

VICTORIA JUNIOR COLLEGE JC 2 PRELIMINARY EXAMINATION Higher 2

CANDIDATE NAME	
CT GROUP	

CHEMISTRY 9729/03

Paper 3 Free Response 16 September 2024

Candidates answer on the Question Paper. 2 hours

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name and CT group on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer **all** questions in the spaces provided on the Question Paper. If additional space is required, you should use the pages at the end of this booklet. The question number must be clearly shown.

Section A

Answer all questions.

Section B

Answer one question.

A Data Booklet is provided.

The use of an approved scientific calculator is expected, where appropriate.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
Section A	1	/ 23	
	2	/ 19	
	3	/ 18	
Section B	4	/ 20	
	OR 5	/ 20	
Total		/ 80	

Section A

Answer all the questions in this section.

1	(a)		ine is bubbled through $100~\text{cm}^3$ of hot $4.0~\text{mol}$ dm $^{-3}$ sodium hydroxide until the reamplete.	ctior
			6NaOH(aq) + $xCl_2(aq) \rightarrow yNaCl(aq) + zNaClO_3(aq) + 3H_2O(I)$	
		(i)	State the type of reaction that occurs. Explain your answer in terms of change oxidation numbers.	es ir [1]
		(ii)	Determine the values of x , y and z .	[1]
		(iii)	Determine the concentration of Na ⁺ (aq), in mol dm ⁻³ , after the reaction.	[1]

(b) Compound **A** is an ether with molecular formula C₄H₁₀O. When **A** is heated in a sealed container, an equilibrium mixture is produced.

$$C_4H_{10}O(g) \rightleftharpoons C_2H_6(g) + CO(g) + CH_4(g)$$
 $\Delta H = -7.00 \text{ kJ mol}^{-1}$

Table 1.1 shows the activation energy, E_a , for the reaction in the presence and absence of I_2 .

Table 1.1

E_a (with I_2) / kJ mol ⁻¹	E_a (without I_2) / kJ mol ⁻¹
143	224

- (i) State the role of I_2 in this reaction and explain what effect it has on the value of K_c .
- (ii) Complete the energy profile diagram for this reaction in Fig. 1.1. Include labels to show the enthalpy change and the activation energy data in Table 1.1.

Fig. 1.1

[2]

(iii) Suggest the effect of increasing the pressure on the position of equilibrium. [1]

Potassium chloride, KCl, and magnesium chloride, MgCl2, are both ionic solids. (c)

The following data can be used to answer some parts of this question.

Table 1.2

standard enthalpy change	value / kJ mol⁻¹
standard enthalpy change of solution, $\Delta H^{\rm e}_{\rm sol}$, of KC l	+15
lattice energy, $\Delta H^{\rm e}_{\rm latt}$, of KC $l(s)$	- 701
standard enthalpy change of hydration, ΔH^{e}_{hyd} , of K ⁺	-322
standard enthalpy change of hydration, ΔH^{o}_{hyd} , of Cl^{-}	-364
standard enthalpy change of solution, $\Delta H^{\rm e}_{\rm sol}$, of MgC l_2	–155
lattice energy, $\Delta H^{\rm e}_{\rm latt}$, of MgC l_2 (s)	-2493

Define the term *entropy* and state the effect on the entropy of the chemical system (i) for the following reaction. Explain your answer.

$$K^+(g) + Cl^-(g) \rightarrow KCl(s)$$

(ii) Potassium chloride dissolves readily in water at 25°C.

> By considering the enthalpy change and Gibbs free energy change, state and explain the sign of the standard entropy change for the dissolution of potassium chloride.

[1]

(iii) Define enthalpy change of hydration. [1]

Complete the energy cycle involving the enthalpy change of solution (ΔH_{sol}), lattice (iv) energy (ΔH_{latt}) of magnesium chloride, and the enthalpy changes of hydration (ΔH_{hvd}) . Label the enthalpy changes in your diagram. State symbols should be used.

[2]

Hence, calculate the enthalpy change of hydration of magnesium ions, Mg²⁺. Show (v) your working. [1]

Explain why the lattice energy of MgCl₂ is more exothermic than the lattice energy (vi) of KCl. [1]

vii)	Molten magnesium chloride is electrolysed for 15.0 minutes by a constant current At the cathode, 4.75×10^{22} magnesium atoms are produced. Calculate the value of the current used.

(d)		ectrochemical cell consisting of an Fe $^{3+}$ /Fe $^{2+}$ half-cell and a C l_2 /C l^- half-cell is set cell reaction for the electrochemical cell is shown below.	лb.
		$Cl_2 + 2Fe^{2+} \rightarrow 2Cl^- + 2Fe^{3+}$	
		s experiment, the Fe^{2+} concentration is 0.15 mol dm $^{-3}$. Concentrations of all oth es remain at their standard values.	ner
	The N	Nernst equation is shown below.	
		$E = E^{\circ} + \frac{0.059}{n} \lg \frac{\text{[oxidised species]}}{\text{[reduced species]}}$	
		where <i>n</i> is the number of electrons transferred	
	(i)	A salt bridge is used in an electrochemical cell. Explain the function of the salt bridge	ge. [1]
	(ii)	Use the Nernst equation to calculate the electrode potential, E , for the Fe $^{3+}$ /F half-cell in this experiment.	e ²⁺ [1]
	(iii)	Use your answer to (d)(ii) to calculate E_{cell} for this electrochemical cell.	[1]
			-

(e)	Anodisation of aluminium is widely practiced in industry.
	State why aluminium objects are anodised and explain how anodising achieves this with the aid of equations. [3]

2	(a)	iron ligan deox	xyhaemoglobin and oxyhaemoglobin contain iron atoms in the $+2$ oxidation state. Earlom is surrounded by five nitrogen-containing ligands and one oxygen-contained in an octahedral arrangement. The oxygen-containing ligand is H_2O syhaemoglobin and O_2 in oxyhaemoglobin. Each haemoglobin can bind up to four hown below.	ing in
			deoxyhaemoglobin + $4O_2 \rightleftharpoons$ oxyhaemoglobin + $4H_2O$	
		(i)	Explain how oxygen is transported in the body with reference to the equilibria	um [2]
		(ii)	Suggest why carbon monoxide is toxic when inhaled.	[1]
		carb	er solutions are important in living systems. The buffer in blood mainly consists onic acid, H_2CO_3 , and bicarbonate, HCO_3^- . The buffer serves to maintain the pH d at 7.40 ± 0.05 to ensure proper functioning of biological enzymes.	
		(iii)	Explain what is meant by a buffer solution.	[1]
		(iv)	With the aid of equations, explain how the pH of blood is maintained.	[2]
		(v)	Ringer's lactate solution is given to patients to replace fluid and electrolyte at excessive blood loss. This solution contains lactic acid, CH ₃ CH(OH)CO ₂ H(aq), a lactate ions, CH ₃ CH(OH)CO ₂ ⁻ (aq), and acts as a buffer solution. The concentration of lactate ion is 0.025 mol dm ⁻³ and the solution has a pH of 4.50. Calculate to concentration of lactic acid present in the solution.	and ion
			The K_a of lactic acid is 1.38 × 10 ⁻⁴ mol dm ⁻³ .	[2]

(b)	hydro	hydroxides of Group 2 are often used to neutralise acidity. For example, calcium oxide, $Ca(OH)_2$, is used in agriculture to neutralise acidic soil while magnesium oxide, $Mg(OH)_2$, is used in indigestion tablets to neutralise excess stomach acid.
	(i)	The solubility of calcium hydroxide, $Ca(OH)_2$, in water is 2.50×10^{-2} mol dm ⁻³ at 25° C.
		Calculate the pH of a saturated solution of Ca(OH) ₂ at 25°C. [2]
	(ii)	An excess of solid magnesium hydroxide, $Mg(OH)_2$, was stirred with 0.500 mol dm ⁻³ magnesium nitrate, $Mg(NO_3)_2$, until equilibrium was established.
		The solubility product, K_{sp} , of Mg(OH) ₂ is 1.40 × 10 ⁻¹¹ mol ³ dm ⁻⁹ at 25°C. Calculate the solubility of Mg(OH) ₂ in the 0.500 mol dm ⁻³ magnesium nitrate solution. [2]

11115	question explores the chemistry of some transition metals.	
(i)	Explain what is meant by the term transition element.	[1]
(ii)	Explain why transition metal complexes are often coloured.	[2]
(iii)	Air is bubbled through an aqueous solution containing $CoCl_2$, NH_4Cl and NH_3 . resulting solution is then evaporated and crystals of a salt B is isolated. B has empirical formula of $CoN_4H_{12}Cl_3$.	
	On adding an excess $AgNO_3(aq)$ to an aqueous solution containing 0.01 mol of 1.44 g of $AgCl(s)$ is precipitated.	[:] В,
	The cationic complex in B has no net dipole moment.	
	Deduce the formula of the cationic complex in B and draw its structure. Show cleather three-dimensional arrangement of the ligands and the overall charge of cationic complex on the structure.	

((iv	Hvdrogen	peroxide decom	poses according	to the following	na equation.

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

 $\mathrm{Fe^{3+}}$ ions can be used to catalyse the decomposition.

Use the <i>Data Booklet</i> to write two equations to explain how this reaction is catalysed by Fe^{3+} ions and calculate the E^{9}_{cell} values for each step. [2]						

3	(a)	Benzoyl chloride, $C_6H_5COC_l$, can be synthesised by the reaction of benzoic acid with either PC_{l_5} or SOC_{l_2} .				
		(i)	Complete the equation for reaction 1.			
			reaction 1 $C_6H_5COOH + PCl_5 \rightarrow C_6H_5COCl + \dots + \dots + \dots$			
			reaction 2 $C_6H_5COOH + SOCl_2 \rightarrow C_6H_5COCl + SO_2 + HCl$ [1]			
		(ii)	Use your answer to (a)(i) to suggest why it is easier to isolate the $C_6H_5COC_1$, in pure form, from reaction 2 compared to reaction 1. [1]			
		(iii)	C ₆ H ₅ COC <i>l</i> contains a benzene ring in its structure.			
			Describe and explain the shape of benzene.			
			In your answer, include: • the shape and bond angle around each carbon atom • the hybridisation of the carbon atoms • how orbital overlap forms σ and π bonds between the carbon atoms			

(b)	Phosphorus oxychloride, $POCl_3$, shows similar chemical properties to PCl_5 . $POCl_3$ has a melting point of 1°C and a boiling point of 106°C. $POCl_3$ reacts vigorously with water, forming misty fumes and an acidic solution.								
	(i)	With the aid of an equation, explain the reaction of POCl ₃ with water.	[1]						
	(ii)	Draw a dot-and-cross diagram to show the bonding in $POCl_3$.	[1]						
(c)	Trioxanes are structures made up of three carbon atoms and three oxygen atoms in a smembered ring.								
	Compound ${\bf C}$, of molecular formula $C_3H_6O_3$, can form only one mono-chloro deriva when reacted with Cl_2 under light.								
	(i)	Draw the structural formula of trioxane, C .	[1]						
	There are three possible structural isomers of trioxane.								
		other two trioxane structural isomers are known to be hypothetical strunct be isolated.	ictures and						
	(ii)	Draw the structural formulae of the other two trioxane isomers.	[1]						

(b)

((\mathbf{d})) Dicarbox	ylic acids	ionise in	12	stages.

$$HO_2CRCO_2H \rightleftharpoons HO_2CRCO_2^- + H^+$$
 K_{a1}
 $HO_2CRCO_2^- \rightleftharpoons ^-O_2CRCO_2^- + H^+$ K_{a2}

A hydrogen bond can form within a monoanion of *cis*-butenedioic acid. This intramolecular hydrogen bond stabilises the ion.

$$HO_2C$$
 CO_2H HO_2C CO_2H Cis -butenedioic acid $trans$ -butenedioic acid

- (i) Draw a diagram of the monoanion of *cis*-butenedioic acid showing the intramolecular hydrogen bond formed. [1]
- (ii) Explain why a monoanion of *trans*-butenedioic acid is unable to form intramolecular hydrogen bonds. [2]

(iii)	Suggest how the ability of these acids to form intramolecular hydrogen bonds affects the acid strength, and the value of K_{a1} for <i>cis</i> -butenedioic acid compared to <i>trans</i> -butenedioic acid. [1]

e)	The compound ${\bf D}$ has the molecular formula $C_9H_8O_2$. ${\bf D}$ does not liberate carbon dioxide with sodium hydrogencarbonate. ${\bf D}$ reacts with Tollens' reagent to give an organic species ${\bf E}$ and a grey precipitate. Upon acidification of ${\bf E}$, a white precipitate with a molecular formula of $C_9H_8O_3$ is formed.
	Upon oxidation with excess hot acidified potassium manganate(VII), 1 mol of \textbf{D} gives 1 mole of carbon dioxide and 1 mol of a compound, $C_8H_6O_5$. \textbf{D} reacts with aqueous bromine to form a white precipitate \textbf{F} , $C_9H_6O_3Br_4$.
	Suggest possible structures for D , E and F . For each reaction, state the <i>type of reaction</i> described and explain what the information tells you about the functional groups present in each structure. [5]

(e)

BLANK PAGE

Section B

Answer one question from this section.

(a)	Desc	ribe what is meant by the term <i>enhanced greenhouse effect</i> . [1]				
(b)	Compound \mathbf{K} has the structural formula CH_2 = $CHCH(NH_2)CO_2H$ and it exhibit stereoisomerism.					
	(i)	Define the term <i>stereoisomerism</i> . [1]				
	(ii)	Name all the functional groups in K . [1]				
	(iii)	Draw three-dimensional structures for the two stereoisomers of K and name this type of stereoisomerism. [2]				
	Com acid.	pound ${f K}$ can be prepared from the reaction of ${f L}$ with a controlled amount of hot aqueous				
	aciu.					
		HN				
		compound L				
	(iv)	Write the equation for the reaction between L and a hot aqueous acid to form K . [1]				
	(v)	Suggest which compound, K or L , is a stronger base. Explain your reasoning. [2]				
	(vi)	Compound K undergoes an addition reaction with hydrogen bromide. Suggest a mechanism for this reaction and use it to predict the major product. Explain your reasoning.				

(c)	2-aminoethanol can	be s	vnthesised	from	oxirane	as	shown	below
(\sim)			y i iti icoloca	11 0111	OAHAH	uЭ	SHOWIL	DCION

- (i) State the type of reaction undergone by oxirane to form 2-aminoethanol. [1]
- (ii) A small amount of by-product **M** is produced during this reaction.

Explain how the by-product \mathbf{M} is produced and hence suggest how the formation of by-product \mathbf{M} can be minimised. [2]

[1]

(iii) Compound P, C_4H_9NO can be formed from the reaction of by-product M, $C_4H_{11}NO_2$, with concentrated H_2SO_4 .

Compound **P** is a saturated and basic organic compound.

Suggest a structure for compound **P**.

(iv)	Suggest a simple chemical test to confirm that \mathbf{M} has been completely removed fro the reaction mixture by the concentrated H_2SO_4 .					

(d) In aqueous solution, iodide ions react with acidified hydrogen peroxide as shown below.

$$2I^{-} + H_{2}O_{2} + 2H^{+} \rightarrow I_{2} + 2H_{2}O$$

The initial rate of the above reaction is found to be first order with respect to I^- , first order with respect to H_2O_2 and first order with respect to H^+ .

A possible four-step mechanism for this reaction is proposed below.

- $\begin{array}{lll} \text{step 1} & \text{H}_2\text{O}_2 + \text{I}^- \rightarrow \text{IO}^- + \text{H}_2\text{O} \\ \text{step 2} & \text{H}^+ + \text{IO}^- \rightarrow \text{HIO} \\ \text{step 3} & \text{HIO} + \text{I}^- \rightarrow \text{I}_2 + \text{OH}^- \\ \text{step 4} & \text{OH}^- + \text{H}^+ \rightarrow \text{H}_2\text{O} \\ \end{array}$
- (i) Suggest which of the steps, 1, 2, 3 or 4, in this mechanism is the rate-determining step. Explain your answer. [1]
- (ii) Suggest the role of HIO in this mechanism. Explain your reasoning. [1]
- (iii) This reaction is repeated in two separate experiments. The experiments are carried out at the same temperature and with the same concentrations of I^- and H_2O_2 .

One experiment takes place at pH 1.0 and the other experiment takes place at pH 2.0.

Suggest the value of $\frac{\text{rate at pH 1.0}}{\text{rate at pH 2.0}}$.	[1]

[Total: 20]

	Outli	ne the environmental consequence of releasing CFC into the atmosphere.	[1]
b)	A rea	action scheme is shown below.	
		Cl O $Step 1$ O $Step 2$ R , $C_6H_{13}NO_2$	
		C_l O R , $C_6H_{13}NO_2$ $excess HC/(aq)$ $heat$	
		S + T	
	(i)	Give the systematic name for Q .	[1]
	(ii)	Suggest the reagents and conditions used for steps 1 and 2.	[2]
	(iii)	Suggest the structures of compounds R , S and T .	[2]
		n compound ${\bf Q}$ undergoes hydrolysis under different reaction conditions, i C/CH ₂ CO ₂ H or CH ₂ (OH)CH ₂ CO ₂ H.	t gives
	(iv)	Suggest which organic acid, CH ₂ C/CH ₂ CO ₂ H or CH ₃ CH ₂ CO ₂ H is a stronge Explain your reasoning.	er acid. [1]
	(v)	Write an equation to show how CH ₂ (OH)CH ₂ CO ₂ ⁻ is formed from Q .	[1]

(c)	The reaction of methylbenzene with thionyl bromide,	SOBr ₂ , in the presence of an iron(III)
	bromide catalyst, FeBr ₃ , is shown below.	

The mechanism of this reaction is similar to that of bromination of benzene.

(i)	Suggest the mechanism for this reaction. Include relevant curly arrows and char	ges.
		[3]

(ii)	This reaction	produces	a small	amount	of a	by-product,	U,	$C_{14}H_{14}OS$.	Suggest a
	structure for b	y-product L	J.						[1]

(ii)	This reaction produces a small amount of a by-product, U , C ₁₄ H ₁₄ OS. Suggest structure for by-product U .	a 1]
(iii)	Suggest which compound, methylbenzene or nitrobenzene, reacts with thionyl bromic at a higher rate. Explain your reasoning.	de 1]

(d)		hene, $C_{10}H_{16}$, occurs naturally in the pith oil of citrus fruits. It has been used as a biofuel sel engines.		
		limonene		
	(i)	Use the molecular formula of limonene to write a balanced equation for its complete combustion in air. [1]		
	(ii)	Use bond energy values from the <i>Data Booklet</i> to calculate the enthalpy change of combustion of limonene. [2]		
	(iii) The enthalpy change of combustion of diesel fuel is about –45 kJ g ⁻¹ . How does the enthalpy change of combustion of limonene per gram compare to this value? Show your working.			

bond in h	าydrogen	ree radica n peroxida	e, H ₂ O ₂ ,	breaks	to form	•OH fre	e radica	al.	·	[2]

Additional answer space

If you use the following page to complete the answer to any question, the clearly shown.	question number must be