20 cm and 5 cm respectively. The height of the cone is 4 cm. An external device ensures liquid flows out through a small hole at the vertex of the cone into a bowl below at a constant rate of 18 cm^3 per minute. The depth of the liquid and the radius of the liquid surface area in the container at the time *t* minutes are *x* cm and *r* cm respectively. The container is full of liquid initially.

- (a) When x > 4, find the rate of change of the depth of the liquid in the container. [4]
- (b) Find the rate of change of r when x = 2. [5]
- (c) The bowl as shown in the diagram in part (a) is generated by rotating part of the curve $\frac{x^2}{225} + \frac{y^2}{100} = 1$ which is below the x-axis through π radians about the y-axis. Assuming the bowl has negligible thickness, find the volume of the empty space in the bowl when the liquid has completely flowed from the container into the bowl, giving your answer correct to 3 decimal places. [3]

12 At an airport, an air traffic control room T is located in a vertical air traffic control tower, 70 m above ground level. Let O(0,0,0) be the foot of the air traffic control tower and all points (x, y, z) are defined relative to O where the units are in kilometres. Two observation posts at the points M(0.8, 0.6, 0) and N(0.4, -0.9, 0) are located within the perimeters of the airport as shown.

An air traffic controller on duty at T spots an errant drone in the vicinity of the airport. The two observation posts at M and N are alerted immediately. A laser rangefinder at M

directs a laser beam in the direction $\begin{pmatrix} 2\\ 7\\ -1 \end{pmatrix}$ at the errant drone to determine *D*, the position

of the errant drone. The position D is confirmed using another laser beam from N, which passes through the point (0.8, 0.75, 0.3), directed at the errant drone.

[4]

[2]

(i) Show that D has coordinates (0.56, -0.24, 0.12).

A Drone Catcher, an anti-drone drone which uses a net to trap and capture errant drones, is deployed instantly from O and flies in a straight line directly to Γ intercept the errant drone.

(ii) Find the acute angle between the flight path of the Drone Catcher and the horizontal ground. [2]

At the same time, a Jammer Gun, which emits a signal to jam the control signals of the errant drone, is fired at the errant drone. The Jammer Gun is located at a point G on the plane p containing the points T, M and N.

(iii) Show that the equation of p is
$$\mathbf{r} \cdot \begin{pmatrix} -10.5 \\ 2.8 \\ -96 \end{pmatrix} = -6.72$$
. [3]

It is also known that the Jammer Gun is at the foot of the perpendicular from the errant drone to plane p.

- (iv) Find the coordinates of G. [3]
- (v) Hence, or otherwise, find the distance *GD* in metres.

Section A: Pure Mathematics [40 marks]

- 1 On the same axes, sketch the graphs of $y = 2(x-a)^2$ and y = 3a|x-a|, where *a* is a positive constant, showing clearly all axial intercepts. [2]
 - (i) Solve the inequality $2(x-a)^2 \ge 3a|x-a|$. [4]

(ii) Hence solve
$$2\left(x-\frac{a}{2}\right)^2 \ge 3a\left|x-\frac{a}{2}\right|$$
. [2]

2 It is given that $y = \frac{e^{\sin x}}{\sqrt{1+2x}}$.

(i) Show that
$$\frac{1}{y} \frac{dy}{dx} + \frac{1}{1+2x} = \cos x$$
. [2]

- (ii) By further differentiation of the result in part (i), find the Maclaurin series for y in ascending powers of x, up to and including the term in x^3 . [5]
- (iii) Use your result from part (ii) to approximate the value of $\int_0^1 \frac{e^{\sin x}}{\sqrt{1+2x}} dx$. Explain why this approximation obtained is not good. [2]
- (iv) Deduce the Maclaurin series for $\frac{1}{e^{\sin x}\sqrt{1-2x}}$ in ascending powers of x, up to and including the term in x^3 . [1]
- 3 The complex numbers p and q are given by $\frac{a}{1+\sqrt{3}i}$ and $-\frac{a}{2}i$ respectively, where a is a positive real constant.
 - (i) Find the modulus and argument of p. [2]
 - (ii) Illustrate on an Argand diagram, the points P, Q and R representing the complex numbers p, q and p+q respectively. State the shape of OPRQ. Hence, find the argument of p+q in terms of π and the modulus of p+q in exact trigonometrical form.
 - (iii) Find the smallest positive integer *n* such that $(p+q)^n$ is purely imaginary. [2]

- (i) Assuming that *P* and *t* are continuous variables, show that $\frac{dP}{dt} = k \left(\frac{4}{P} P\right)$, where *k* is a constant. [3]
- (ii) Given that the initial population of the bugs was 4000, and that the population was decreasing at the rate of 3000 per day at that instant, find P in terms of t. [4]
- (iii) Sketch the graph of *P* against *t*, giving the equation of any asymptote(s). State what happens to the population of the bugs in the long run. [2]
- (b) Another population of bugs, N (in thousands) in time t days can be modelled by the differential equation $\frac{dN}{dt} = 4 + \frac{N}{t}$ for $t \ge 1$. Using the substitution $u = \frac{N}{t}$, solve this equation, given that the population was 1000 when t = 1. [3]

Section B: Statistics [60 marks]

- 5 The daily rainfall in a town follows a normal distribution with mean μ mm and standard deviation σ mm. Assume that the rainfall each day is independent of the rainfall on other days. It is given that there is a 10% chance that the rainfall on a randomly chosen day exceeds 9.8 mm, and there is a 10% chance that the mean daily rainfall in a randomly chosen 7-day week exceeds 8.2 mm.
 - (i) Show that $\sigma = 2.01$, correct to 2 decimal places. [4]
 - (ii) Find the maximum value of k such that there is a chance of at least 10% that the mean daily rainfall in a randomly chosen 30-day month exceeds k mm. Give your answer correct to 1 decimal place.

6 Miss Tan carried out an investigation on whether there is a correlation between the amount of time spent on social media and exam scores. The average amount of time spent per month on social media, x hours, and the final exam score, y marks, of 6 randomly selected students from HCI were recorded. The data is shown below.

x	80	84	70	74	58	48
У	44	40	49	45	58	82

- (i) Draw a scatter diagram to illustrate the data. [2]
 (ii) It is found that the inclusion of a 7th point (x₇, y₇) will not affect the product
- moment correlation coefficient for the data. Find a possible point (x_7, y_7) . [1]

Omit the 7th point (x_7, y_7) for the rest of this question.

- (iii) State, with reason, which of the following equations, where a and b are constants, provides the most appropriate model for the relationship between x and y.
 - (A) $y = a + bx^{2}$, (B) $e^{y} = ax^{b}$, (C) $y = a + b\sqrt{x}$. [3]
- (iv) Using the model chosen in part (iii), estimate the score of a student who spent an average of 60 hours per month on social media, giving your answer correct to the nearest whole number.
- (v) Sam spends an average of 4 hours a day on social media. Assuming a 30-day month, suggest whether it is still reasonable to use the model in part (iii) to estimate his score.

- 7 A cafe sells sandwiches in 2 sizes, "footlong" and "6-inch". The lengths in inches of "footlong" loaves have the distribution N(12.2, 0.04) and the lengths in inches of "6inch" loaves have the distribution N(6.1, 0.02).
 - Is a randomly chosen "footlong" loaf more likely to be less than 12 inches in length **(i)** or a randomly chosen "6-inch" loaf more likely to be less than 6 inches in length? [2]
 - Find the probability that two randomly chosen "6-inch" loaves have total length (ii) more than one randomly chosen "footlong" loaf. [2]

Sue buys a "6-inch" sandwich 3 times a week.

- (iii) Find the probability that Sue gets at most one sandwich that is less than 6 inches in length in a randomly chosen week. [2]
- (iv) Given that Sue gets more than four sandwiches that are less than 6 inches in length in a randomly chosen 4-week period, find the probability that she gets exactly one such sandwich in the first week. [3]
- 8 The individual letters of the word PARALLEL are printed on identical cards and arranged in a straight line.
 - (a) Find the number of arrangements such that

(ii)

- there are no restrictions, (i)
 - [1] no L is next to any other L, [2]
- the arrangements start and end with a consonant and all the vowels are (iii) together. [3]
- The cards are now placed in a bag and Tom draws the cards randomly from the bag **(b)** one at a time.
 - 4 cards are drawn without replacement. Find the probability that there is at (i) least one vowel drawn. [2]
 - Tom decides to record the letter of the card drawn, on a piece of paper. If the (ii) letter on the card drawn is a vowel, Tom will put the drawn card back into the bag and continue with the next draw.

If the letter on the card drawn is a consonant, Tom will remove the card from subsequent draws. Find the probability that Tom records more consonants than vowels at the end of 3 draws. [3]

- **9** A company purchased a machine to pack shower gel into its bottles. The expected mean volume of shower gel in a bottle is 950 ml.
 - (a) The floor supervisor believes that the machine is packing less amount of shower gel than expected. A random sample of 80 bottles is taken and the data is as follows:

Volume of shower gel in a bottle (correct to nearest ml)	948	949	950	951	952	953	955
Number of bottles	9	22	36	6	4	1	2

- (i) Find unbiased estimates of the population mean and variance, giving your answers correct to 2 decimal places.
 [2]
- (ii) Write down the appropriate hypotheses to test the floor supervisor's belief.You should define any symbols used. [2]
- (iii) Using the given data, find the *p*-value of the test. State what is meant by this *p*-value in the context of this question.
- (iv) It was concluded at α % level of significance that the machine is indeed packing less amount of shower gel than expected. State the set of values of α .

[1]

(b) Due to a change in marketing policy, the machine is being recalibrated to pack smaller bottles of shower gel with mean volume of 250 ml. The volume of a recalibrated bottle of shower gel is denoted by Y ml. A random sample of 50 bottles of y ml each is taken and the data obtained is summarised by:

$$\sum (y-250) = -25, \qquad \sum (y-250)^2 = k.$$

Another test was conducted at the 1% significance level. The test concluded that the machine had been calibrated incorrectly. Find the range of values of k, correct to 1 decimal place. [4]

(c) Explain why there is no need for the floor supervisor to know anything about the population distribution of the volume of shower gel in a bottle for both parts (a) and (b).

- 10 In a game with a 4-sided fair die numbered 1 to 4 on each face, the score for a throw is the number on the bottom face of the die. A player gets to choose either option A or option B.
 - Option A: The player rolls the die once. The score x is the amount of money x that the player wins.
 - Option B: The player rolls the die twice. The first score is x and the second score is y. If y > x, the player wins 2xy, but if y < x, the player loses (x - y). Otherwise, he neither wins nor loses any money.
 - Find the expected amounts won by a player in one game when playing option A **(i)** and when playing option B. Show that option B is a better option. [5]
 - Suggest why a risk averse player would still choose option A. [1] (ii)
 - (iii) Show that the variance of the amount won by a player in one game when playing option A is 1.25. [2]

In a competition, Abel and Benson each play the game 50 times. Abel chooses option A and Benson chooses option B.

It is given that the variance of the amount won by a player in one game when playing option B is $\frac{887}{16}$.

- (iv) Find the distributions of the total amounts won by Abel and Benson respectively in the competition.
- Show that the probability of the total amount won by Abel exceeding the total **(v)** amount won by Benson in the competition is approximately 0.120. [3]

[2]

www.KiasuExamPaper.com 301

ANNEX

H2 MA 2019 JC2 Prelim (Paper 1 and Paper 2)

Filename: Change SCHOOL to your school name, e.g. NYJC

Paper 1

Select topic from the dropdown list. If the question consists of multiple topics, choose 1 topic.

QN	TOPIC (H2) Paper 1	ANSWERS (<u>Exclude</u> graphs and text answers)
1	Equations & Inequalities	72 units
2	Sigma Notation & MOD	(i) $\ln \frac{1+x}{1+x^{N+1}}$
		(ii) $\ln(1+x)$
3	Maclaurin & Binomial Series	$p = \sqrt{3}, q = 1, r = \frac{1}{2\sqrt{3}}$
4	Graphs & Transformations	(i) $D = (-\infty, -11] \cup [1, \infty)$ (ii) $y = + \frac{x+5}{2}$
		(ii) $y = \pm \frac{6}{6}$
5	Vectors	(i) $\overrightarrow{OM} = \frac{1}{3}(3\mathbf{a} + \lambda \mathbf{b}), \overrightarrow{ON} = \frac{4}{7}\lambda \mathbf{b}$
		(ii) $k = \frac{1}{3}$
6	Differentiation & Applications	(i) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{25\cos t}$
		$(ii)\frac{225}{4\sqrt{2}}$
		(iii) $y = 0$
7	Integration & Applications	$(a)(i) - \sin \frac{x}{2} \left(e^{\cos \frac{x}{2}} \right)$
		(ii) $-2\cos\frac{x}{2}\left(e^{\cos\frac{x}{2}}\right)+2e^{\cos\frac{x}{2}}+C$
		(b) $-\ln 1-e^x +x+C$
8	Functions ASU	(iii) greatest value of k is a. (iii) $f^{-1}: x \mapsto a - 2\sqrt{a^2 - x^2}, x \in \mathbb{R}, 0 \le x \le a$
	Islandwide Delivery Whatsapp On	$\binom{\text{y 88660031}}{\text{(iv) } \text{R}_{\text{gf}}} = \left[\frac{\sqrt{3}}{2}a, a\right]$
9	APGP	(i) $d = 268.0$
		(ii) 1339.9 cm
		(iii) red

		(iv) yellow
10	Complex Numbers	(a) $u = \frac{a}{4+a^2} - \frac{6+2a^2}{4+a^2}i, v = \frac{2}{4+a^2} - \frac{a}{4+a^2}i$ (b)(i) $k = 12$ (iii) $b(x+12)(x + \frac{1+\sqrt{1+4b^2}}{2b}i)(x + \frac{1-\sqrt{1+4b^2}}{2b}i)$
11	Differentiation & Applications	(a) -0.916 cm/min (b) -2.29 cm/min (c) 4293.510 cm ³
12	Vectors	(ii) 11.1° (iv) (0.547, -0.237, 0.00325) (v) 117 m
13	H2 Prelim P1 Q13 Topic	
14	H2 Prelim P1 Q14 Topic	

Paper 2

Select topic from the dropdown list. If the question consists of multiple topics, choose 1 topic.

QN	TOPIC (H2) Paper 2	ANSWERS (Exclude graphs and text answers)
1	Equations & Inequalities	(i) $x \le -\frac{a}{2}$ or $x = a$ or $x \ge \frac{5a}{2}$
		(ii) $x \le -a$ or $x = \frac{a}{2}$ or $x \ge 2a$
2	Maclaurin & Binomial Series	(ii) $y = 1 + x^2 - \frac{3}{2}x^3 + \dots$
		(iii) 0.985
		(iv) $\frac{1}{e^{\sin x}\sqrt{1-2x}} \approx 1+x^2+\frac{3}{2}x^3$
3	Complex Numbers	(i) $\frac{a}{2}; -\frac{\pi}{3}$
		(ii) $-\frac{5\pi}{12}; a\cos\frac{\pi}{12}$
	Differential Equations	
т	Differential Equations	(a) (ii) $P = 2\sqrt{1 + 3e^{-2t}}$
		(11) The population of the bugs will decrease and
	KIASU	(b) $N = 4t \ln t + t$
5	Normal Distribution er	7.6
6	Correlation & Regression	(11) (69,53)
		(iii) Since $ r = 0.96785$ for Model B is nearest to 1,
		Model B is the most accurate model
		(iv) 62 marks
		(v) unreasonable as 120 is not within data range

		where $48 \le x \le 84$		
7	Normal Distribution	(i) a "6-inch" loaf more likely to be less than 6 inches		
		$(ii) \frac{1}{2}$		
		(iii) 0.855 (iv) 0.446		
8	PnC & Probability	(1) 0.440 (a) (i) 3360		
0		(i) (i) 5500 (ii) 1200		
		(ii) 1200 (iii) 240		
		(b) (i) $\frac{1}{14}$		
		(ii) 0.644		
9	Hypothesis Testing	(a) (i) 949.84 ; 1,73		
		(ii) H ₀ : $\mu = 950$		
		H ₁ : $\mu < 950$		
		(iii) 0.135		
		(iv) $\{\alpha \in \mathbb{R} : 13.5 \le \alpha \le 100\}$		
		(b) $12.5 \le k \le 104.8$		
		(c) There is no need for the floor supervisor to assume the		
		volume of shower gel follow a normal distribution as the sample sizes in both part (a) and (b) are larger the		
		the sample sizes in both part (a) and (b) are large, the		
		sample mean volume of shower gel can be		
		approximated to follow a normal distribution by		
		Central Limit Theorem.		
10	DRV	(i) \$2.50; \$3.75		
		(ii) Option A is a "sure win" option where the player would		
		definitely gain a positive amount in all cases, whereas		
		option B has a risk of losing money in some cases.		
		(iv) $A \sim N\left(125 \frac{125}{125}\right)$: $B \sim N\left(\frac{375}{22175}\right)$		
		(1) 1 1 (123, 2), 2 1 (2, 8)		
11	H2 Prelim P2 Q11 Topic			
12	H2 Prelim P2 Q12 Topic			
13	H2 Prelim P2 Q13 Topic			
14	H2 Prelim P2 Q14 Topic			

Q1	Solutions	Comments
1	$D(x) = \frac{40320}{g(x)}$ $\Rightarrow g(x) = \frac{40320}{D(x)}$ $ax^{2} + bx + c = \frac{40320}{D(x)}$	Generally, this question is well done. A few students mixed up g(x) and $D(x)$ and let $5^2a + 5b + c = 384$ instead of $5^2a + 5b + c = \frac{40320}{100} = 105$
	Given $5^{2}a + 5b + c = \frac{40320}{384} = 105 - (1)$ $8^{2}a + 8b + c = \frac{40320}{224} = 180 - (2)$ $10^{2}a + 10b + c = \frac{40320}{168} = 240 - (3)$ Using GC, $a = 1, b = 12, c = 20$ When $x = 18$, $D(18) = \frac{40320}{18^{2} + 12(18) + 20} = 72$ units	$5^{2}a + 5b + c = \frac{1}{384} = 105$ A few students let g(x) be a degree 3 or 4 polynomial instead, of a quadratic polynomial.
2i	$\frac{\text{Method 1}: (\text{method of differences})}{\sum_{n=1}^{N} p_n = \sum_{n=1}^{N} \ln \frac{1+x^n}{1+x^{n+1}}}$ $= \sum_{n=1}^{N} (\ln(1+x^n) - \ln(1+x^{n+1}))$ $= \ln(1+x) - \ln(1+x^2)$ $+ \ln(1+x^2) - \ln(1+x^3)$ $+ \ln(1+x^3) - \ln(1+x^4)$ \vdots $+ \ln(1+x^3) - \ln(1+x^{n+1})$ $= \ln(1+x) - \ln(1+x^{n+1})$ $= \ln(1+x) - \ln(1+x^{n+1})$ $= \ln \frac{1+x^n}{1+x^n} \text{amPaper}$	This part is generally well done. Students must write down a few rows of the summation and show the diagonal cancellation clearly, instead of skipping the working. Some students listed out the entire summation all on 1 line, instead of 2 neat columns. It is difficult to see what terms to cancel. A few students gave the final answer as $ln(1+x) - ln(1+x^{n+1})$ instead of $ln(1+x) - ln(1+x^{N+1})$.

2019 C2 H2 Prelim P1 Markers Comments

	Method 2: (using property of logarithm)		1
	$\sum_{n=1}^{N} p_n = \sum_{n=1}^{N} \ln \frac{1+x^n}{1+x^{n+1}}$		
P	$= \ln \frac{1+x}{1+x^2} + \ln \frac{1+x^2}{1+x^3} + \ln \frac{1+x^3}{1+x^4} + \dots + \ln \frac{1+x^N}{1+x^{N+1}}$		
\geq	$= \ln \frac{1+x}{1+x^2} \frac{1+x^2}{1+x^3} \frac{1+x^4}{1+x^4} \cdots \frac{1+x^{N+1}}{1+x^{N+1}}$		
6	$=\ln\frac{1+x}{1+x^{N+1}}$		
211	Since $-1 < x < 1$, as $N \to \infty$, $x^{N+1} \to 0$.	Some students thought that as $N \to \infty$, $x^{N+1} \to \infty$.	
	$\therefore \sum_{n=1}^{\infty} p_n = \ln \frac{1}{1+0}$ $= \ln(1+x)$		
3	$ \begin{array}{c} A \\ 1 \\ \frac{\pi}{-x} \end{array} $	Students recalled Cosine Rule Wrongly "+2BC" instead of "-2BC", or wrongly located the angle	
	$B \sim C$ By Cosine Rule,	Two sets of solutions produced because students include $BC < 0$	
	$\cos\left(\frac{\pi}{2} - x\right) \frac{2^2 = 1^2 + (BC)^2 - 2(BC)\cos\left(\frac{\pi}{2} - x\right)}{4 = 1 + (BC)^2 - 2(BC)\sin x}$	Some students applied sine rule but mostly made mistakes at identifying the	
	$(BC)^2 - 2(BC)\sin x - 3 = 0$	other angles with new unknowns. Therefore they	
	$BC = \frac{2 \sin x \pm \sqrt{4} \sin x + 12}{2}$	should use the easiest method which is the Cosine	
	$= \sin x \pm \sqrt{\sin^2 x + 3}$ $\approx x \pm \sqrt{x^2 + 3}$	Rule where there is only one unknown $\cos\left(\frac{\pi}{x}-x\right)$	
	$= x + \sqrt{x^2 + 3}$, since $BC > 0$	involved.	
	Islandwige Delivery Whatsapp Only 88660031	10	
	$= x + \sqrt{3} \left[1 + \frac{1}{2} \frac{x^2}{3} + \dots \right]$	9	5
	$\approx \sqrt{3} + x + \frac{x^2}{2\sqrt{3}}$		
	$p = \sqrt{3}, q = 1, r = \frac{1}{2\sqrt{3}}$		

	Alternative Solution	
	$B = \begin{bmatrix} A & & & \\ \hline \frac{\pi}{2} & x - y \\ \frac{\pi}{2} - x & 2 \\ B \end{bmatrix} = C$	
	By sine rule,	
6	$BC = \frac{2}{1}$	
	$\sin\left(\frac{\pi}{2} + x - y\right) \sin\left(\frac{\pi}{2} - x\right) \sin y$ $\Rightarrow \frac{BC}{\cos(y - x)} = \frac{2}{\cos x} = \frac{1}{\sin y} \qquad \boxed{\cos x}$	
	$\Rightarrow BC = \frac{2\cos(y-x)}{\cos x} \qquad \qquad \sqrt{4-\cos^2 x}$	
	$\Rightarrow BC = \frac{2(\cos y \cos x + \sin y \sin x)}{\cos x}$	
	$\Rightarrow BC = \frac{2(\cos y \cos x + \sin y \sin x)}{\cos x}$	
	$\Rightarrow BC = \frac{2\left(\frac{\sqrt{4 - \cos^2 x}}{2}\cos x + \frac{\cos x}{2}\sin x\right)}{\cos x}$	
	$\Rightarrow BC = \frac{\sqrt{4 - \cos^2 x \cos x + \cos x \sin x}}{\cos x}$	
	$\Rightarrow BC = \sqrt{4 - \cos^2 x} + \sin x$	
	$\Rightarrow BC = \sqrt{3 + \sin^2 x} + \sin x$	
4i	Sketch the graph using GC, remember to set window	Common Mistakes are:
	appropriately.	Conclude with range of x
		instead of set of x
	Notice that it is the upper half of a hyperbola.	Only one side of D
	$(x+5)^2$ Whatsapp Only 88660031	concluded, e.g. $D = [1, \infty)$
	$y = \sqrt{\frac{36}{36}} - 1$	or $D = (-\infty, -11]$ because
	$\frac{(x+5)^2}{6^2} - y^2 = 1$	values to obtain 36 from $(x+5)^2$
	We have $D = (-\infty, -11] \cup [1, \infty)$.	(x+5)

ii	Let $y = \sqrt{\frac{(x+5)^2}{36} - 1}$ $\frac{(x+5)^2}{6^2} - y^2 = 1$ To find asymptotes: $y^2 = \frac{(x+5)^2}{6^2}$ $y = \pm \frac{x+5}{6}$ y = f(x) (-11,0) y (1,0) y (1,0) y (1,0)	Students wrongly included - 1 when $x \rightarrow \pm \infty$ and thus ended up wrong asymptotes Only one asymptote is drawn as students omitted the negative square root Only half of the graph is drawn because of mistakes made at (i) and (ii) Drawn the whole hyperbola as students overlooked that only the positive square root is involved in the graph
	KIASU EXAMPLE VIEW STATE	

[5i	$\overrightarrow{OC} = \lambda \mathbf{b}$	Generally very well done.
		$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{OC} = a + \lambda \mathbf{b}$	Careless students tend to
		$\overrightarrow{ON} = \frac{4}{7}\lambda\mathbf{b}$	write $\frac{1}{3}(\mathbf{a} + \lambda \mathbf{b})$ instead of
1		$\overrightarrow{OM} = \frac{\overrightarrow{OD} + 2\overrightarrow{OA}}{3}$	$\frac{1}{3}(3\mathbf{a}+\lambda\mathbf{b})$, which leads to
÷.,		$\mathbf{a} + \lambda \mathbf{b} + 2\mathbf{a}$	wrong answers in part (ii).
		$=\frac{1}{3}$	A handful of students tend to
		$=\frac{1}{-}(3a+\lambda b)$	miss out the tilde sign for
		3	vectors.
	ü	Area of triangle $OMD = \frac{1}{2} \overrightarrow{OM} \times \overrightarrow{OD} $	Not very well done as quite a lot of students still cannot do
		2	cross product properly,
		111	where order matters.
		$=\frac{1}{2}\left \frac{3}{3}(\lambda \mathbf{b}+3\mathbf{a})\times(\lambda \mathbf{b}+\mathbf{a})\right $	Algebraic simplification
		$=\frac{1}{2}\left \lambda^{2}\mathbf{b}\times\mathbf{b}+\lambda\mathbf{b}\times\mathbf{a}+3\lambda\mathbf{a}\times\mathbf{b}+3\mathbf{a}\times\mathbf{a}\right $	skills were weak where many
		6	students were confused by the λ and yet could obtain
		$= \frac{1}{\epsilon} \left -\lambda \mathbf{a} \times \mathbf{b} + 3\lambda \mathbf{a} \times \mathbf{b} \right (\because \mathbf{b} \times \mathbf{b} = 0 = \mathbf{a} \times \mathbf{a})$	the right answer. For
			example, the most common
		$=\frac{1}{3}\lambda \mathbf{a} \times \mathbf{b} $	1 1 1
			$\frac{1}{2} \left \frac{1}{3} (\lambda \mathbf{b} + 3\mathbf{a}) \times (\lambda \mathbf{b} + \mathbf{a}) \right $
		2	$=\frac{1}{2}\lambda\left \frac{1}{3}(\mathbf{b}+3\mathbf{a})\times(\mathbf{b}+\mathbf{a})\right $
			instead of
			$\frac{1}{2} \left \frac{1}{3} (\lambda \mathbf{b} + 3\mathbf{a}) \times (\lambda \mathbf{b} + \mathbf{a}) \right $
			$=\frac{1}{2}\lambda^{2}\left \frac{1}{3}(\mathbf{b}+\frac{3}{\lambda}\mathbf{a})\times(\mathbf{b}+\frac{1}{\lambda}\mathbf{a})\right $
		KIASU	Students were penalized for
		ExamPaper	this even though their final answer was correct.
		Islandwide Delivery Whatsapp Only 88660031	UL
			Many missed out the tilde
	iii	$ \mathbf{n} \mathbf{a} $ is the length of projection of \overrightarrow{OA} on \overrightarrow{OD}	Many varying wrong
	192.04	Is all the fundament projection of on on on	answers:
			 Some wrote d, which is not even given in the
			question.

[Length of projection of
			Of onto OD with no
			OA Onto OD with no
			arrows above to indicate
			they are vectors.
			 Length of projection of
			OA onto p
			 Length of projection of p
4		1	\overline{OD} onto \overline{OA}
			- Length of projection of
	1		line OA onto line OD
		C	- Shortest distance from A
			to line OD
			 Projection vector of OA
			onto \overrightarrow{OD}
			- Projection of point A
			onto point D
		°O A	-
	6i	dx dv	Generally well done
		$\frac{dt}{dt} = 50 \sin t \cos t$, $\frac{dy}{dt} = -2 \sin t$	
		dv -1	
		$\frac{1}{dx} = \frac{1}{25\cos t}$	
	ii	$- \frac{dy}{\sqrt{2}} - \frac{\sqrt{2}}{\sqrt{2}} = - \frac{1}{\sqrt{2}}$	Generally well done
		When $t = \frac{\pi}{4}$, $\frac{dy}{dx} = \frac{\sqrt{2}}{25}$, $x = \frac{25}{2}$, $y = \sqrt{2}$	
		4 ut 25 2	A handful of careless
		.5	mistakes due to the
		$y = -\frac{\sqrt{2}}{25}x + c$	simplification of surds.
		25	1.
		$c = \sqrt{2} + \frac{1}{5} = \frac{3}{5}$	
		$\sqrt{2}$ $\sqrt{2}$	
		Equation of the second	
		ExamPaper	
		When x15Tanowide Beilivery 2 Whatsapp Only 88660031	Ŭ,
		When $y = 0$, $x = \frac{75}{2}$	
		2	
		Area of triangle $OPQ = \frac{1}{2} \left(\frac{75}{2} \right) \left(\frac{3}{\sqrt{2}} \right) = \frac{75}{4} \left(\frac{3}{\sqrt{2}} \right) = \frac{225}{4\sqrt{2}}$	
		- (- / (42 / - (42 / - 44 2	

		$= -\ln 1 - e^{x} + \ln -e^{x} + C$ = $-\ln 1 - e^{x} + x + C$	$=\frac{1}{1}\ln\left \frac{u-\frac{1}{4}}{1}\right $ instead of
			$2\left(\frac{1}{2}\right)^{u} \left \begin{array}{c} u \end{array} \right $
1	C	þ-	$\frac{1}{2\left(\frac{1}{u}\right)}\ln\left \frac{u-1}{u}\right .$
		þ	-(2)
1	8i	_y_	A number of students did not
		$(0,\sqrt{3a})$ (a,a)	read the question carefully,
		10.2	which asks for coordinates
			of
			(1) stationary points
		(-a,0) O $(3a,0)$	(2) x- and y- axial intercepts
			Students are required to give
			a rounded curve where it cuts
		10	the x axis (the curve is
			supposed to be half of an
			ellipse). If it is too sharp, 1
			mark will be deducted.
	ii	For f^{-1} to exist, f must be one-one. i.e. every horizontal line	Some students gave a range
		$y = h$, $h \in \mathbb{R}$ can only cut the graph of $y = f(x)$ at most	of values. Question asks for
	L	once. Hence, the greatest value of k is a.	the maximum value of k.
	ш	Let $y = \int a^2 - \frac{(x-a)^2}{(x-a)^2}$	Many students either did not
		$\lim_{x \to 0} y = \sqrt{a}$	give \pm when taking square
		$(x-a)^2$	root or did not give the
		$\Rightarrow y^{*} = a^{*} - \frac{1}{4}$	correct reason for rejecting
		$\Rightarrow (x-a)^2 = 4(a^2 - y^2)$	the positive square root.
		$\Rightarrow x = a \pm 2\sqrt{a^2 - y^2}$	Many students also did not
		$\rightarrow x = a \left[2 \left[a \right] - a \left[c \right] \right]$	give the correct form when
		KIASU	the question asks for the
		$f^{-1}: x \mapsto Eaceard a point \in \mathcal{F}, D \leq x \leq a$	inverse function to be given
		Islandwide Delivery Whatsapp Only 88660031	in similar form.
	wiv	$q(x) = f\left(\frac{3}{2}x\right)$ for $x \in \mathbb{P}$ $= \frac{2}{3}a \le x \le 2a$	Some students did not give
		$B(x) = I(\frac{1}{2}x)$ for $x \in \mathbb{R}, -\frac{1}{3}d \le x \le 2d$.	the correct notation when
			writing R_f and D_g and hence 1
		Since $\mathbf{K}_{f} = [0, a] \subseteq \begin{bmatrix} -\frac{1}{3}a, 2a \end{bmatrix} = \mathbf{D}_{g}$, the composite	mark was deducted.
		function gf exists.	

	$\begin{pmatrix} 0, \frac{\sqrt{3}a}{2} \\ \left(-\frac{2}{3}a, 0\right)^O \end{pmatrix} \xrightarrow{(2a,0)} x$	Some students were confused between $R_f \subseteq D_g$ and $D_g \subseteq R_f$. Some students also mixed up the symbols \subseteq with \in , which means belongs to or an element of.
	$D_{gf} = D_{f} \xrightarrow{f} R_{f} = [0, a] \xrightarrow{g} \left[\frac{\sqrt{3}}{2} a, a \right] = R_{gf}$ $R_{gf} = \left[\frac{\sqrt{3}}{2} a, a \right]$	Many students gave $R_{gf} = \left[\frac{\sqrt{3}}{2}a, \frac{\sqrt{15}}{4}a\right] \text{ as the}$ answer, failing to see that <i>a</i> is actually the max point.
9i	LED 1 LED 2 LED 3 LED 4 LED 8 LED 9 $u_1 = d$ $u_2 = d(\frac{4}{5})^2$ $u_3 = d(\frac{4}{5})^2$ $u_8 = d(\frac{4}{5})^7$ $d(\frac{4}{5})^7 = 56.2$ $\therefore d = 267.9824829 = 268.0 (1 d.p.)$	 A number of candidates used d(⁴/₅)⁸ instead of d(⁴/₅)⁷. Such an error can easily be avoided by drawing a simple sketch as shown to determine the required distance as u₈ = d(⁴/₅)⁷. Many candidates took the tedious approach of S₈ + S₇ = 56.2 when u₈ = 56.2 suffices.
ii	Since $ r = \left \frac{4}{5}\right < 1$, sum to infinity exists. Hence maximum theoretical length of wire $= \frac{d}{1-r} \underbrace{ ASU }_{\text{ExamPaper}}$ $= \frac{267.98248829 \text{ Delivery Whatsapp Only 88660031}}{1-\frac{4}{5}}$ $= 1339.912415$ $= 1339.9 \text{ cm} (1 \text{ d.p.})$	 Since r = 4/5 <1, candidates should apply S_x = d/(1-r) directly. A large number of candidates rounded off the answer to 1340.0 cm instead of 1339.9 cm.

	Let $u_n = d\left(\frac{4}{5}\right)^{n-1} = 267.9824829\left(\frac{4}{5}\right)^{n-1} \ge 1$		$267.9824829(\frac{4}{5})^{n-1} = 1$
	$\left(\frac{4}{5}\right)^{n-1} \ge \frac{1}{267.9824829}$		instead. This is
	$\ln(\frac{4}{5})^{n-1} \ge \ln \frac{1}{267.9824829}$		answer of
	$(n-1)\ln(\frac{4}{5}) \ge \ln \frac{1}{267.9824829}$		n = 26.05526859 gives
	$n-1 \le 25.05526859$		n = 26 or $n = 27$. Solving
	:. $n \le 26.05526859$		as an inequality on the
6	Since largest integer $n = 26$, last LED is LED $(26+1) =$		other hand provides a clear and convincing
	LED 27 Hence colour of last LED 27 is vellow		argument why $n = 26$
	Trence colour of last LED 27 is yellow.		eventually.
10a	v + iu = 2(1)	•	Many students have tried
	av - 2u = 31(2)		letting $u = x + yi$ for
	$(1) \times a^{-}(2)$. jau + 2u = 2a - 3j		form equations involving
	2a-3i $2-ia$		x and y. This is a longer method.
	$u = \frac{1}{2 + ia} \times \frac{1}{2 - ia}$	•	Several students have
	$u = \frac{4a - 6i - 2a^2i - 3a}{4a - 6i - 2a^2i - 3a}$		wrong concept of equating the real and
	$4+a^2$ $a=(6+2a^2)i$		imaginary part. E.g. they
	$u = \frac{u - (0 + 2u)^{2}}{4 + a^{2}}$		simply obtain $au = -3$ and $2u = 2a$, when they
	$= a - 6 + 2a^2$		have this equation:
	$-\frac{1}{4+a^2} + \frac{1}{4+a^2}$		iau + 2u = 2a - 3i. Real
	Sub u into (1) v = 2 - iu		only be equated when the
	-2 if $a = 6+2a^2$ i)		equation has solely real
	$-2 - i(\frac{1}{4 + a^2} - \frac{1}{4 + a^2})$		in the equation (not when
	$=2-\frac{6+2a^2}{4a^2}-\frac{a}{4a^2}$ i		there is complex number
	$4+a^2$ $4+a^2$ 2 a^2		Students should not stop
	$=$ $4 + d$ $4 + d^2$ S $=$ $=$ $=$ $>$ O		as x and y expression,
	ExamPaper 7		and should write out u and v in the form of
	Islandwide Delivery Whatsapp Only 88660031		x + yi.
		•	Considerable number of
			the instruction to
			simplify their answers.

	bi	Sub $x = -k$ into $bx^3 + (12b + i)x^2 + (12i+b)x + 12b = 0$ We have: $-bk^3 + (12b + i)k^2 - (12i+b)k + 12b = 0$ $-bk^3 + 12bk^2 - bk + 12b = 0 (1)$ and $k^2 - 12k = 0 (2)$ (2) implies k(k-12) = 0 k = 0, 12 Reject $k = 0$ as $b \neq 0$. $bx^2 + ix + b = 0$ $x = \frac{-i \pm \sqrt{-1 - 4b^2}}{2b}$ $x = \frac{-1 \pm \sqrt{1 + 4b^2}}{2b}$ Hence roots are purely imaginary EXAMPLE 12 EVALUATE: The second	•	Several students are careless in omitting having $x = -k$ in the term $(12i+b)x$ when they do substitution of $x = -k$ into the cubic equation. Several students tried the longer method of factorisation instead of using Factor Theorem to solve. Some students yet understand the mean of (x+k) is a factor and substituted $(x+k)$ into the equation instead. Likely they yet understood the meaning of root and factor. Students should not simply "cancel" k when solving $k^2 - 12k = 0$. They should factorise completely and justify the rejection of $k = 0$. Many students work out the discriminant to be < 0 and then no real roots exist. The use of discriminant is applicable only for equation with real coefficients. Many students are unaware that $\sqrt{-1-4b^2}$ is simply $\sqrt{1+4b^2i}$. Students should not waste time trying to complete the square to
-	biii	Hence $bx^3 + (12b + i)x^2 + (12i+b)x + 12b = (x+12)(bx^2 + cx + b)$ By compare coeff of x = c = i = using (i):	•	complete the square to find x, and be aware of usage of formula to get x. Many students worked out the discriminant to be < 0 and then claimed no

		$bx^{3} + (12b + i)x^{2} + (12i + b)x + 12b = (x + 12)(bx^{2} + ix + b)$ $= b(x + 12)(x + \frac{1 + \sqrt{1 + 4b^{2}}}{2b}i)(x + \frac{1 - \sqrt{1 + 4b^{2}}}{2b}i)$	•	real roots exist. The use of discriminant is applicable only for equation with real coefficients. It can't be used in this context. Many students are unaware that $\sqrt{-1-4b^2}$ is simply $\sqrt{1+4b^2}i$. Students should not waste time trying to complete the square to
-	11 a	Height of liquid in the cylinder = $x - 4$ $V = \pi (2.5)^2 (x - 4) + \frac{1}{3} \pi (2.5)^2 (4)$ $= 6.25\pi (x - 4) + \frac{25}{3} \pi$ $\frac{dV}{dx} = 6.25\pi$ and $\frac{dV}{dt} = -18$ $\frac{dx}{dt} = \frac{dx}{dV} \times \frac{dV}{dt}$ $= \frac{-18}{6.25\pi}$ = -0.916 cm/min	•	usage of formula to get x. Many students took the height of the liquid in the cylinder as x instead of x - 4 as they forgot to consider the height of the cone. Many students did not include the negative sign for $\frac{dx}{dt}$ because they did not consider the volume of the liquid flowing out of the cone to be $\frac{dV}{dt} = -18 \text{ cm}^3/\text{min}$
-	b	$\frac{r}{x} = \frac{2.5}{4} \Rightarrow x = 1.6r$ When $x \neq 2$ A SU $\Rightarrow r$ $V_c = \frac{1}{3}\pi r^{2}$ (1.6r) $= \frac{1.6}{3}\pi r^{3}$ $\frac{dV}{dr} = 1.6\pi r^{2}$	•	Several students did not realise that $x = 1.6r$ and replaced x as 2 in the volume expression $V_c = \frac{1}{3}\pi r^2 x$. Similar to 11(a) many students did not include the negative sign for $\frac{dr}{dt}$ because they did not consider the volume of

[dr dr dV	the liquid flowing out of
		$\frac{1}{\mathrm{d}t} = \frac{1}{\mathrm{d}V} \times \frac{1}{\mathrm{d}t}$	the cone to be $\frac{dV}{dV} = -18$
		$=\frac{1}{2} \times (-18)$	dt
		$1.6\pi \left(\frac{5}{2}\right)^2$	cm ³ /min
		$1.0\pi(4)$	
		= -2.29 cm/min	
	c	Val of hand $= \pi \int_{0}^{0} 225 \left(1 - \frac{y^2}{y^2}\right) dy$	 Many students did not
		$J_{-10} = \pi J_{-10} = 225 \left(1 - \frac{1}{100}\right) dy$	obtain the correct
		Vol. of empty space	C ⁰
		$-\pi \int_{0}^{0} 225 \left[1 - \frac{y^{2}}{y^{2}}\right] dy - \pi (2.5)^{2} (20) - \frac{1}{2} \pi (2.5)^{2} (4)$	of the bowl, $\pi \int_{-10}^{10} x^2 dy$.
		$= \pi \int_{-10}^{1} \frac{1}{100} dy - \pi (2.5)(20) - \frac{1}{3}\pi (2.5)(4)$	A handful of students
		$= 4293.510 \text{ cm}^3 (3 \text{ d.p.})$	omitted π in the volume
			expression.
			 Some students placed the modulus in the volume
			expression e.g.
			$\pi \int_{-10} x^2 dy$, not
			realising that the volume
			expression did not require
			the modulus.
			 A handful of students did not mod the group tion
			carefully and left the final
			answer either in exact
			form or 3 significant
		0	figures.
	12i	(0.8) (2)	Students need to take note of
		Equation of line through MD : $\mathbf{r} = \begin{bmatrix} 0.6 \\ 0.6 \\ 0.6 \end{bmatrix} + \lambda = \begin{bmatrix} 2 \\ 0.6 \\ 0.6 \end{bmatrix}$	the format of an equation of
			line that it is of the form
			$\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$.
		Islandwide Delivery Whatsapp Only 88660031	$MD = 0.6 + \chi / 1s$
			WPONG
		Equation of line through $ND_{1} = \begin{pmatrix} 0.4 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 1.65$	In fact \overrightarrow{OD} is of the form
		Equation of the through ND : $\mathbf{r} = \begin{bmatrix} -0.9 \\ -0.9 \end{bmatrix} + \mu \begin{bmatrix} 1.65 \\ 0.2 \end{bmatrix}$, $\lambda \in \mathbb{R}$	(0.8) (2)
			$0.6 + \lambda$ 7 instead
		Since lines through MD and ND intersect at D.	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix}$
[· · · · · · · · · · · · · · · · · · ·	

[$\left[0.8 + 2\lambda = 0.4 + 0.4\mu\right]$	Many did not leave final
		0.6 + 7.2 = -0.0 + 1.65	answer in coordinates form,
		$0.0 + 7\lambda = -0.9 + 1.05\mu$	or write the equation to be
		$-\lambda = 0.3\mu$	shown. Some missed out
		Solving using GC,	curly sign for vectors.
		$\lambda = -\frac{3}{25}, \ \mu = \frac{2}{5}.$	
		Substitute $\lambda = -1.2$ into equation of line through <i>MD</i> ,	
1		(0.8) (2) (0.56)	
		$0.6 - \frac{3}{25}$ 7 = -0.24	
	1	$\begin{pmatrix} 0 \\ 25 \\ -1 \end{pmatrix}$ 0.12	
		\therefore coordinates of D is (0.56, -0.24, 0.12), (shown)	
	ii	(0)	Many used the cosine
			formula, failed to use sin
		Equation of horizontal ground: $\mathbf{r} \cdot [0] = 0$	formula or link to 90°.
		(1)	Many did not realize that the
		Required angle	normal vector for the
		0.56 0	$\begin{pmatrix} 0 \end{pmatrix}$
		-0.24 . 0	horizontal floor is 0.
		0.12 1	(1)
		$=90^{\circ} - \cos^{\circ} \frac{1}{\sqrt{0.56^2 + (-0.24)^2 + 0.12^2 \sqrt{1}}}$	0.12
		-11 142335670	Some gave $\tan \theta = \frac{1}{0.56}$ or
		=11.14255507	equivalent. Note that this is
		$=11.1^{\circ}$ (1 d.p.)	wrong, as the point below D
			is not on x-axis.
	ш	Given $T(0,0,0.07)$.	Many wrote 70 instead of
		\rightarrow $\begin{pmatrix} 0.8 \\ 0.4 \end{pmatrix}$ $\begin{pmatrix} 0.4 \\ 0.4 \end{pmatrix}$	(0.07, 10 got to convert to km)
		NM = 0.6 - 0.9 = 1.5	-0.105
			0.028 ≠ 2.8 !!
		(0.8) (0) (0.8)	(-0.96) (-96)
		$\overrightarrow{TM} = \begin{vmatrix} 0.6 \\ 0.6 \end{vmatrix} = \begin{vmatrix} 0.6 \\ 0.6 \end{vmatrix}$	Students conveniently
		KASU	equated the two, which is wrong. Please take note for
		(0.4) Exam Paper (-10.5)	presentation.
		1.5 × Islandwide Delivery Whatsapp Only 88660031 0.6 = 0.028 = 0.01 2.8	
		$\left(\begin{array}{c}0\end{array}\right)\left(\begin{array}{c}-0.07\end{array}\right)\left(\begin{array}{c}-0.96\end{array}\right)\left(\begin{array}{c}-96\end{array}\right)$	
		\therefore equation of p :	
		(-10.5) (0.8) (-10.5)	· · · · ·
		$\mathbf{r} \cdot \begin{vmatrix} 2.8 \\ -6.72 \end{vmatrix} = \begin{vmatrix} 0.6 \\ -6.72 \end{vmatrix} = -6.72$ (Shown)	

iv	Equation of line perpendicular to p passing through D is $\mathbf{r} = \begin{pmatrix} 0.56 \\ -0.24 \\ 0.12 \end{pmatrix} + t \begin{pmatrix} -10.5 \\ 2.8 \\ -96 \end{pmatrix}, t \in \mathbb{R}.$	Students using projection vector method have to take note of the direction of the resultant vector. $\overrightarrow{DG} = (\overrightarrow{DT}, \mathbf{n})\mathbf{n}$.
X	Substitute equation of line into <i>p</i> , $\begin{pmatrix} 0.56 - 10.5t \\ -0.24 + 2.8t \\ 0.12 - 96t \end{pmatrix} \cdot \begin{pmatrix} -10.5 \\ 2.8 \\ -96 \end{pmatrix} = -6.72$	There should NOT be any modulus for the formula when students use the projection vector method.
	$\therefore t = 0.00121618712$ Hence $\begin{pmatrix} 0.56 \\ -0.24 \\ 0.12 \end{pmatrix} + 0.00121618712 \begin{pmatrix} -10.5 \\ 2.8 \\ -96 \end{pmatrix} = \begin{pmatrix} 0.5472300352 \\ -0.2365946761 \\ 0.00324603648 \end{pmatrix}$ $= \begin{pmatrix} 0.547 \\ -0.237 \\ 0.00325 \end{pmatrix}$ $\therefore \text{ coordinates of } G \text{ is } (0.547, -0.237, 0.00325).$	Quite a number of students have errors in accuracy. Answers are to be given in 3 s.f., for the 3^{rd} coordinate, it's of 5 dec places, thus more decimal places have to taken into consideration for the value of <i>t</i> . Answer should be left in coordinates form.
v	Method 1: [Hence using (0.547, -0.237, 0.00325)] Required distance <i>DG</i> = $\sqrt{(0.56 - 0.54723)^2 + (-0.24 - (-0.23659))^2 + (0.12 - 0.003246)^2}$ = 0.1174998 = 0.117 (3 s.f.) ∴ required distance = 117 m Method 2: [Otherwise using dot product] $\overrightarrow{MD} = \begin{pmatrix} 0.56 \\ -0.24 \\ 0.12 \end{pmatrix} - \begin{pmatrix} 0.8 \\ 0.6 \\ 0 \end{pmatrix} = \begin{pmatrix} -0.24 \\ -0.84 \\ 0.12 \end{pmatrix}$ Required distance $= \begin{pmatrix} ExamPapel0.5 \\ -0.24 \\ -0.84 \\ 0.12 \end{pmatrix} \cdot \frac{1}{\sqrt{(-10.5)^2 + 2.8^2 + (-96)^2}}$ = 0.1174996006 = 0.117 (3 s.f.)	Students have error in accuracy for answer due to answer in part (iv). Some students did not know how to convert to metres correctly, or failed to convert to metres.
	\therefore required distance = 117 m	

Method 3	
(-10.5)	
$\overline{DG} = \beta - 28$	
PO = p 2.0	
$= 0.00121618712\sqrt{9334.09}$	
= 0.1174996006	
= 0.117 (3 s.f.)	
:. required distance = 117 m	

2019 C2 H2 Prelim P2 Solutions

		$3ax-3a^2 \le 2(x-a)^2$, solve the inequality, the solution should intercept with $x \ge a$. (ii) If $x < a$, $-(3ax-3a^2) \le 2(x-a)^2$, solve the inequality, the solution should intercept with $x < a$. The final solution should be the union of the (i) and (ii) solutions.	
111	Replace x with $x + \frac{a}{2}$,	A lot of students failed to identify the	
	$2(x+\frac{a}{2}-a)^2 \ge \left 3a\left(x+\frac{a}{2}\right)-3a^2\right $	replacement of x with $x + \frac{a}{2}$	
	$2\left(x-\frac{a}{2}\right)^2 \ge \left 3ax-\frac{3a^2}{2}\right $		
	$\therefore x + \frac{a}{2} \le -\frac{a}{2} \text{ or } x + \frac{a}{2} = a \text{ or } x + \frac{a}{2} \ge \frac{5a}{2}$		
	$\Rightarrow x \le -a \text{ or } x = \frac{a}{2} \text{ or } x \ge 2a$		
2i	$y = \frac{e^{\sin x}}{h}$	This question is in general well done.	
	$\sqrt{1+2x}$ $\sqrt{1+2x} = e^{\sin x}$	Students are reminded to show	
	$\sqrt{1+2x}\frac{dy}{dx} + \frac{1}{2}\frac{2}{\sqrt{1+2x}}y = \cos x e^{\sin x}$	question in order to get the full credit.	
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{1+2x} = \frac{\mathrm{e}^{\sin x}}{\sqrt{1+2x}} \cos x$		
	$= y \cos x$		
	Alternativelya mPaper		
	$\frac{\sqrt{1+2x}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) + (1+2x)^{-\frac{1}{2}}}{y\sqrt{1+2x}} = \cos x$		
	$\frac{1}{y}\frac{dy}{dx} + \frac{1}{1+2x} = \cos x \text{ (Shown)}$		

[ii	Differentiating again w.r.t. x,	The most common mistake for this
		$1 d^2 y = 1 (dy)^2 = 2$	question is the implicit
		$\frac{1}{y}\frac{1}{dx^2} - \frac{1}{y^2}\left(\frac{1}{dx}\right) - \frac{1}{(1+2x)^2} = -\sin x$	differentiation of expressions such as
			$\frac{1}{y}$. Many students forgot to put
		$(1 d^3 v + 1 dv d^2 v + 2 dv d^2 v + 2 (dv)^3) = 8$	y dx
		$\int \frac{1}{v^2} \frac{dy}{dr^3} - \frac{1}{v^2} \frac{dy}{dr} \frac{dy}{dr^2} - \frac{1}{v^2} \frac{dy}{dr} \frac{dy}{dr^2} + \frac{1}{v^3} \left(\frac{dy}{dr} \right) + \frac{1}{(1+2r)^3} =$	$-\frac{dos x}{dos}$
•	\mathbf{Y}	$(1, 1^3)$ $(1, 1^2)$ $(1, 1^3)$ $(1, 1^3)$	dx dx
		$\frac{1}{y}\frac{d^{2}y}{dx^{3}} - \frac{3}{y^{2}}\frac{dy}{dx}\frac{d^{2}y}{dx^{2}} + \frac{2}{y^{3}}\left(\frac{dy}{dx}\right) + \frac{8}{(1+2x)^{3}} = -\cos x$	expression in y. The correct differentiation is shown as following:
			$d(1 dy) 1 d^2y 1 (dy)^2$
		When $x = 0$, $y = 1$, $\frac{dy}{dt} = 0$, $\frac{d^2y}{dt^2} = 2$, $\frac{d^3y}{dt^2} = -9$.	$\frac{1}{\mathrm{dx}}\left(\frac{1}{y}\frac{\mathrm{dx}}{\mathrm{dx}}\right) = \frac{1}{y}\frac{\mathrm{dx}^2}{\mathrm{dx}^2} - \frac{1}{y^2}\left(\frac{\mathrm{dx}}{\mathrm{dx}}\right)$
		$dx dx^2 dx^3$	
		The Maclaurin's series for y is	
		$y = 1 + \frac{2}{3} + \frac{2}{3} + \frac{9}{3} + \frac{3}{3} + \frac{3}{3$	
		$y = 1 + \frac{1}{2!}x - \frac{1}{3!}x + \dots$	
		$-1 + r^2 - \frac{3}{2}r^3 +$	
		$-1 \cdot x - \frac{1}{2}x + \dots$	
	iii	$\int_{1}^{1} \frac{e^{\sin x}}{1-x^2} dx \sim \int_{1}^{1} \frac{1}{1+x^2} - \frac{3}{2}x^3 dx$	A lot of students did not realise that
		$J_0 \frac{1}{\sqrt{1+2x}} dx \approx J_0^{-1+x} - \frac{1}{2}x - dx$	they can use G.C. to evaluate the
		23	evaluating the integral
		$=\frac{1}{24}$	evaluating the integral.
		= 0.985 (3 s.f.)	
	iii	$\int_{1}^{1} \frac{e^{\sin x}}{2} dx = 0.058$	1. Many students just mentioned that
		$J_0 \sqrt{1+2x} = 0.058$	the Maclaurin series ignore higher
		V	power of x is the reason why it is an
		e ^{sin x}	approximation rather than the exact
		$y = \frac{1}{\sqrt{1+2r}}$	answer. However, this does not
			explain why the approximation is not
		1 1	good.
		$y = 1 + x^2 - \frac{3}{2}x^3$	2 Mary databased
			2. Many students just commented that x is too big or x is not small
		KIASU (L	without further explaining how this
		The graphs of $y = 2$ and $y = 1 + r^2 - 3r^3$	affects the approximation.
		1+2x	
		differ significantly near to $x = 1$. Hence the	3. Some students mentioned the valid
		approximation is not good.	range for expansion. However, valid
			for approximation x being in the
			valid range of expansion does not
			guaranteed a good approximation
			either.

		4. Some students mentioned that x is not smaller than 1. However, being less than 1 does not guaranteed a good approximation.
iv Repl $y = \frac{1}{e^{\sin x}}$	ace x with $-x$ $\frac{e^{\sin(-x)}}{\sqrt{1-2x}} = \frac{e^{-\sin x}}{\sqrt{1-2x}} = \frac{1}{e^{\sin x}\sqrt{1-2x}}$ $\frac{1}{\sqrt{1-2x}} \approx 1 + x^2 + \frac{3}{2}x^3$	Many students tried to use standard series. They need to see the connection between this part and par (ii).
$\begin{array}{c c} 3i & p = \\ & \arg(1) \\ \hline \\ ii & \Pi_1 \\ -\frac{1}{2} \\ \\ & \Pi_2 \\ \hline \\ & \Pi_1 \\ \hline \\ & \Pi_2 \\ \hline \\ & \Pi_1 \\ \hline \\ & \Pi_2 \\ \hline \\ & \Pi_1 \\ \hline \\ & \Pi_2 \\ \hline \\ & \Pi_1 \\ \hline \\ & \Pi_2 \\ \hline \\ \\ & \Pi_2 \\ \hline \\ \\ & \Pi_2 \\ \hline \\ \\ \\ & \Pi_2 \\ \hline \\ \\ \\ & \Pi_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{vmatrix} \frac{a}{1+\sqrt{3}i} \\ = \frac{a}{2} \\ p) = \arg\left(\frac{a}{1+\sqrt{3}i}\right) \\ = \arg(a) - \arg\left(1+\sqrt{3}i\right) \\ = 0 - \frac{\pi}{3} \\ = -\frac{\pi}{3} \\ \hline n \\ Q \\ \hline \sqrt{\frac{\pi}{3}} \frac{1}{2}a \\ \hline P \\ Q \\ \hline \sqrt{\frac{\pi}{3}} \frac{1}{2}a \\ \hline R \\ shaple is a rhombus. $	 Instead of using the properties of arg and mod, almost all went thrumultiply by conjugate to simplify <i>p</i>. and some made careless mistake A few didn't know that p is in the 4th quadrant A few gave p = 2a/4 Almost all find the cartersian form of <i>p</i> + <i>q</i>, instead of use the vector addition method to find <i>p</i> + <i>q</i>, and hence didn't notice the shape is a rhombus Some know that <i>p</i> = <i>q</i> , but diagram didn't show same length A few mentioned that it is a quadrilateral, trapezium, and even triangle.
ii ∡Q(arg($p+q) = -\left(\frac{\pi}{3} + \frac{\pi}{12}\right) = -\frac{5\pi}{12}$	 Some use GC to find the arg(p+q) = tan⁻¹(-2-√3) = -5/1 once GC is used, answer may be rounded off, hence no full credit Some didn't know that leaving arg in π means exact, and gave

)

4ai	$\frac{dP}{dt} = \frac{a}{P} - bP$, where a, b are constants	Some students made the following mistakes in the formation of DE:
	When $P = 2$,	1. $\frac{dP}{dr} = \frac{a}{dr} - aP$ (using the same
	$\frac{dP}{dt} = \frac{a}{2} - 2b = 0 \Longrightarrow a = 4b$	dt P constants for in birth rate and death
	dP = 4b = bP	rate)
	$dt = \frac{1}{P} - bT$	2. Take birth rate as $\frac{P}{a}$ (<i>P</i> should be
	$= b\left(\frac{4}{P} - P\right)$	in the denominator)
	$=k\left(\frac{4}{P}-P\right)$, where $k=b$	Note that $P = 2$, as P denotes population in thousands.
4aii	When $P = A dP = 2$	The population is decreasing, hence,
	when $P = 4$, $\frac{d}{dt} = -3$. $dP = k \begin{pmatrix} 4 \\ 4 \end{pmatrix} = -3$.	$\frac{\mathrm{d}P}{\mathrm{d}t} = -3$ (note the negative sign).
	$\frac{dt}{dt} = \kappa \left(\frac{4}{4} - 4\right) = -3$	Some students made the mistake
	$\Rightarrow k = 1$	dt P P P
	$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{4}{P} - P$	$\overline{\mathrm{d}P} = \overline{4 - P^2} = \overline{4} - \overline{P^2}$
	$=\frac{4-P^2}{P}$	Some students did not notice that <i>P</i> is in thousands
	dt P	is in thousands.
	$\overline{\mathrm{d}P} = \overline{\mathrm{4}-\mathrm{P}^2}$	
	$=-\frac{1}{2}\frac{-2P}{4-P^2}$	
	$t = -\frac{1}{2}\ln 4 - P^2 + C$	Students should substitute the initial
	2 + 1	condition $t = 0$, $P = 4$ only after they have correctly resolved the modulus
	-2i = m[q - 1] - 2C	in making $4 - P^2$ the subject.
	$m_{1}^{4} - F_{1}^{2} = 2C - 2t$	It is not explicitly mentioned in the
	$4 - P^2 = \pm e^{-c} e^{-c}$	question that $P \ge 2$. Resolve the
	When $t = 0.944$ Solution where $A = \frac{1}{12}$	modulus step by step instead of changing to brackets straightaway.
	A = -12 $4 - P^2 = -12e^{-12}$	As the final answer, students should
	$P^2 = 4 + 12e^{-2t}$	make P the subject.
	$P = 2\sqrt{1 + 3e^{-2t}}$	· · · · · · · · · · · · · · · · · · ·

4 a		Students should label the vertical
iii	P t	intercept in sketching the graph
	4	intercept in sketching the graph.
		Many students omitted "decreasing"
		in the description of the trend in the
		In the description of the trend in the
	P=2	long term. Note that the graph
		continues to decrease as it
		approaches the asymptote.
	The population of the bugs will decrease and approach	The graph should not overlap the
	2000 in the long run	asymptote.
		Students should sketch for $t \ge 0$.
4b	Method 1:	This part of the question was poorly
	N	attempted as many students assumed
	$u = \frac{1}{2}$	either N or t is constant in their
	t	differentiation
	dN N	unrerentiation.
	$du = \frac{1}{dt} - N$	Note that all $2 (x, Y, t)$ are verifiables
	$\frac{1}{dt} = \frac{dt}{t^2}$	Note that all $3(u, N, t)$ are variables.
	$t \frac{\mathrm{d}u}{\mathrm{d}u} = \frac{\mathrm{d}N}{\mathrm{d}u} - \frac{N}{\mathrm{d}u}$	A number of students made the
	dt dt t	mistake:
	dN AN	$\frac{N}{N} = 4 \ln t + C$
	Substitute into $\frac{1}{dt} = 4 + \frac{1}{t}$	$\frac{-}{t}$
	du i	$\Rightarrow N = 4t \ln t + B$
	$t \frac{du}{dt} = 4$	
	dt	The final answer should be in terms
	du = 4	of the variables given in the original
	$\frac{1}{dt} = \frac{1}{t}$	DE(N and t in this case)
		Dis (it und t in uns cuse).
	$u = 4 \ln t + C$	
	N Harris	
	$\frac{1}{t} = 4 \ln t + C$	
	When $t = 1$, $N = 1 \Rightarrow C = 1$	
	when $t = 1$, $N = 1 \implies C = 1$.	
	$N = 4t \ln t + t$	
	Method 2:	
	N Exampaper 02	
	$u - \frac{1}{t}$ Islandwide Delivery Whatsapp Only 88660031	
	$N = \mu t$	
	$\frac{dN}{dt} = \frac{du}{dt}t + u$	
	$\frac{dt}{dt} = \frac{dt}{dt} t + t t$	Ť
	dN N	
	Substitute into $\frac{dt}{dt} = 4 + \frac{dt}{dt}$:	
	dt t	

	$\frac{\mathrm{d}u}{\mathrm{d}t}t + u = 4 + u$	
	$\frac{\mathrm{d}u}{\mathrm{d}t} t = 4$	
	dt .	
	$\frac{du}{dt} = \frac{4}{t}$	
	$u = 4\ln t + C$	
	N dista C	
-	$\frac{1}{t} = 4 \ln t + C$	
	When $t = 1$, $N = 1 \implies C = 1$.	
5	Let X denote the daily rainfall in mm. $X \sim N(\mu, \sigma^2)$	Some students compute the value of
(i)	$= \left(-\frac{\sigma^2}{\sigma^2} \right)$	μ only in part (ii). Should do it in
	In 7 days, $\overline{X} \sim N\left(\mu, \frac{\sigma}{7}\right)$	part (i).
	P(X > 9.8) = 0.1	
	$P\left(Z > \frac{9.8 - \mu}{\sigma}\right) = 0.1$	
	$\frac{9.8-\mu}{\sigma} = 1.2815516$	
	$9.8 = \mu + 1.2815516\sigma (1)$	
	$P(\bar{X} > 8.2) = 0.1$	
	$P\left(Z > \frac{8.2 - \mu}{\sigma/\sqrt{7}}\right) = 0.1$	
	$\frac{8.2 - \mu}{\sigma/\sqrt{7}} = 1.2815516$	×.
	$8.2 = \mu + 0.4843810\sigma (2)$	
	Solving (1) and (2), $\mu = 7.22780 \ \sigma = 2.00710$	
	$\sigma = 2.0$ (2dp) (shown)	$\mathbf{Y}_{\mathbf{X}}$
(ii)	ExamPaper 20D	No need to use CLT as part (i)
	III 50 daystantiwide Delivery Whatsapp Onlyse660031	already stated normal distribution. A few students forget to write down
	$\mathbf{P}\left(\bar{X} > k\right) \ge 0.1$	the distribution of \overline{X} .
	$k \le 7.6981 (5 \mathrm{sf})$	Some students wrongly round up the
	$\therefore \max k = 7.6 (1 \mathrm{dp})$	answer to 7.7.

	Note: change in inequality sign because for area to be greater than or equal to 0.1, the value of k can be at 7.6974 or to its left, i.e. less than 7.6974 (see diagram below).	
	to get area larger than 0.1	
6 (i)		A few students did not label the coordinates of the extreme points.
(ii)	(x_7, y_7) is $(\overline{x}, \overline{y})$	Most students get this correct.
	Using G.C,	· × .
	$(\overline{x}, \overline{y}) = (69, 53)$	
	$(x_2, y_2) =$	
	$\left(\frac{80+84+70+74+58+48}{44+40+49+45+58+82}\right) = (69,53) \text{ExamPaper} \qquad \qquad$	QX.
(iii)	Model A: $y = a + bx$ $r - value = -0.92386$	Some students use the scatter diagrams or the shape of the curves
	Model B: $y = \ln a + b \ln x$ $r - value = -0.96785$ Model C: $y = a + b \sqrt{x}$ $r - value = -0.95855$	to choose the Model. This is wrong
	r - value = -0.93833	because the curve for Model B and C can be similar (values of a and b)
	Since $ r $ for Model B is nearest to 1, Model B is the most	are unknown). Students need to
	accurate model	compare the r values to decide.

(iv)	$v = \ln a + h \ln x$	Note: Marks are not awarded for
(17)	By GC,	using Model C. Only correct answer of 62 using Model B gets the full marks.
	$\ln a = 350.11$	
\wedge	b = -70.469	A few students did not round up to whole number.
	$v = 350.11 - 70.469 \ln x$	A form the locate so of the second
		A few students get the wrong
	When $x = 60$, $y = 62$ marks	equation $\ln y = \ln a + b \ln x$.
	when $x = 00^\circ$, $y = 0^\circ$ marks.	
	The student is estimated to score 62 marks.	
(v)	$4 \times 30 = 120$	Some students wrongly stated that 4
	unreasonable as 120 is not within data range where	hours is not within the data range.
	$48 \le x \le 84$	They should multiply by 30 to get
		the total hours (120) for the month
		and explain that 120 is not within
		the data range of $48 \le x \le 84$ (for a
		month).
7	Let X and Y denote the length (in inches) of a "footlong"	A handful of students attempted to
(i)	and a "6-inch" loaf respectively.	conclude from either just the
	$X \sim N(12.2, 0.2^2), Y \sim N(6.1, (0.1\sqrt{2})^2)$	variance/standard deviation or just the gap of 12.2 from 12 vs 6.1 from
	P(Y < 6) = 0.239750 = 0.240(3sf)	6, but incomplete explanations
	$P(W_{1}, 0) = 0.257750 = 0.240(0.51)$	gained no credit.
	P(X < 12) = 0.158655 = 0.159(3st) < P(Y < 6)	
	∴ a "6-inch" loaf more likely to be less than 6 inches.	It is much simpler to calculate
		probabilities and compare them.
		Students are advised to conclude in
		full sentences clearly, with phrasing
		as close to the original one in the
(12)		question as possible.
(11)	$E(Y_1 + Y_2 - X) = 2(6.1) - 12.2 = 0$	It is unacceptable to write 2Y
	Vor(V VA CALAT	instead of $Y_1 + Y_2$.
		Most students seemed unaware that
	$Y_1 + Y_2 - X = X \approx (0, 0, 0, 0, 0)$ er $\langle \rangle >$	the probability is exactly 1/2 as 0 is
	Islandwide Delivery Whatsapp Only 88660031	the mean
	$P(Y_1 + Y_2 > X) = P(Y_1 + Y_2 - X > 0) = \frac{1}{2}$	the mean.
	2	Some students calculated variance
		wrongly but were not penalised here
		as only the mean is required to
		arrive at the answer
		arrive at the answer.

(iii)	Let A denote the number of "6-inch" sandwiches less than	Students must define the random
	6-inches in length in a week.	variable properly. Some students
	$A \sim B(3, 0.239750)$	wrongly defined A [e.g. "the event"
	$P(A \le 1) = 0.855122 = 0.855(3sf)$	or "a sandwich"] when all binomial
		distributions should be "the number
		same symbol as part (i) which is
		"length" and $\sim N(6.1, 0.02)$.
		lengar and 1.((0.1, 0.02)).
		Some students attempted this part
- T	Alternative	without binomial distribution, but
	required probability = $P(Y < 6) [P(Y > 6)]^2 \times 3 + [P(Y > 6)]^3$	many missed out on the multiplier
	$0.22075(1-0.22075)^2 + 2 + (1-0.22075)^3$	"x3", or only calculated for 1
	$=0.239/5(1-0.239/5) \times 3+(1-0.239/5)$	sandwich shorter than 6 inches
	= 0.855(3sf)	instead of at most 1 such sandwich.
(iv)	Let B and C denote the number of "6-inch" sandwiches less	This part proved to be more
	than 6-inches in length in a 4-week and 3-week period	challenging for many students,
	respectively.	fraught with poor notation.
	$B \sim B(12, 0.239750)$ and $C \sim B(9, 0.239750)$	Some students did not notice that a
	P(A=1 P>A) = P(A=1)P(C>3)	conditional probability was required
	$P(A = 1 B > 4) = \frac{P(B > 4)}{P(B > 4)}$	conditional probability was required.
	$P(A=1)\left[1-P(C=3)\right]$	Some students were unable to
	$=\frac{\Gamma(A-1)\left[1-\Gamma(C \leq 5)\right]}{\Gamma(A-1)\left[1-\Gamma(C \leq 5)\right]}$	decipher that they had to break the
	$1 - P(B \le 4)$	numerator up into 1st week and 2nd-
	0.41571×0.14710	4 th week, i.e.
	0.13721	$\mathbf{P} \lfloor (A=1) \cap (B>4) \rfloor$
	= 0.445674	= P(A=1)P(C > 3)
	= 0.446(3sf)	
		Some students wrongly assumed the
		2 events are independent and ended
		up cancelling $P(B > 4)$ to get
		P(A-1)P(B>4)
		$\frac{\Gamma(A=1)\Gamma(D>4)}{D(D>4)}$
	KIASI = 79	P(B > 4)
	ExamPaper	= P(A=1)
8	Islandwide Delivery WhatsappOhly 88660031	Some students did not divide by
(a)(i)	Number of arrangements= $\frac{3!2!}{3!2!}$	repetition.
8	Number of arrangements $\frac{5!}{5!} \times 6 = 1200$	Many students who did by
(a)(ii)	Number of arrangements = $\frac{1}{2!} \times {}^{\circ}C_{3} = 1200$	complement cases did the P(exactly
		2 Ls tgt) case wrongly
8	Arrange 3 vowels (into a group)	Many students have missing cases,
(a)(iii)	$\frac{3!}{3!} = 3$	especially the case of starting and
	2!	ending with L.

	America E concentra (for elettino)	
	Arrange 5 consonants (for slotting)	
	$\frac{5!}{2}$ - 20	
	$\frac{3!}{3!}$	
	Since the ends must be consonants, only the middle 4 slots	
	can be used for the group to slot (i.e. ${}^{4}C$)	
	Number of arrangementar $2 \times 20 \times 4$ 240	
	Number of arrangements= $3 \times 20 \times 4 = 240$	
	Ap.	
	OR	
	Case 1: First and Last 'L'	
	$4 \ln \frac{3!}{3!} = 72$	
	$\frac{1}{2!}$	
	Case 2: First and last 'L' and non-L	
	4 3	
	$2 \times 2 \times \frac{1}{21} \times \frac{1}{21} = 144$	
	21 21	
	Cose 2: First and last non 1	
	Case 5: First and last non- L	
	$2 \times \frac{4!}{2} \times \frac{5!}{2} = 24$	
	3! 2!	
	Total= 240 ways	
(b)(i)	P(1V) + P(2V) + P(3V)	Generally well done.
(b)(i)	P(1V) + P(2V) + P(3V) ${}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}$	Generally well done.
(b)(i)	P(1V) + P(2V) + P(3V) = $\frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{3}}$	Generally well done.
(b)(i)	P(1V) + P(2V) + P(3V) = $\frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$	Generally well done.
(b)(i)	P(1V) + P(2V) + P(3V) = $\frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ = $\frac{65}{65} = \frac{13}{65}$	Generally well done.
(b)(i)	P(1V) + P(2V) + P(3V) = $\frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ = $\frac{65}{70} = \frac{13}{14}$	Generally well done.
(b)(i)	P(1V) + P(2V) + P(3V) = $\frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ = $\frac{65}{70} = \frac{13}{14}$	Generally well done.
(b)(i)	P(1V) + P(2V) + P(3V) = $\frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ = $\frac{65}{70} = \frac{13}{14}$ Probability	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$ $= 1 (5 4 3 2) 13$	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$ $= 1 - \left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5}\right) = \frac{13}{14}$	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$ $= 1 - \left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5}\right) = \frac{13}{14}$	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$ $= 1 - \left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5}\right) = \frac{13}{14}$ OR	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$ $= 1 - \left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5}\right) = \frac{13}{14}$ OR $I = P(\text{ no recent} A \text{ SU} = \frac{13}{14})$	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$ $= 1 - \left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5}\right) = \frac{13}{14}$ OR $1 - P(\text{no vowels})$ So = XamPaper	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$ $= 1 - \left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5}\right) = \frac{13}{14}$ OR $1 - P(\text{no vowels}) = \frac{1}{14}$ OR $1 - P(\text{no vowels}) = 1 - \frac{{}^{5}C_{4}}{2}$ Islandwide Delivery Whatsapp Only 88660031	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$ $= 1 - \left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5}\right) = \frac{13}{14}$ OR $1 - P(\text{no vowels}) = \frac{13}{14}$ OR $1 - P(\text{no vowels}) = 1 - \frac{{}^{5}C_{4}}{{}^{8}C_{4}}$ Islandwide Delivery Whatsapp Only 88660031	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$ $= 1 - \left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5}\right) = \frac{13}{14}$ OR $1 - P(\text{no vowels}) = \frac{13}{14}$ Provide the second	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$ $= 1 - \left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5}\right) = \frac{13}{14}$ OR $1 - P(\text{no vowels}) = 1$ $= 1 - \frac{{}^{5}C_{4}}{{}^{8}C_{4}}$ Islandwide Delivery Whatsapp Only 88660031 $= 1 - \frac{5}{70}$	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$ $= 1 - \left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5}\right) = \frac{13}{14}$ OR $1 - P(\text{no vowels}) = 1 - \frac{{}^{5}C_{4}}{{}^{8}C_{4}}$ Islandwide Delivery Whatsapp Only 88660031 $= 1 - \frac{5}{70}$	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$ $= 1 - \left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5}\right) = \frac{13}{14}$ OR $1 - P(\text{no vowels}) = 1 - \frac{{}^{5}C_{4}}{{}^{8}C_{4}}$ Islandwide Delivery Whatsapp Only 88660031 $= 1 - \frac{5}{70}$ $= \frac{13}{70}$	Generally well done.
(b)(i)	$P(1V) + P(2V) + P(3V)$ $= \frac{{}^{5}C_{3}{}^{3}C_{1} + {}^{5}C_{2}{}^{3}C_{2} + {}^{5}C_{1}{}^{3}C_{3}}{{}^{8}C_{4}}$ $= \frac{65}{70} = \frac{13}{14}$ Probability $= 1 - P(\text{ all consonants})$ $= 1 - \left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5}\right) = \frac{13}{14}$ OR $1 - P(\text{no vowels}) = 1 - \frac{{}^{5}C_{4}}{{}^{8}C_{4}}$ Islandwide Delivery Whatsapp Only BB660031 $= 1 - \frac{5}{70}$ $= \frac{13}{14}$	Generally well done.

	OR P(1 yowel) + P(2 yowels) + P(3 yowels)	
	$3 \times 5 \times 4 \times 3$ $4 \times 3 \times 2 \times 5 \times 4$ $4 \times 3 \times 2 \times 1 \times 5$ 4×1	
	$=\frac{3\times3\times4\times5}{9\times7\times6\times5}\times\frac{4!}{2!}+\frac{3\times2\times5\times4}{9\times7\times6\times5}\times\frac{4!}{2!2!}+\frac{3\times2\times1\times5}{9\times7\times6\times5}\times\frac{4!}{2!}$	
	8×7×6×5 3! 8×7×6×5 2!2! 8×7×6×5 3!	
	$=\frac{13}{12}$	
	14	
8		Most students who drew the tree
(b)(ii)	$\frac{3}{8}V$	diagram was able to get the answer.
	$V \leq \frac{1}{2^8} V$	
	$\frac{3}{8}$ $\frac{5}{10}$ c^2	
	$\frac{1}{7}$ c	
	c > c	
	Probability	
	= P(VCC) + P(CVC) + P(CCV) + P(CCC)	
	3 5 4 5 3 4 5 4 3 5 4 3	
	$=\frac{5}{6}\times\frac{5}{6}\times\frac{7}{7}+\frac{5}{6}\times\frac{7}{7}\times\frac{7}{7}+\frac{5}{6}\times\frac{7}{7}\times\frac{5}{7}+\frac{5}{6}\times\frac{7}{7}\times\frac{5}{6}$	
	505	
	$=\frac{505}{704}$	
	/84	
0(1)	= 0.644	Conserve II does for this sect
9(1)	Using GC,	Generally well done for this part.
	Unbiased estimate of population mean is	Students need to be reminded to
	= 0.40.84 (2.1 - 1)	answer to 2 decimal places NOT to
	$x = 949.84 \ (2 \text{ d.p.})$	give exact value nor to 3 s f
	Unbiased estimate of population variance is	To cut down possible careless
	$s^2 = 1.31634^2 = 1.73 (2 \text{ d.p.})$	mistakes should try the following
		steps:
	Note: If student write $\mu = 949.84$ or	1. create list for x (volume of shower
	$\sigma^2 = 1.31634^2 = 1.71$ annotate that do not deduct	gel, L_1) and f (no. of bottles, L_2),
	NIAOU =	NORMAL FLOAT AUTO REAL RADIAN MP
	ExamPaper 12	
	Islandwide Delivery Whatsapp Only 88660031	948 9 949 22 949 24
		951 6 952 4
		953 1 955 2
		1.0(8)=
		Later
		2 Calculate (1 Mar State)
		2. Calculate (1- Var Stats)

		Note that value of s is given by $s_x = 1.316340824$, NOT $\sigma_x = 1.308087822$ (which gives the sample variance). Unbiased estimate of population variance is given by s^2 , which is $(1.316340824)^2$, NOT $(1.308087822)^2$ nor $316340824 - forgotten to square s.$ Note also that $\mu \neq \bar{x}, \sigma^2 \neq s^2$
9 (b)(ii)	Let X be the volume of shower gel dispensed by the machine.	Part (11) was generally well answered.
	Let μ denote the population mean volume of shower gel	the definition of u. Some students
	dispensed by the machine.	defined µ as 'mean volume' or even
	$\overline{X} \sim N\left(\mu, \frac{s^2}{n}\right)$ approx. by Central Limit Theorem. $\overline{X} \sim N\left(950 \frac{s^2}{1 \text{ ASU}}\right)$ H ₀ : $\mu = 950 \text{ amPaper}$ H ₁ : $\mu < 950 \text{ wide Delivery Whatsapp Only 88660031}$	'sample mean volume'. In fact, μ denotes the <u>population mean volume</u> of the shower gel – students are expected to bring in the context of the question. As such, just stating μ as the population mean is not good enough to be awarded any credit.
9		Relatively more students made
(a)(iii)	Under H ₀ , using GC,	mistakes in finding the <i>p</i> -value. In
	$p - \text{value} = 0.13474 \approx 0.135$	fact, <i>p</i> -value is likely to be wrong if students made any mistake in the computation of \overline{x} or s^2 in (i).

	The p - value is the probability of the sample mean volume	There were few students who
	of shower gel in a bottle is as extreme as 949.84 when the	wrongly took <i>p</i> -value as 0 ± 22
	mean is actually 950.	$\frac{3+22}{80} = 0.3875$, showing a
		misconception of what <i>p</i> -value is
		Most students were unable to give
		the meaning of <i>p</i> -value in the
		context of the question correctly.
		Some wrongly took 'p-value' to be
		the 'level of significance' and some
		wrote 'p-value' as the 'smallest level
	\sim	of significance for the null
		hypothesis to be rejected'. Few
		students gave a generic meaning of
		<i>p</i> -value, without bringing in the
9	Since we reject He	Badly done by most students as they
(a)(iv)	Since we reject no.,	did not give the answer in set
()()	$p - \text{value} < \alpha / 100$	notation. Many did not include the
		upper bound of 100 in their answer.
		**
	$\alpha \ge 13.476$	Students should be reminded not to
	$\{\alpha \in \mathbb{R} : 13.5 \le \alpha \le 100\}$	use pre-mature rounding off answer
	(in the computation of α , and should
		round off the final answer 'within
9(b)		the boundaries'.
9(D)	Let Y be the volume of shower gel dispensed by the	their presentation:
	machine after recalibration.	Finding \overline{y} and s^2 wrongly
	Let μ denote the population mean volume of refill	2 Applying Control Limit Theorem
	dispensed by the machine.	to the distribution of <i>Y</i>
	\overline{s} s s^{2} s	3 Writing the distribution wrongly
	$Y \sim N(\mu, -n)$ approx. by Central Limit Theorem	as $\overline{Y} \sim N(\mu, s^2)$ instead of the
	H ₀ : $\mu = 250$	$-\left(-s^2\right)$
	H ₁ : $\mu \neq 250$ \wedge \sim	correct one $\bar{Y} \sim N \left[\mu, \frac{s}{n} \right]$.
	NADU	4. Wrong critical values
	Test statistica and aper />	4. wrong critical values.
	Islandwide Delivery, Whatsapp Only 88660031	
	Level of significance: 1%	
	Privat H if a salue < 0.01	
	Reject $\Pi_0 \Pi p - \text{value} \le 0.01$	~

	$\frac{249.5 - 250}{\sqrt[s]{50}} \le -2.5758293 \text{ or } \frac{249.5 - 250}{\sqrt[s]{50}} \ge 2.5758293 \text{ (NA)}$ $0 < \frac{s}{\sqrt{50}} \le 0.19411$ $0 < s \le 1.3726$ $0 < \frac{1}{49} \left(k - \frac{\left(-25\right)^2}{50} \right) \le 1.3726^2$ $12.5 < k \le 104.8$	Majority of the students left out the lower bound of k (i.e. $12.5 \le k$), without realizing that $s > 0$ is implied. Many students attempted to solve the inequality $\frac{249.5 - 250}{s/\sqrt{50}} \ge 2.5758293$, without realizing that there is no solutions as the LHS is negative.
9(c)	There is no need for the floor supervisor to assume the volume of shower gel follow a normal distribution as the sample sizes in both part (a) and (b) are large. The sample mean volume of shower gel can be approximated to follow a normal distribution by Central Limit Theorem.	Answer to (c) is not satisfactory. The correct statement should be 'the <u>sample mean volume</u> of shower gel can be approximated to follow a normal distribution by Central Limit Theorem', but most students either wrote 'mean volume', 'volume' or 'sample', in their statements. Students should be specific in their answers, avoid using 'it' or 'they' follows a normal distribution.
10 (i)	Let \$W denote the amount won by a player in one game. Under option A, $E(W_A) = 1\left(\frac{1}{4}\right) + 2\left(\frac{1}{4}\right) + 3\left(\frac{1}{4}\right) + 4\left(\frac{1}{4}\right)$ $= (1+2+3+4)\left(\frac{1}{4}\right)$ $= \frac{5}{2} = \$2.50$ Under option B, the winning amount for each combination is listed below: $V(A) = \frac{5}{2} = \$2.50$ Under option B, the winning amount for each combination is listed below: $V(A) = \frac{5}{2} $	Students should always define the random variable involved if question did not do so and also ensure that the notations used to represent expected amount for each option is also properly defined for clarity of solutions.Generally well done in finding expected winning amount for Option AHowever there was a significant number of students who did not know how to calculate the expected winning amount for each possible outcomes from rolling 2 dice and then multiply with the corresponding probabilities for each

		$E(W_B) = \left(\frac{1}{16}\right) [4+6+12+8+16+24]$	case to compute expected winning amount for Option <i>B</i> .
		-1-2-3-1-2-1]	It is necessary to compare the 2
	$\boldsymbol{\lambda}$	$= \left(\frac{1}{16}\right) [70 - 10]$	arriving at the conclusion that
1	\rightarrow	$=\frac{15}{4}=$ \$3.75	Option b is better.
	1	Since $E(W_B) > E(W_A)$, option B is better. (shown)	
	(ii)	Option A is a "sure win" option where the player would definitely gain a positive amount in all cases, whereas	Generally well done.
		option B has a risk of losing money in some cases.	
	(iii)	$E(W_A^2) = (1^2 + 2^2 + 3^2 + 4^2)(\frac{1}{4}) = \frac{15}{2}$	Generally well done.
		$(-1)^2$ (5) ² (5)	There was only a very small handful
		$\operatorname{Var}(W_A) = \operatorname{E}(W_A^2) - \left[\operatorname{E}(W_A)\right]^2 = \frac{15}{2} - \left(\frac{5}{2}\right) = \frac{5}{4} = 1.25 \text{ (shown)}$	students who did not know the correct formula for finding variance.
	(iv)	Let A and B denote the total amount won by Abel and	A significant number of students
	80.00	Benson respectively.	were confused about the random
			variables involved in this question
		$A = W_{A1} + W_{A2} + \dots + W_{A50}$	what is meant by 'distributions' in
		Since $n = 50$ is large, by Central Limit Theorem,	the context of the question.
		$A \sim N\left(50\left(\frac{5}{2}\right), 50\left(\frac{5}{4}\right)\right)$ approximately	The biggest misconception is to
		N(125 125)	apply CLT for the winning amount
		1.e. $A \sim N\left(\frac{125}{2}\right)$	of 1 round instead for the winning
			amounts of 50 rounds.
		$B = W_{B1} + W_{B2} + \dots + W_{B50}$	Other common errors include
		$B \sim N\left(50\left(\frac{15}{4}\right), 50\left(\frac{887}{16}\right)\right)$ approximately by Central	 misuse the random variable that represents winning amount for 1
		Limit Theorem since $n = 50$ is large	round as the same as that for 50
		$B \sim N \left(\frac{375}{22175} \right)$	 mistook 'distributions' as range of
		ASU ZZ	possible values of the random
		ExamPaper 🖉 🖉	variables
		Islandwide Delivery Whatsapp Only 88660031	 mistook 'distributions' as
			 assume that the winning amount
			of 1 round for each options follow
			normal distributions
			 did not use CLT or use CLT
			without justification

		 Did not evaluate the means and variances of the distributions involved
(v) $A-B \sim A-B \sim A-A \sim $	$= N\left(125 - \frac{375}{2}, \frac{125}{2} + \frac{22175}{8}\right)$ $= N\left(-\frac{125}{2}, \frac{22675}{8}\right)$	Majority of the students who attempted this part know what was required of them to find the required probability.
P (4 >	B) = P(A - B > 0) = 0.120207 = 0.120(3sf)	 A significant number of students could not find the correct final answer or get full 3 marks due to the following: error from finding the mean or variance for wining amounts of 1 round/50 round for option <i>B</i> in earlier parts did not specify the distribution of <i>A</i> - <i>B</i>
	KIASU Josephine Kiasapp Only 88660031	

www.KiasuExamPaper.com 341