H2 Chemistry 9746 Preliminary Examinations 2009

Suggested Solutions

Paper 1: Multiple Choice Questions

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
А	D	В	С	А	D	С	D	С	С
Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	Q20
D	D	С	D	В	С	А	D	В	D
Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q28	Q29	Q30
В	А	D	В	D	С	D	А	D	А
Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q38	Q39	Q40
В	А	В	D	А	В	С	С	В	D

Paper 2: Structured Questions

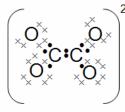
1 (a) (i) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$

(b)

- Screening effect on the outermost electron of Cu is more or less the same as that in K, as the electrons in the d-subshell do not contribute significantly to screening effect As nuclear charge of Cu > K, the attraction of the outermost electron by the nucleus of Cu is much stronger than in K (⇒ atomic radius of Cu is smaller than K)
- (iii) As atomic radius of Cu < K, the copper atoms can pack close together / there will be more copper atoms per unit volume / copper would occupy a smaller volume for the same number of particles As mass of one atom of Cu > mass of one atom of K, hence density (mass / volume) of copper is <u>higher</u> than K.
- (i)
 HCl
 HBr
 HI

 Bond Energy (kJmol⁻¹)
 431
 336
 229

(awarded as long as candidate mentions at least **two** of the <u>bond energies</u> in their answer) ease of breaking the H–X bond: HCl < HBr < HI


thermal stability: HCl > HBr > HI

(ii) <u>Hydrogen bonding</u> exist between HF molecules

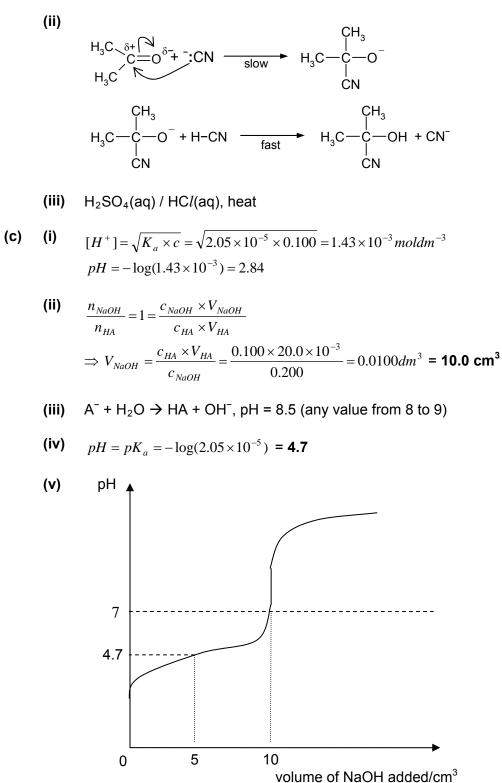
(c) 1^{st} I.E.: He = 2370 kJ mol⁻¹; Ne = 2080 kJ mol⁻¹ Potential difference required = $\frac{2080}{2370} \times 24.0 = 21.1 \text{ V}$

[Total: 11]

2 (a) (i)

(ii) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 120^{\circ} \end{bmatrix}^2$

trigonal planar with respect to both carbon bond angle = 120°


- (b) (i) The experiment should be conducted in the fume cupboard to prevent inhalation of the toxic CO(g).
 (Or any feasible precaution, but must mention the toxic nature of CO. Vague reasons, such as CO is a pollutant, are **not** accepted.)
 - (ii) amount of CaC₂O₄ = $\frac{0.128}{40.1 + 2(12.0) + 4(16.0)}$ = 1.0 × 10⁻³ mol mass of **B** produced = 0.128 - 0.028 = 0.100 g M_r of **B** = $\frac{0.100}{1.0 \times 10^{-3}}$ = 100
 - (iii) CaCO₃

3

- (iv) $CaC_2O_4 \rightarrow CaCO_3 + CO$
- (v) Any temperature well above 400 °C ionic radius of Ba²⁺ > ionic radius of Ca²⁺ or charge density of Ba²⁺ < charge density of Ca²⁺ Ba²⁺ ion is less able to polarise / distort electron cloud of the anion.

[Total: 12]

- (ii) Step II: H₃PO₄, 300 °C, 70 atm
 Step III: KMnO₄ / K₂Cr₂O₄, H₂SO₄(aq), heat / reflux
- (b) (i) HCN + NaOH \rightarrow Na⁺ + <u>CN</u>⁻ + H₂O

[Total: 15]

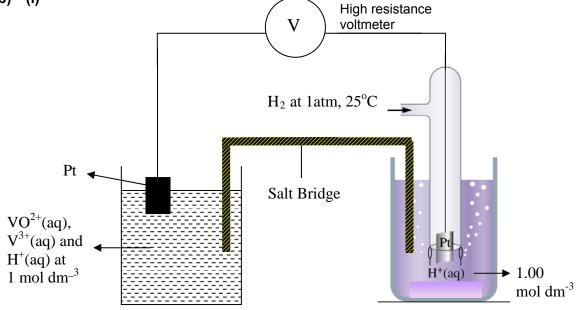
- 4 (a) (i) condensation reaction
 - (ii) ∆S will be negative.
 Forward reaction is accompained by a decrease in number of moles of particles.
 - (b) (i) 1 For nucleophilic substitution of Cl by OH⁻ to take place.
 2 To prevent the formation of Ag₂O (through the reaction of Ag⁺ and OH⁻)
 - (ii) AgCl / silver chloride
 - (iii) AgCl + 2NH₃ \rightarrow [Ag(NH₃)₂]⁺Cl⁻ (must be balanced)
 - (iv) D can be used to detect trichloroethanal.
 Silver mirror / grey ppt (produced on warming)

[Total: 9]

- (iii) pK_b of benzedrin > pK_b of adrenaline the lone pair of electrons on the N atom in adrenaline is more available for donation to H⁺ since it is attached to two electron donating alkyl groups.
- (b) (i) Bronsted base or base
 - (ii) Gas **F**: carbon dioxide or CO_2 Reagent: water or H_2O
 - (iii) 1: CH₃NH₂ 2: C₆H₅NH₂
 - (iv) $Br_2(aq)$ H decolourises $Br_2(aq)$ and forms a white ppt **and** no decolourisation for **G**.

[Total: 13]

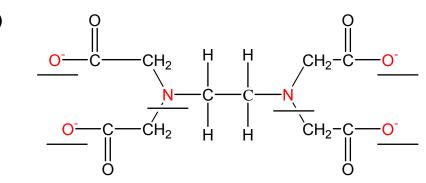
Paper 3: Free Response Questions


1	12
	10

a)	Element	1 st IE / kJ mol ⁻¹	2 nd IE / kJ mol ⁻¹	3 rd IE / kJ mol ⁻¹	4 th IE / kJ mol ⁻¹	
	Ca	590	1150	4940	6480	
	V	648	1370	2870	4600	

For element such as calcium, there is a significant difference between the 2nd and the 3rd IE (3790 kJmol⁻¹). Hence after losing 2 electrons, <u>further</u> ionisation requires a large energy input.

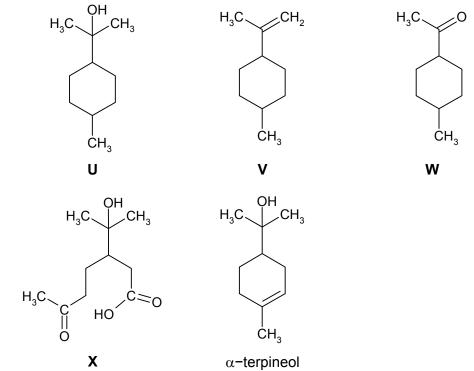
For transition metal such as vanadium, the 4s and 3d subshells have close proximity of the energy levels or the 3s or the 4s orbitals have almost the same energy. Hence vanadium can lose different number of 3d electrons in addition to the 4s electrons when forming stable compounds.


(b) (i)

- (ii) Stable oxidation state = +5 $V^{3+} \rightarrow VO^{2+}$ $E^{o}_{cell} = (+0.98) - (-0.50) = +1.48$ V, reaction is feasible $VO^{2+} \rightarrow VO_{2}^{+}$ $E^{o}_{cell} = (+0.98) - (+0.16) = +0.82$ V, reaction is feasible
- (iii) Electrode potential values depend on the ligands present in the complex
- (c) V⁵⁺ has very high charge density and hence it will polarise the water molecules and weakens the O-H bonds in the water molecules

As a result, water molecules donates protons to form $[VO_3(H_2O)_3]^-$ or simply VO_3^- .

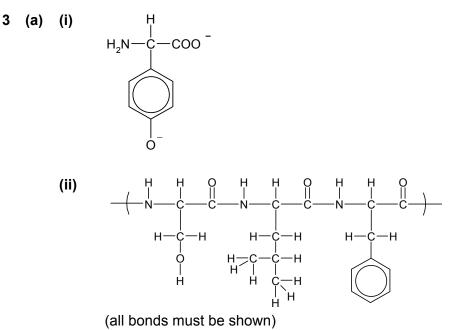
 (ii) Since K_{stab} [Cd(edta)]²⁻ >> K_{stab} [Ca(edta)]²⁻ Hence edta can remove the poisonous Cd²⁺ ions readily through the formation of the more stable [Cd(edta)]²⁻ complex. Due to the close proximity (small difference in magnitude) in K_{stab} between [Cd(edta)]²⁻ and [Zn(edta)]²⁻, Zn²⁺ will also be removed in addition to Cd²⁺. The unnecessary removal of metal ion, such as Zn²⁺, can be overcome by taking pills of Zn²⁺ supplement. Or Use another ligand that has a greater difference between the K_{stab} of Zn and Cd.


(ii) [Mg²⁺(aq)] in the saturated solution
=
$$\sqrt[3]{\frac{2.00 \times 10^{-11}}{4}} = 1.71 \times 10^{-4} \, mol \, dm^{-3}$$

(iii) [Mg²⁺(aq)] extracted = $0.0540 - 1.71 \times 10^{-4} = 0.0538 \text{ moldm}^{-3}$ Maximum % of Mg extracted = $\frac{0.0538}{0.0540} \times 100 = 99.6\%$

[Total: 20]

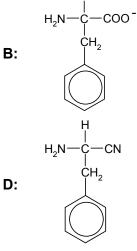
- 2 (a) (i) M_r values are: $C_3H_8O = 122.075$, $C_7H_6O_2 = 122.038$, $C_9H_{14} = 122.112$ Y is $C_8H_{10}O$ (its relative molecular mass is closest to mass spectrum value)
 - (ii) Reagent: C₂H₅OH or ethanol Conditions: heat under reflux with concentrated sulfuric acid
 - (iii) Any two of the following:
 - a large hydrocarbon chain capable of adopting a ring like a hexagonal ring
 - a short side-chain containing an electronegative atom such as oxygen
 - a -CH₂O- side chain


- (b) (i) 1. Br_2 , A/Br_3 / $FeBr_3$ / Fe fillings 2. $KMnO_4$, $H_2SO_4(aq)$, heat
 - 3. $PCl_3 / PCl_5 / SOCl_2$, (room temperature)
 - (ii) 1. HCN, KCN / trace of NaOH, at 10 20°C
 - 2. $H_2SO_4(aq) / HCl(aq)$, heat
 - 3. concentrated H₂SO₄, heat
- (c) Structures:

Any 3 out of the following:

- α-Terpineol, C₁₀H₁₈O does not get oxidized readily. Hence α-terpineol is a tertiary alcohol.
- U, an alcohol, undergoes dehydration to form an alkene, V.
- Upon hydrogenation of α-terpineol, C₁₀H₁₈O, there is a increase in 2 H atoms. Hence, α-terpineol, C₁₀H₁₈O, has one double bond.
- Upon oxidative cleavage of α-terpineol, the product formed gives positive iodoform test: Y the oxidized product has methyl ketone gp / –COCH₃.
- V must have a <u>terminal double bond</u> which undergoes oxidative cleavage to form methyl ketone and CO₂.

[Total: 20]



(iii) A diagram showing:

 α -helix or β -pleated sheet showing the hydrogen bond between backbone amide and carboxyl groups

 δ + charge on the hydrogen atom, δ - charge on the nitrogen atom of the amide group, and the lone pair of electrons on the oxygen on the carboxyl group.

Step 1 : Ethanolic KCN, reflux

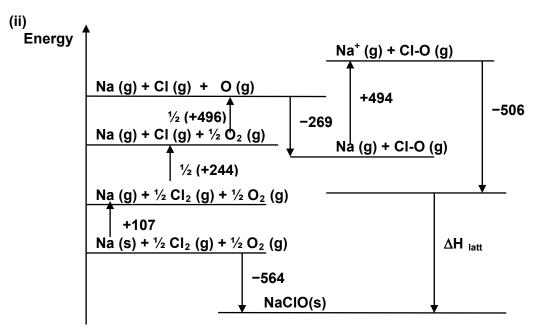
(b) (i) Let the rate equation be: rate = $k [HCl]^{x}[sucrose]^{y}$ Comparing experiment 1 and 2:

> $\left(\frac{0.10}{0.20}\right)^{y} = \frac{0.024}{0.048} \Rightarrow y = 1$ Comparing experiment 2 & 3: $\left(\frac{0.10}{0.20}\right)^{x} \left(\frac{0.20}{0.30}\right)^{1} = \frac{0.048}{0.144} \Rightarrow x = 1$ Hence rate = k [HC*l*][sucrose]

Using experiment 1:

 $k = \frac{0.024}{(0.10)(0.10)} = 2.40 mol^{-1} dm^3 s^{-1}$ (including units)

- (ii) Half-life of sucrose in expt 3 = 1.5 s
 In expt 3 (compared to expt 1), since [HC*l*] is doubled, rate is doubled. Hence, rate at which [sucrose] is used up is 2 times faster.
 ⇒ Half life of sucrose is halved.
- (c) (i) Let the percentage of the α -form in the equilibrium mixture be x. (x/100)(+112) + [(100-x)/100] (+19) = +52correct formula or attempt to relate % to optical rotation $\Rightarrow x = 35.5\%$
 - (ii) $K_{c} = \frac{\left[\beta - glu\cos e\right]}{\left[\alpha - glu\cos e\right]}$ $K_{c} = \frac{0.645}{0.355} = 1.82$
 - (iii) At higher temperature, equilibrium shift to the left to remove heat Or the backward reaction occurs to a greater extent as it is endothermic. Therefore, [∞-glucose] increase. ⇒ Optical rotation will be greater than +52°.


[Total: 20]

4 (a) (i)
$$Cl_2 + 2OH^- \rightarrow Cl^- + ClO^- + H_2O$$

(ii) Disproportionation is a process whereby a single species Cl_2 increases its oxidation state from 0 to +1 (ClO^-) and decrease its oxidation state from 0 to -1 (Cl^-) at the same time.

(b)
$$n_{I_2} = \frac{1}{2} \times n_{S_2 O_3^{2-}} = \frac{1}{2} \times 0.200 \times 18.50 \times 10^{-3} = 1.85 \times 10^{-3} mol$$

 $n_{Cl_2} = n_{I_2} = 1.85 \times 10^{-3} mol$
 $n_{ClO^-} (\text{in } 250 \text{ cm}^3) = 1.85 \times 10^{-3} \times \frac{250}{10} = 0.04625 mol$
 $[ClO^-] = \frac{0.04625}{25.0 \times 10^{-3}} = 1.85 moldm^{-3}$

(c) (i) Lattice energy is defined as heat energy <u>released</u> when 1 mole of ionic solid is <u>formed</u> from its constituent gaseous ions under standard conditions.

(energy level diagram not required) By Hess' law, $\Delta H_{latt} = -760 \text{ kJmol}^{-1}$

(iii) ClO⁻ has a larger ionic radius than Cl⁻.
 ClO⁻ has a lower charge density than Cl⁻, hence the electrostatic forces of attraction between Na⁺ and ClO⁻ is weaker.
 Or

Since $|L.E| \propto \left| \frac{q_+ \times q_-}{r_+ + r_-} \right|$

Therefore, the magnitude of lattice energy for NaC*l*O will be less exothermic than NaC*l*.

(d) (i)

 $n_{e^-} = \frac{Q}{F} = \frac{2.0 \times 30 \times 60}{96500} = 0.0373 mol$ Since $Cl_2 + 2e \Longrightarrow 2Cl^-$

 $n_{Cl_2} = \frac{1}{2} \times n_{e^-} = \frac{1}{2} \times 0.0373 = 0.01865 mol$

Using pV = nRT,

 $V = \frac{(0.01865)(8.31)(27 + 273)}{1.5 \times 1.01 \times 10^5}$

correct substitution of quantities into equation, and correct conversion of either temperature or pressure.

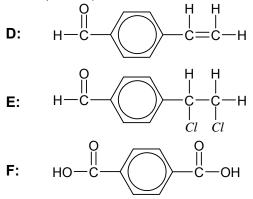
$$V = 3.07 \times 10^{-4} \, m^3 = 307 \, cm^3$$

(ii) High temperature and low pressure

(iii) $F_2 + 2e \rightleftharpoons 2F^- +2.87 V$ $O_2 + 4H^+ + 4e \rightleftharpoons 2H_2O +0.40 V$ $E^{\theta}_{red} (F_2 / F^-)$ is much more positive than $E^{\theta}_{red} (O_2 / H_2O)$ O_2 will always be preferentially discharged (rather than F_2 gas).

[Total: 20]

5 (a) (i) NaC*l* – electrostatic attraction exist between oppositely charged ions in an ionic lattice PCl_3 – covalent bonds exist between the P and C*l* atoms to form discrete molecules.


Large difference in electronegativity between Na and Cl, hence, complete transfer of electrons – ionic compound; small difference in electronegativity between P and Cl, hence, atoms share electrons – covalent compound.

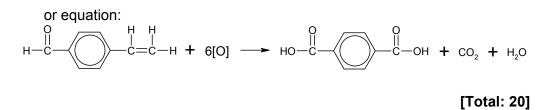
Large amount of energy required to overcome the <u>strong</u> ionic bonds between oppositely charged ions in NaC*l*, while much lesser energy is required to overcome <u>weak</u> intermolecular forces of attraction / vdw forces between PC l_3 molecules.

(ii) Electrical conductivity

NaCl – able to conduct electricity in molten state as the ions are free to carry the charge, while PCl_3 does not contain mobile charge carriers in molten state.

- (iii) $[Mg(H_2O)_6]^{2+} \rightarrow [Mg(H_2O)_5(OH)]^+ + H^+$
- (iv) Observations: white fumes of HCl is produced (at the beginning when water was first added) Reaction equation: PCl₃ + 3H₂O → H₃PO₃ + 3HCl Or PCl₃ hydrolyses completely in water to form HCl and H₃PO₃. pH between 0 to 2
- (b) (i) to supply the energy to break the C*l*-C*l* bond (or to bring about homolytic cleavage)
 - (ii) CH₃CH₂CH₂· or any other radicals (including the various chloro-substituted radicals)
 - (iii) mole ratio of $CH_3CH_2CH_2Cl$: $CH_3CHClCH_3 = 3:1$ To produce $CH_3CH_2CH_2Cl$: the substitution can occur at any of the 6 H-atoms on the methyl carbon, while to produce $CH_3CHClCH_3$: substitution can only occur at 2 H-atoms on the $-CH_2$ - carbon. (therefore 3 times more $CH_3CH_2CH_2Cl$ will be formed)
- (c) Structures: (relative positions of the 2 functional groups on the benzene ring is not important)

Any 3 out of the following explanations:


- D has a large <u>hydrophobic</u> group (the benzene ring), ∴does not dissolve in water
- D does not contain <u>phenol and COOH group</u>, ∴does not dissolve in NaOH or
 F contains <u>COOH group</u>, ∴can dissolve in NaOH

F contains \underline{COOH} group, \therefore can dissolve in NaOH

• D contains a C=C <u>double bond</u>, as it undergoes <u>electrophilic addition</u> with chlorine gas to form E.

or equation:

- D contains a <u>benzaldehyde group</u>, ∴does not react with Fehling's solution but reacts with Tollen's reagent
- The <u>benzaldehyde group</u> on **D** is oxidised to <u>COOH group</u>; <u>and</u> the alkene group undergoes oxidative cleavage to form a <u>COOH group</u> with hot acidified KMnO₄ to give **F**.

