

SYLLABUS RELEVANCE & TEXTBOOK CHAPTERS		
O-LEVEL PURE (5072)	✓	Chapter 12.3
O-LEVEL SCIENCE (5116)	✓	Chapter 11.3
N-LEVEL SCIENCE (5155) ¹	✓	Chapter 10

Lesson Package & Accompanying Slides Designed by Alex Lee (2007) Last Modified by Alex Lee (2011) ¹only tests for gases (pages 6 | 1 & 6 | 2)

1. Tests for Gases

When testing for an unknown gas in a science laboratory, we do this in three steps:

Step 1: Colour & OdourStep 2: Moist Litmus TestStep 3: Confirmatory Test (except ammonia and chlorine)

It is important, however, to note that <u>a negative observation is still an observation</u>. For example, do not neglect the fact that a gas is colourless, odourless, or has no effect on moist litmus paper!

Complete the table below with the experimental observations for the following gases.

Gas	Colour	Odour	Litmus Test	Confirmatory Test
H ₂ hydrogen gas	colourless	odourless	no effect on moist litmus paper	extinguishes a <u>lighted</u> splint with a 'pop' sound
O ₂ oxygen gas	colourless	odourless	no effect on moist litmus paper	rekindles a glowing splint
CO ₂ carbon dioxide	colourless	odourless	turns moist blue litmus paper red	white ppt produced when bubbled through limewater (ppt dissolves in excess CO ₂)
NH3 ammonia gas	colourless	pungent smell	turns moist red litmus paper blue	
SO ₂ sulfur dioxide	colourless	choking smell	turns moist blue litmus paper red	turns acidified potassium dichromate(VI) [K ₂ Cr ₂ O ₇] from orange to green
Cl ₂ chlorine gas	greenish- yellow	irritating smell	turns moist blue litmus paper red and then bleaches it / and then white	
H ₂ O water vapour	colourless	odourless	no effect on moist litmus paper	turns cobalt(II) chloride paper from blue to pink

(a) Explain why, in the test for gases, the litmus paper must be moist.

Water must be present in order for dissociation to occur; without which the litmus

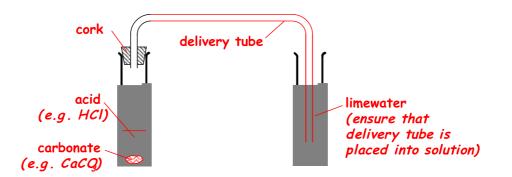
will be unable to change colour.

- (b) Suggest why the litmus test alone is sufficient, and that a separate confirmatory test is unnecessary when testing for
 - (i) ammonia,

Ammonia is the only alkaline gas.

(ii) chlorine.

Chlorine already exhibits a distinctive bleaching effect during the litmus test.


- (c) Carbon dioxide can be tested by bubbling through limewater. A white precipitate should be formed in the limewater.
 - (i) What is limewater?

aqueous calcium hydroxide

(ii) What is the white precipitate that is formed?

calcium carbonate

(iii) Complete the experimental set-up, in the drawing below, for testing of carbon dioxide gas, labeling your diagram appropriately.

- (d) Construct chemical equations, including state symbols for
 - (i) the reaction that occurs when hydrogen is tested with a lighted splint,

 $2 H_2 (g) + O_2 (g) \longrightarrow 2 H_2O (g)$

(ii) the reaction that occurs when carbon dioxide is bubbled through limewater.

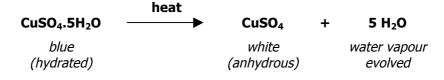
 CO_2 (g) + $Ca(OH)_2$ (aq) \longrightarrow $CaCO_3$ (s) + H_2O (l)

2. Tests for Water

The presence of water (whether liquid or vapour) can be tested by using certain anhydrous salts such as copper(II) sulfate and cobalt(II) chloride. This is because these salts have different colours when in anhydrous form and when in hydrated form.

Anhydrous copper(II) sulfate is a white powder. When it comes in contact with water, it is able to form hydrated copper(II) sulfate, which is blue.

Another salt, anhydrous cobalt(II) chloride, is a blue powder. When it comes in contact with water, it is able to form hydrated cobalt(II) chloride, which is pink.


CoCl ₂	+	6 H ₂ O	>	CoCl ₂ .6H ₂ O
blue (anhydrous)				<i>pink (hydrated)</i>

Complete the table below with two possible tests to prove that an unknown liquid is water.

No	Procedure	Observations
1	Place a few drops of the unknown liquid in a sample of anhydrous copper(II) sulfate.	The white anhydrous copper(II) sulfate will turn to blue.
2	Place a few drops of the unknown liquid in a sample of anhydrous cobalt(II) chloride.	The blue anhydrous cobalt(II) chloride will turn to pink.

It is important to note that this tests for the **presence** of water, and not **purity**. This means the tests will continue to give a positive result for impure samples – for example, salt water. (To test for purity, we have to test melting and boiling points.)

Hydrated salts can be converted back into anhydrous salts simply by gentle heating. The water of crystallization is lost as water vapour.

3. Tests for Anions

Complete the table below with the various tests and experimental observations for the following aqueous anions (negative ions).

Anion	Property	Test	Observation
CO ₃ ²⁻ carbonate ion	reacts with acids to form carbon dioxide*	add dilute <u>nitric acid</u> (or hydrochloric acid)	effervescence, CO2 evolved
NO3 ⁻ nitrate ion	reacts with alkalis and aluminium to produce ammonia	add aqueous sodium hydroxide, aluminium foil, and warm gently	NH_3 evolved
SO4 ²⁻ sulfate ion	forms insoluble salts with calcium, barium and lead(II) ions	add dilute nitric acid, then add aqueous barium nitrate	white precipitate of BaSO4 formed
CI ⁻ chloride ion	forms insoluble salts with silver and lead(II) ions	add dilute nitric acid, then add aqueous	white precipitate of AgCl formed
$\mathbf{I}^{\text{-}}$ iodide ion	forms insoluble salts with silver and lead(II) ions	add dilute nitric acid, then add aqueous lead(II) nitrate	yellow precipitate of PbI ₂ formed

* also works on solid metal carbonates.

(a) Suggest why nitrates are commonly used reagents when testing for anions.

As nitrates are all soluble, by adding a nitrate of the desired metal salt we can ensure that no additional precipitates are formed unintentionally.

(b) Acidified lead(II) nitrate is also able to form a precipitate with chloride ions. Explain why it is not a suitable reagent to test for chlorine ions.

Acidified lead(II) nitrate forms white precipitates in the presence of both chloride and sulfate ions, and hence it will not help us to conclude which anion is present.

(c) Explain why, in the test for chloride ions, acid must first be added.

Silver nitrate is able to form precipitates with chloride, carbonate and hydroxide

ions. By adding an acid, we can remove the carbonate and hydroxide ions so that

any precipitate formed will allow us to conclude that chloride ions are present.

4. Review Questions

(a) Complete the qualitative analysis table below:

No	Procedure	Observations	Conclusions
1	To a 2 cm ³ sample of P (aqueous potassium sulfate), add 2 cm ³ of dilute nitric acid followed by 2 cm ³ of aqueous barium nitrate.	A white precipitate is formed.	Sulfate ions are present.
2	To a 2 cm ³ sample of \mathbf{Q} (aqueous potassium chloride), add 2 cm ³ of dilute nitric acid followed by 2 cm ³ of aqueous barium nitrate.	There is no visible change.	Sulfate ions are not present.
3	 (a) To a 2 cm³ sample of Q (aqueous potassium chloride), add 2 cm³ of dilute nitric acid. 	There is no visible change.	
	(b) Then add 2 cm ³ of aqueous silver nitrate.	A white precipitate is formed.	Chloride ions are present.
4	 (a) To a 2 cm³ sample of P (aqueous potassium sulfate), add 2 cm³ of barium nitrate. 	A white precipitate is formed.	
	(b) Then add 2 cm ³ of dilute nitric acid.	There is no visible change.	Sulfate ions are present.
5	 (a) To a 2 cm³ sample of R (aqueous potassium hydroxide), add 2 cm³ of dilute nitric acid. 	There is no visible change.	
	(b) Then add 2 cm ³ of aqueous silver nitrate.	There is no visible change.	Chloride ions are not present.
6	 (a) To a 2 cm³ sample of R (aqueous potassium hydroxide), add 2 cm³ of silver nitrate. 	A white precipitate is formed.	
	(b) Then add 2 cm ³ of dilute nitric acid.	White precipitate dissolves to form a colourless solution.	Chloride ions are not present.

(b) (i) Construct a balanced chemical equation, including state symbols, for the reaction between magnesium carbonate and nitric acid.

 $MgCO_3 (s) + 2 HNO_3 (aq) \longrightarrow Mg(NO_3)_2 (aq) + H_2O (l) + CO_2 (g)$

(ii) Construct a balanced chemical equation, including state symbols, for the precipitation reaction between potassium iodide and lead(II) nitrate.

2 KI (aq) + Pb(NO₃)₂ (aq) —→ 2 KNO₃ (aq) + PbI₂ (s)

5. Tests for Cations

Study the table below with the various experimental observations when testing for aqueous cations by adding (i) aqueous sodium hydroxide, and (ii) aqueous ammonia.

	TEST #1:	TEST #2:	
	add a few drops of sodium hydroxide, followed by excess	add a few drops of aqueous ammonia , followed by excess	
Cations of Am	photeric Oxides ("ALZ")		
Al ³⁺ aluminium ion	white precipitate of Al(OH) ₃ formed, which dissolves in excess NaOH , forming a colourless solution	white precipitate of Al(OH) $_3$ formed, insoluble in excess NH $_4$ OH	
Pb ²⁺ lead(II) ion	white precipitate of Pb(OH) ₂ formed, which dissolves in excess NaOH , forming a colourless solution	white precipitate of Pb(OH) ₂ formed, insoluble in excess NH ₄ OH	
Zn ²⁺ zinc ion	white precipitate of Zn(OH) ₂ formed, which dissolves in excess NaOH , forming a colourless solution	white precipitate of Zn(OH) ₂ formed, which dissolves in excess NH₄OH , forming a colourless solution	
Cations of Tra	nsition Metals		
Cu ²⁺ copper(II) ion	light blue precipitate of Cu(OH) ₂ formed, insoluble in excess NaOH	light blue precipitate of Cu(OH) ₂ formed, which dissolves in excess NH₄OH , forming a dark blue solution	
Fe ²⁺ iron(II) ion	green precipitate of Fe(OH) ₂ formed, insoluble in excess NaOH	green precipitate of Fe(OH) ₂ formed, insoluble in excess NH ₄ OH	
Fe ³⁺ iron(III) ion	reddish-brown precipitate Fe(OH) ₃ formed, insoluble in excess NaOH	reddish-brown precipitate Fe(OH) ₃ formed, insoluble in excess NH ₄ OH	
Other Cations	Other Cations		
Ca ²⁺ calcium ion	white precipitate of Ca(OH) ₂ formed, insoluble in excess NaOH	no visible change	
NH4 ⁺ ammonium ion	ammonia produced on warming	no visible change	

(a) In the table below, write down the **chemical formulae** of the metal hydroxides that are able to dissolve in aqueous sodium hydroxide and aqueous ammonia.

dissolves in excess aqueous sodium hydroxide	dissolves in excess aqueous ammonia
AI(OH) ₃	Zn(OH) ₂
Pb(OH) ₂ Zn(OH) ₂	Cu(OH)₂

- (b) (i) Which two cations can not be distinguished from each other through these tests?
 aluminium ion (Al³⁺) and lead(II) ion (Pb²⁺)
 - (ii) Suggest an additional test that can be done to distinguish between these two ions, stating your observations for each cation.

Add an aqueous chloride/iodide/sulfate compound, e.g. sodium chloride /

hydrochloric acid. If lead(II) ions are present, a white precipitate will be

formed. If aluminium ions are present, there will be no precipitate formed.

- (c) State the common feature in the reaction between sodium hydroxide and
 - (i) cations of amphoteric oxides: a white precipitate is formed, soluble in excess
 - (ii) cations of transition metals: a coloured (i.e. non-white) precipitate is formed

The tests for the ammonium ion and the nitrate ion are very similar:

Ion	Ammonium Ion (NH4 ⁺)	Nitrate Ion (NO ₃ ⁻)
Procedure	To a sample of the unknown solution, add aqueous sodium hydroxide. Warm the mixture gently.	To a sample of the unknown solution, add aqueous sodium hydroxide. Then add aluminium foil. Warm the mixture gently.
Observations	A colourless, pungent- smelling gas is evolved which turns moist red litmus paper blue. Gas is ammonia.	A colourless, pungent- smelling gas is evolved which turns moist red litmus paper blue. Gas is ammonia.

(d) (i) State the main difference between the tests for ammonium and nitrate ions.

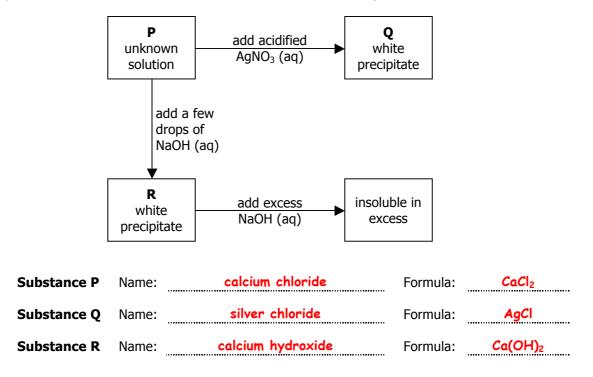
In the test for the nitrate ion, aluminium foil is added. However, in the test

for the ammonium ion, aluminium foil is not added.

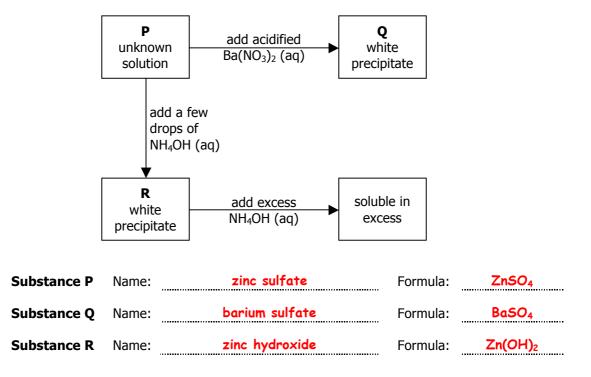
(ii) Will the presence of ammonium ions affect the test for nitrates ions? Why?

Yes. If ammonium ions are present, the test for nitrate ions will be positive

even if nitrate ions are not present.


(iii) Describe how should we accurately test that an unknown solution contains nitrate ions and not ammonium ions.

To a sample of the unknown solution, add aqueous sodium hydroxide and warm.


Test that no ammonia gas is evolved. Then add aluminium foil and warm again.

6. Review Questions

(a) Deduce the identities of the three unknown substances, **P**, **Q** and **R** below:

(b) Deduce the identities of the three unknown substances, **P**, **Q** and **R** below:

7. Thermal Decomposition

Sometimes, the action of heat alone is able to break up a **solid salt** into smaller compounds. This reaction is known as thermal decomposition (thermal - heat, decomposition - break apart).

This is **not to be confused with combustion**, where the substance reacts with oxygen to form **oxides of the various elements** in the initial compound.

Salts that decompose easily on heating are said to be thermally unstable, while salts that are unable to be decomposed even by strong heat are said to be thermally stable.

Type of Compound	Occurs In	Products of Decomposition
Hydroxides (OH ⁻)	All hydroxides, except Group I hydroxides	Water vapour evolved e.g. Ca(OH) ₂ \longrightarrow CaO + H ₂ O
Carbonates (CO ₃ ²⁻)	All carbonates, except Group I carbonates	Carbon dioxide evolved e.g. $CaCO_3 \longrightarrow CaO + CO_2$
Nitrates (NO ₃ ⁻)	All nitrates can decompose	Group I nitrates: Oxygen evolved e.g. 2 KNO3 \longrightarrow 2 KNO2 + O2Other nitrates: Nitrogen dioxide and oxygen evolved e.g. Ca(NO3)2 \longrightarrow 2CaO + 4NO2 + O2

- (a) Construct chemical equations, including state symbols, for the decomposition of
 - (i) solid copper(II) hydroxide

 $Cu(OH)_2$ (s) \longrightarrow CuO (s) + H_2O (g)

(ii) solid zinc carbonate

 $ZnCO_3$ (s) \rightarrow ZnO (s) + CO_2 (g)

(iii) solid silver nitrate

4 AgNO₃ (s) \longrightarrow 2 Ag₂O (s) + 4 NO₂ (g) + O₂ (g)

- (b) Construct chemical equations, including state symbols, for the combustion of
 - (i) liquid ethanol (C_2H_6O)

 $C_2H_6O(s) + 3 O_2(g) \longrightarrow 2 CO_2(g) + 3 H_2O(g)$

(ii) solid magnesium sulfide (MgS)

2 MgS (s) + 3 O_2 (g) \longrightarrow 2 MgO (s) + 2 S O_2 (g)

8. Review Questions

- (a) A solid sample of zinc nitrate is gently heated over an open flame. Two different gases were evolved in the process.
 - (i) Suggest the identities of these two gases.

Nitrogen dioxide and oxygen

(ii) Write down the name and chemical formula of the residue from this reaction.

Zinc oxide, ZnO

(iii) Predict the experimental observation that would be made if aqueous sodium hydroxide is added, slowly until in excess, to a solution of zinc nitrate.

A white precipitate would be formed, which would be soluble in excess sodium

hydroxide, forming a colourless solution.

(iv) Describe how you would prove the presence of the nitrate ion in an aqueous solution of zinc nitrate, stating the predicted observations.

To a sample of the solution, add an equal volume of sodium hydroxide and

warm gently. Test for any gas evolved with a moist red blue litmus paper.

There should be no visible change. Then add a few pieces of aluminium foil and

warm again. A colourless, pungent-smelling gas should be evolved which turns

moist red litmus paper blue.

(b) A green compound, **P**, was heated strongly in a test-tube. A colourless gas, **Q**, was evolved and a black solid, **R**, remained in the test-tube.

When gas **Q** was bubbled through aqueous calcium hydroxide, a white precipitate, **S**, formed.

When **R** was dissolved in excess nitric acid, a blue solution, **T**, formed.

A few drops of aqueous ammonia is added to **T**, which produces a light blue precipitate **U**. An excess of aqueous ammonia added to **U** produces a dark blue solution.

(i) Deduce the chemical formulae, with state symbols, of P, Q, R, S, T and U.

Р:	CuCO ₃ (s)	S:	CaCO ₃ (s)
Q:	CO₂ (g)	T:	Cu(NO ₃) ₂ (aq)
R:	CuO (s)	U:	Cu(OH)₂ (s)

(ii) Construct an equation, including state symbols, for the thermal decomposition of **P**.

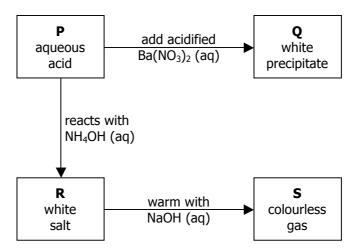
 $CuCO_3$ (s) $\rightarrow CuO$ (s) + CO_2 (g)

9. Colours of Common Substances

Generally, salts of Group I and Group II metals form **white-coloured compounds**. Similarly, salts of transition metals from **coloured compounds**.

Colour	Substances / Ions Present	
Grey	All metals, except copper and gold	
Black	CuO, CuS, CoO, FeO, FeS, PbS, MnO ₂ , I ₂ crystals	
Blue	Cu ²⁺ (aq), CoCl ₂ (anhydrous)	
Green	Fe ²⁺ , Ni ²⁺ , CuCl ₂ (anhydrous), CuCO ₃	
Reddish-brown	Fe^{3+} (solid), I_2 (aqueous), Br_2 (aqueous/liquid)	
Yellow	Fe ³⁺ (aq), PbI ₂ , AgBr, AgI	
Orange	Cr ₂ O ₇ ²⁻ , PbO	
Pink	CoCl ₂ (hydrated), Cu (pure metal)	
Purple	MnO ₄ ⁻ , I ₂ (solid/gas)	

(a) Complete the table below which summarizes the colours of copper and its compounds.


Substance	Colour
copper metal	pink
anhydrous copper(II) sulfate	white
aqueous copper(II) sulfate	blue
anhydrous copper(II) chloride	green
aqueous copper(II) chloride	blue
solid copper(II) carbonate	green
solid copper(II) oxide	black

(b) Complete the table below which summarizes the colours of iodine and its compounds.

Substance	Colour
iodine crystals	purple
iodine vapour	purple
aqueous iodine	brown
aqueous potassium iodide	colourless
solid lead(II) iodide	yellow
solid silver iodide	pale yellow

10. Review Questions

(a) The diagram below shows a reaction scheme involving four unknown substances.

State the **names** and **formulae** of the unknown substances **P**, **Q**, **R** and **S**, as shown above.

- P:sulfuric acid, H2SO4R:ammonium sulfate, (NH4)2SO4Q:barium sulfate, BaSO4S:ammonia gas, NH3
- (b) Substance **V** is a blue solution. When aqueous sodium hydroxide is added to **V**, a blue precipitate **W** is formed.

When **W** is heated, a vapour **X** and a black solid **Y** are formed. The vapour condenses to a colourless liquid **Z** that boils at a temperature of 100 °C.

When **Y** is reacted with dilute hydrochloric acid, **V** is obtained again.

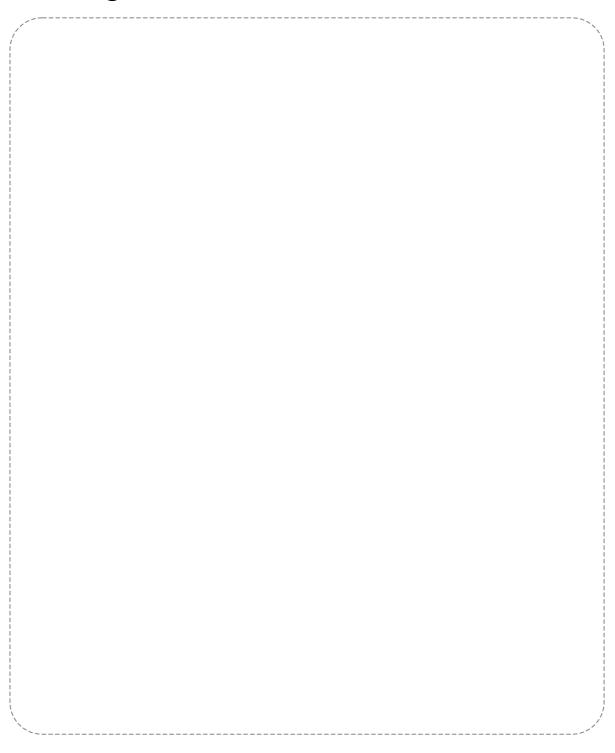
(i) Deduce the chemical formulae, with state symbols, of V, W, X, Y and Z.

V:	CuCl ₂ (aq)	Y:	CuO (s)
W:	Cu(OH)₂ (s)	Z:	H₂O (I)
X:	H₂O (g)		

(ii) Construct a balanced chemical equation, with state symbols, for the action of aqueous sodium hydroxide on \mathbf{V} .

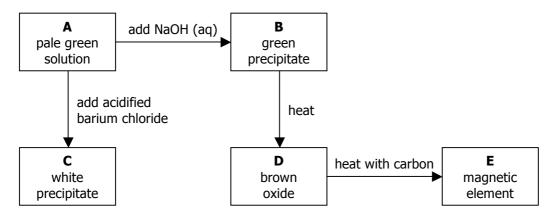
 $CuCl_2$ (aq) + 2 NaOH (aq) $\rightarrow Cu(OH)_2$ (s) + 2 NaCl (aq)

(iii) Why did **W** turn black upon heating?

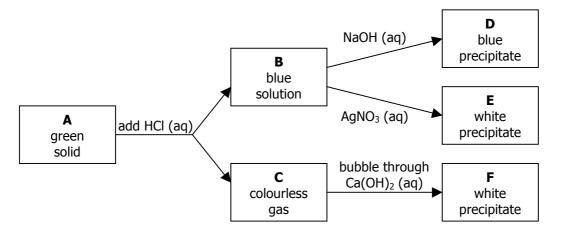

The copper(II) hydroxide undergoes thermal decomposition to form copper(II)

oxide, a black solid.

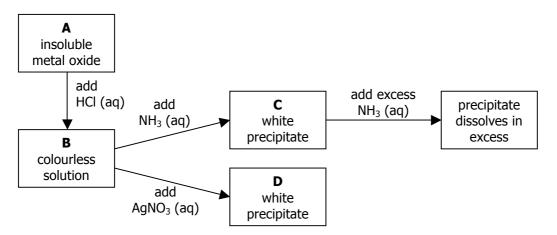
(iv) Construct a balanced chemical equation, with state symbols, for the action of heating **W**.

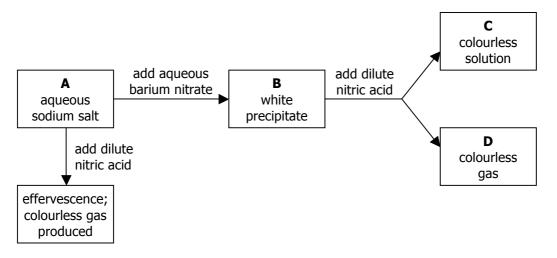

 $Cu(OH)_2$ (s) \longrightarrow CuO (s) + H_2O (g)

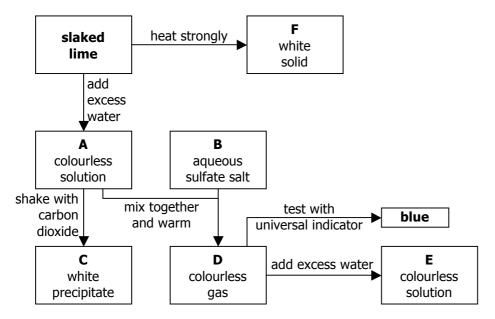
Self-Designed Summary

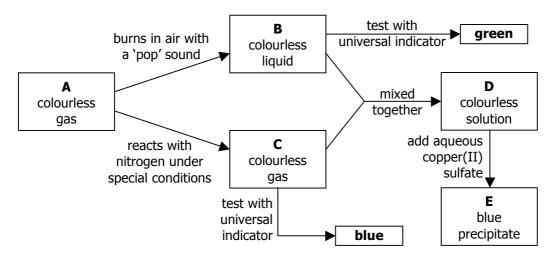


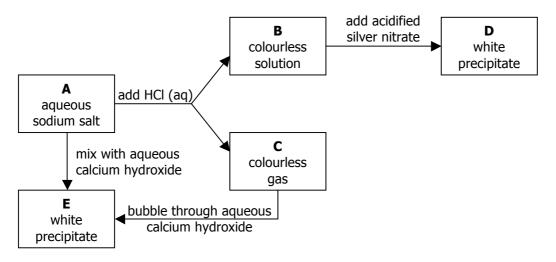
Supplementary Questions

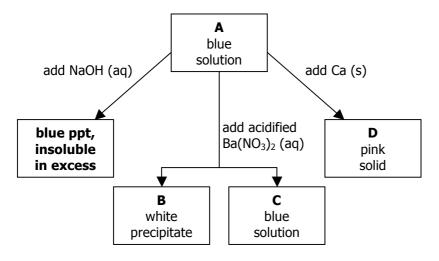

1. State the formulae and state symbols of the unknown substances in the reaction diagram below.


2. State the formulae and state symbols of the unknown substances in the reaction diagram below.

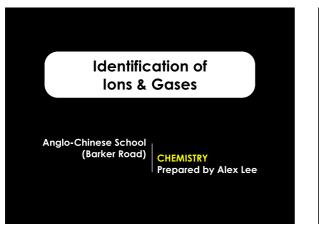

3. State the formulae and state symbols of the unknown substances in the reaction diagram below.

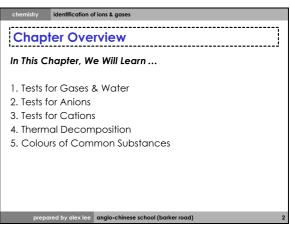

4. State the formulae and state symbols of the unknown substances in the reaction diagram below.

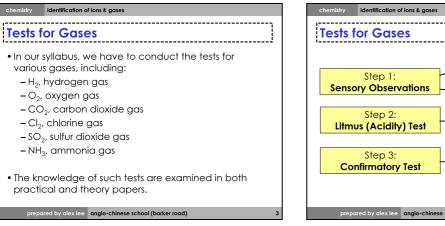

5. State the formulae and state symbols of the unknown substances in the reaction diagram below.

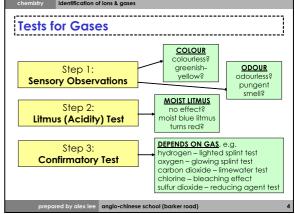

6. State the formulae and state symbols of the unknown substances in the reaction diagram below.

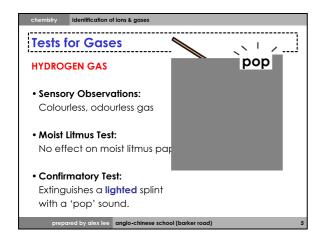
7. State the formulae and state symbols of the unknown substances in the reaction diagram below.

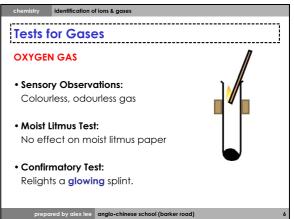

8. State the formulae and state symbols of the unknown substances in the reaction diagram below.

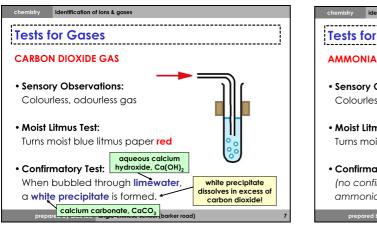


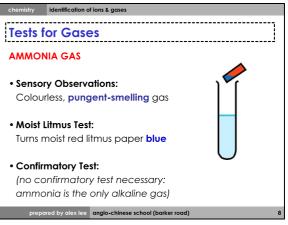

Supplementary Questions (Answers)

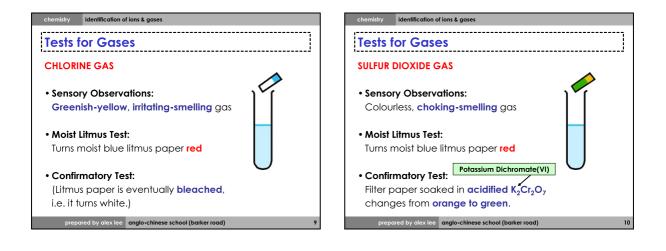

Question 1A: $FeSO_4$ (aq)B: $Fe(OH)_2$ (s)C: $BaSO_4$ (s)	D : Fe ₂ O ₃ (s) E : Fe (s)
Question 2A: $CuCO_3$ (s)B: $CuCl_2$ (aq)C: CO_2 (g)	D : Cu(OH) ₂ (s) E: AgCl (s) F: CaCO ₃ (s)
Question 3 A: ZnO (s) B: ZnCl ₂ (aq)	C : Zn(OH) ₂ (s) D : AgCl (s)
Question 4 A : Na ₂ CO ₃ (aq) B : BaCO ₃ (s)	C : Ba(NO ₃) ₂ (aq) D : CO ₂ (g)
Question 5 A: Ca(OH) ₂ (aq) B: $(NH_4)_2SO_4$ (aq) C: CaCO ₃ (s)	D: NH₃ (g) E: NH₄OH (aq) F: CaO (s)
Question 6 A: H ₂ (g) B: H ₂ O (l) C: NH ₃ (g)	D : NH ₄ OH (aq) / NH ₃ (aq) E : Cu(OH) ₂ (s)
Question 7 A: Na ₂ CO ₃ (aq) B: NaCl (aq) C: CO ₂ (g)	D : AgCl (s) E : CaCO ₃ (s)
Question 8 A: CuSO ₄ (aq) B: BaSO ₄ (s)	C : Cu(NO ₃) ₂ (aq) D : Cu (s)

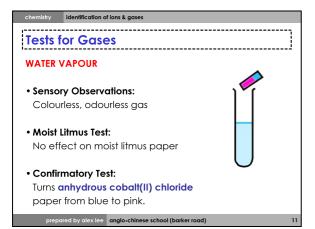

Lecture Slides

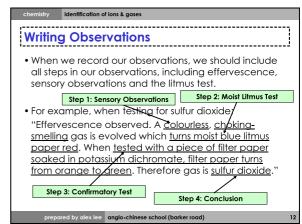












chemistry identification of ions & gases

Tests for Gases

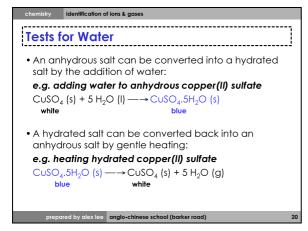
• Why do we need to moisten the litmus paper? Water must be present in order for dissociation to occur; without which the litmus will be unable to change colour.

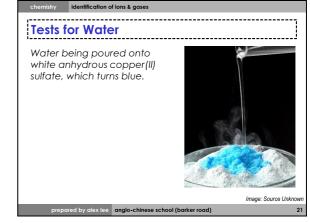
- Why is no confirmatory test necessary for ammonia? Ammonia is the only alkaline gas.
- Why is no confirmatory test necessary for chlorine? Chlorine already exhibits a distinctive bleaching effect during the litmus test.

repared by alex lee anglo-chinese school (barker road)

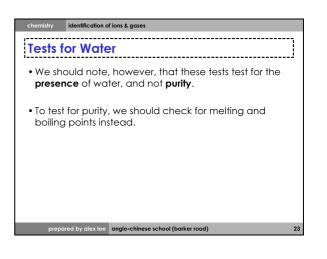
hemistry identification of ions & gases

Tests for Water


• Many salts have different colours when hydrated and when anhydrous.


.....

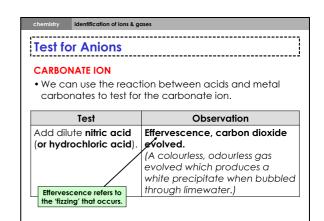
• Two common examples are copper(II) sulfate and cobalt(II) chloride:


	anhydrous	hydrated
copper(II) sulfate	white	blue
cobalt(II) chloride	blue	pink

prepared by alex lee anglo-chinese school (barker road)

chem	istry identification of ions & gases	
Te	sts for Water	
	e can hence use these colour c e presence of water!	changes as a test for
No	Procedure	Observations
1	Place a few drops of the unknown liquid in a sample of anhydrous copper(11) sulfate .	The white anhydrous copper(II) sulfate will turn to blue .
2	Place a few drops of the unknown liquid in a sample of anhydrous cobalt(II) chloride .	The blue anhydrous cobalt(II) chloride will turn to pink .
	prepared by alex lee anglo-chinese school (barke	er road) 2

Test for Anions


• In our syllabus, we learn to test for the following anions: $- \text{CO}_3^2$ carbonate ion

i

- NO₃- nitrate ion
- $-SO_4^2$ -sulfate ion
- Cl⁻ chloride ion
- Fiodide ion

• Let's look at some special properties of these anions.

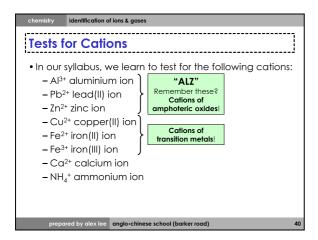
pared by alex lee anglo-chinese school (barker road)

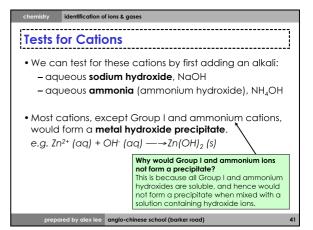
bared by alex lee anglo-chinese school (barker road)

ry identification of ions & gases _____ **Test for Anions NITRATE ION** • Nitrates can be tested by a special reaction with hydroxide ions and aluminium metal. Test Observation Add aqueous sodium Ammonia evolved. hydroxide, a few A colourless, pungent-smelling gas evolved which is able to pieces of **aluminium** foil and warm gently, turn moist red litmus paper blue.) No effervescence for the evolution of ammonia. ed by alex lee anglo-chinese school (barker re

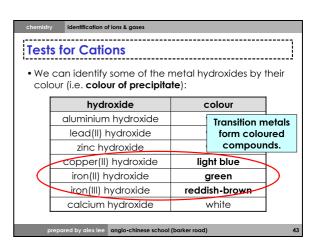
chemistry identification of ions & gases					
Test for Anions					
 SULFATE ION We can test for sulfate ions through precipitation – since only three sulfate salts are insoluble! 					
Test	Observation				
First add dilute nitric acid, followed by aqueous barium	A white precipitate of barium sulfate is formed.				
nitrate.	Why is nitric acid added? Aqueous barium nitrate can precipitate with sulfate, carbonate and hydroxide ions. Adding an acid removes any possible carbonate and hydroxide ions.				
prepared by alex lee anglo-ch	ninese school (barker road) 27				

chemistry identification of ions & gases						
Test for Anions						
SULFATE ION	(Continued)					
• Sometimes,	the dilute nitric acid c	and aqueous barium				
nitrate can	be added as separate	e steps:				
Test	If Sulfate Ions Present	If Carbonate Ions Present				
① Add dilute nitric acid.	No visible change.	Effervescence				
	A white precipitate is formed.	No visible change.				
① Add aqueous	A white precipitate is	A white precipitate is				
barium nitrate.	formed. BaSO4	formed. BaCO3				
② Add dilute nitric acid.	White precipitate does not dissolve in dilute nitric acid.	White precipitate dissolves in dilute nitric acid.				
prepared by alex lee anglo-chinese school (barker road) 22						
prepared by a	angle similare serioor (banke					

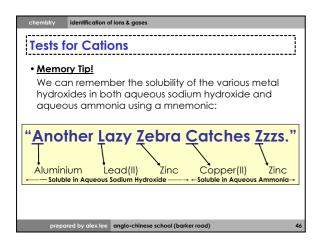

chemistry	chemistry identification of ions & gases				
Test for Anions					
 CHLORIDE ION We can test for chloride ions through precipitation – since only two chloride salts are insoluble! 					
	Test Observation				
acid, foll	dilute nitric owed by * silver nitrate.	A white precipitate of silver chloride is formed.			
Why is nitric acid added? Aqueous silver nitrate can precipitate with chloride, carbonate and hydroxide ions. Adding an acid removes any possible carbonate and hydroxide ions.					
prepared by alex lee anglo-chinese school (barker road) 29					

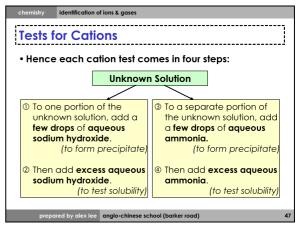

chemistry identification of ions & gases						
Test for Ar	nions					
	N (Continued)					
	the dilute nitric acid c be added as separate					
Test	If Chloride lons Present	If Carbonate Ions Present				
① Add dilute nitric acid.	No visible change.	Effervescence				
② Add aqueous silver nitrate.	A white precipitate is formed.	No visible change.				
① Add aqueous silver nitrate.	A white precipitate is formed.	A white precipitate is formed. Ag ₂ CO ₃				
② Add dilute nitric acid.	White precipitate does not dissolve in dilute nitric acid.	White precipitate dissolves in dilute nitric acid.				
prepared by alex lee anglo-chinese school (barker road) 30						

chemistry	identification of i	ons & gases					
Test for Anions							
with sul	 Why is lead(II) nitrate not used to test for precipitation with sulfate or chloride ions? 						
sulfate	l nitrate fo and chlor distinguish	ide ions ar	nd hence	the two ic			
Insoluble	e Sulfates	Insoluble	Chlorides	Insoluble	lodides		
PbSO ₄	white	PbCl ₂	white	Pbl ₂	yellow		
BaSO₄	BaSO4 white AgCI white AgI pale yellow						
CaSO₄	inomotor, lead(in) initiale car bo used to						
test for iodide ions due to the distinctive yellow colour of lead(II) iodide!							
prepare	ed by alex lee 🛛	inglo-chinese scl	hool (barker road	d)	31		


chemistry identification of ions & gases						
Test for Anions						
 IODIDE ION We can test for iodide ions through precipitation – since only two iodide salts are insoluble! 						
Test			Observ	ation		
First add dilute nitric acid, followed by aqueous lead(II) nitrate.						
Aqueous silver nitrate can a	lso		lodides	С	hlorides	
be used, although lead(II) nitrate provides better contr	ast	Pbl ₂	yellow	PbCl ₂	white	μ
with chloride ions!		Agl	pale yellow	AgCl	white	
prepared by alex lee anglo-chinese school (barker road) 32					32	

	entification of ions & gases	
Anion	Anions: Summary	Observation
CO32-	add dilute nitric acid	effervescence, carbon
carbonate	(or hydrochloric acid)	dioxide evolved
NO3 ⁻	add aqueous sodium hydroxide,	ammonia evolved (test
nitrate	aluminium foil, and warm gently	with moist red litmus)
SO4 ²⁻	add dilute nitric acid , then add	white precipitate of
sulfate	aqueous barium nitrate	BaSO₄ formed
Cl -	add dilute nitric acid , then add	white precipitate of
chloride	aqueous silver nitrate	AgCl formed
l -	add dilute nitric acid , then add	yellow precipitate of
iodide	aqueous lead(II) nitrate	Pbl ₂ formed
prepared	by alex lee anglo-chinese school (barker roo	ıd)




chemistr	y identification of ions & gases				
Test	s for Cations				
 We can identify some of the metal hydroxides by their colour (i.e. colour of precipitate): 					
	hydroxide	colour			
	aluminium hydroxide	white			
	lead(II) hydroxide	white			
	zinc hydroxide	white			
	copper(II) hydroxide	light blue			
	iron(II) hydroxide	green			
	iron(III) hydroxide	reddish-brown			
	calcium hydroxide	white			
p	prepared by alex lee anglo-chinese school (barker road) 42				

chemistr	y identification of ions & gases				
Test	Tests for Cations				
 We can identify other metal hydroxides by their solubility in sodium hydroxide and aqueous ammonia: 					
	hydroxide	NaOH	NH₄OH		
	aluminium hydroxide	soluble	insoluble		
	lead(II) hydroxide	soluble	insoluble		
	zinc hydroxide	soluble	soluble		
	copper(II) hydroxide	insoluble	soluble		
	iron(II) hydroxide	insoluble	insoluble		
	iron(III) hydroxide	insoluble	insoluble		
	calcium hydroxide	insoluble	n/a		
				•	
a F	prepared by alex lee anglo-chinese school (barker road) 44				

chemistr	y identification of ions & gases				
Test	s for Cations				
 We can identify other metal hydroxides by their solubility in sodium hydroxide and aqueous ammonia: 					
	hydroxide	NaOH	NH₄OH		
	aluminium hydroxide	soluble	insoluble		
	lead(II) hydroxide	soluble	insoluble		
	zinc hydroxide	soluble	Amphote	eric	
	copper(II) hydroxide	insoluble	oxides a		
	iron(II) hydroxide	insoluble	soluble		
	iron(III) hydroxide	insoluble	strong alk	alis.	
	calcium hydroxide	insoluble	insoluble		
F	repared by alex lee anglo-chinese sc	hool (barker road)		45	

	or Cations	
	add a few drops of sodium hydroxide, followed by excess	add a few drops of aqueous ammonia, followed by excess
Al³⁺ aluminium	white precipitate formed, which dissolves in excess , forming a colourless solution	white precipitate of formed, insoluble in excess
Pb ²⁺ lead(II)	white precipitate formed, which dissolves in excess , forming a colourless solution	white precipitate formed, insoluble in excess
Zn²+ zinc	white precipitate formed, which dissolves in excess , forming a colourless solution	white precipitate formed, which dissolves in excess , forming a colourless solution
Cu ²⁺ copper(II)	light blue precipitate formed, insoluble in excess	light blue precipitate formed, which dissolves in excess, forming a dark blue solution

	add a few drops of sodium hydroxide, followed by excess	add a few drops of aqueous ammonia, followed by excess
Fe ²⁺ iron(II)	green precipitate formed, insoluble in excess	green precipitate formed, insoluble in excess
Fe ³⁺ iron(III)	reddish-brown precipitate formed, insoluble in excess	reddish-brown precipitate formed, insoluble in excess
Ca²+ calcium	white precipitate formed, insoluble in excess	no visible change

chemistry identification of ions & go	ases			
Test for Cations				
 AMMONIUM ION We can use the reaction between ammonium salts and alkalis to test for the ammonium ion. 				
Test	Observation			
Add aqueous sodium hydroxide and warm gently. No effervesce evolution of				
prepared by alex lee anglo-ch	ninese school (barker road) 53			

The tests for very simila	or the ammonium ion (ir:	and nitrate ion are
lon	Ammonium Ion (NH4+)	Nitrate Ion (NO ₃ -)
Procedure	To a sample of the unknown solution, add aqueous sodium hydroxide. Warm the mixture gently.	To a sample of the unknown solution, add aqueous sodium hydroxide. Then add aluminium foil. Warm the mixture gently.
Observations	A colourless, pungent- smelling gas is evolved which turns moist red litmus paper blue.	A colourless, pungent- smelling gas is evolved which turns moist red litmus paper blue.

hemistry identification of ions & gases

.

Tests for Ammonium & Nitrate Ions

• What is the main difference between the tests for ammonium and nitrate ions.

In the test for the nitrate ion, **aluminium foil is added**. However, in the test for the ammonium ion, aluminium foil is not added.

• Will the presence of ammonium ions affect the test for nitrates ions? Why?

ared by alex lee anglo-chinese school (barker road)

Yes. If ammonium ions are present, the test for nitrate ions will be positive even if nitrate ions are not present.

Tests for Ammonium & Nitrate Ions • How then should we accurately test that an unknown solution contains nitrate ions and not ammonium ions? To a sample of the unknown solution, add aqueous sodium hydroxide and warm. Test that no ammonia gas is evolved. Then add aluminium foil and warm again. Test that ammonia gas is evolved.

prepared by alex lee anglo-chinese school (barker road)

identification of ions & gases

..........

chemistry identification of ions & gases

Thermal Decomposition

• Some compound can be **broken down by heat alone**.

.....i

- This is known as **thermal decomposition**, and this can be used to help us identify a compound.
- Thermal decomposition is **not** to be confused with **combustion**.

prepared by alex lee anglo-chinese school (barker road)

Thermal decomposition sh combustion.	ould not be confused with
Thermal Decomposition	Combustion
Single reactant	More than one reactant
Absorbs heat	Produces heat
Example: Ca(OH) ₂ \longrightarrow CaO + H ₂ O	Example: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$

Type of Compound	Occurs In	Products of Decomposition
Hydroxides (OH ⁻)	All hydroxides, except Group I hydroxides	Water vapour evolved e.g. $Ca(OH)_2 \longrightarrow CaO + H_2O$
Carbonates (CO ₃ ²-)	All carbonates, except Group I carbonates	Carbon dioxide evolved e.g. CaCO ₃ \rightarrow CaO + CO ₂
Nitrates (NO ₃ -)	All nitrates can decompose	

nemistry identification of ions & gases

Colours of Common Substances

• The physical appearance of a substance can help us narrow down its identity.

.....

- Generally, all **pure metals are grey**, with the exception of gold (yellow) and copper (pink).
- Also, most **Group I and Group II salts are white**, while salts of transition metals have various colours.

ed by alex lee anglo-chinese school (barker road)

chemistry identification of ions & gases				
Colours of Common Substances				
Below are the colours of some common chemicals:				
Colour	Substances / Ions Present			
Black	CuO, CuS, CoO, FeO, FeS, PbS, MnO ₂			
Blue	Cu ²⁺ (aq), CoCl ₂ (anhydrous)			
Green	Fe ²⁺ , Ni ²⁺ , CuCl ₂ (anhydrous), CuCO ₃			
Reddish-brown	Fe ³⁺ (solid), I ₂ (aqueous), Br ₂ (liquid)			
Yellow	Fe ³⁺ (aq), Pbl ₂ , AgBr, AgI			
Orange	Cr ₂ O ₇ ²⁻ , PbO			
Pink	CoCl ₂ (hydrated), Cu (pure metal)			
Purple	MnO ₄ ⁻ , I ₂ (solid/gas)			
prepared by alex l	ee anglo-chinese school (barker road) 7	73		

