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JURONG PIONEER JUNIOR COLLEGE 
9749 H2 PHYSICS 

 

DYNAMICS 
    ______________________________________________________________________ 
 
Content 
 

(1) Newton's laws of motion 
(2) Linear momentum and its conservation 

 
 
Learning Outcomes 
 
Students should be able to: 
 
 

(a) state and apply each of Newton’s laws of motion 
 
(b) show an understanding that mass is the property of a body which resists change in 

motion (inertia) 
 

(c) describe and use the concept of weight as the force experienced by a mass in a 
gravitational field  

 
(d) define and use linear momentum as the product of mass and velocity 

 
(e) define and use impulse as the product of force and time of impact 

 
(f) relate resultant force to the rate of change of momentum 

 
(g) recall and solve problems using the relationship F = ma, appreciating that resultant 

force and acceleration are always in the same direction 
 

(h) state the principle of conservation of momentum 
 

(i) apply the principle of conservation of momentum to solve simple problems including 
inelastic and (perfectly) elastic interactions between two bodies in one dimension 
(knowledge of the concept of coefficient of restitution is not required) 

 
(j) show an understanding that, for a (perfectly) elastic collision between two bodies, the 

relative speed of approach is equal to the relative speed of separation 
 

(k) show an understanding that, whilst the momentum of a closed system is always 
conserved in interactions between bodies, some change in kinetic energy usually takes 
place. 
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Introduction_________________________________________________________ 
 

If you see the velocity of an object change in either magnitude or direction, you know that 
something must have caused that change (or acceleration).  An interaction that can cause an 
acceleration of a body is called a force, which is loosely speaking, a push or a pull on the 
body.   

 

The relationship between a force and the acceleration it causes was first 
understood by Isaac Newton (1642 – 1727).  The study of the relationship is 
called Newtonian mechanics. We shall focus on its 3 primary laws of motion.   

 

Newtonian mechanics does not apply in the following situations: 

 When the speeds of the interacting bodies are very large (i.e. 
approaching the speed of light). In this case, Einstein’s special theory of relativity 
replaces Newtonian mechanics. 

 When the interacting bodies are on the atomic scale. In this case, Quantum 
mechanics replaces Newtonian mechanics. 

Physicists now view Newtonian mechanics as a special case of these two more 
comprehensive theories. 

 
Linking Kinematics and Dynamics 
 
In Kinematics, when we look at describing the motion of objects, we are concerned only with 
how the displacement, velocity and acceleration of the objects change with time.  

We then try to answer questions like: 

a) How far has the object moved from the starting/reference point? 

b) How long does the object take to move from point A to point B? 

c) How fast must the object move to travel from point A to point B within a certain time 
interval? 

 

In Dynamics, we will discuss the cause of motion using two quantities: force and mass, and 
study their relationships to the motion of objects. We then try to answer questions like: 

a) Why does something move?  

b) Why does something CONTINUE to move? 

c) What causes something to STOP once it is moving? 

   
1 Newton’s laws of motion______________________________________________ 
   
(a) State and apply each of Newton’s laws of motion. 
(b) Show an understanding that mass is the property of a body which resists change in motion 

(inertia). 
 
 
1.1  Newton’s first law of motion 
 

 Suppose you send a book sliding across a carpet by applying a horizontal force to it 
with your hand. After you stop pushing, the book slows down and comes to rest soon 
after. If you want it to continue sliding, you will have to keep pushing it across the 

Sir Isaac 
Newton 

Sir Isaac Newton 
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carpet. How about if you now give a push to the book on a frozen lake of ice? In this 
case, the book would probably slide much further on its own although eventually it will 
still come to rest.  

 

 What is it that causes the book to come to rest in these two instances? It is the friction 
between the book and the surface; the friction between the book and the carpet is 
much higher than that between the book and the frozen lake.  

 

 If we can eliminate friction completely, the book will never slow down, and we would 
need no force at all for the book to keep moving with constant velocity. 

 

 Most moving bodies on Earth visible to us tend to come to rest in the absence of an 
applied force. This is because moving bodies on Earth are continuously subjected to 
effects of resistive forces, be it from the ground, air or even between mechanical parts. 

 

 Therefore it is a common misconception that a force must always be applied to keep 
a body moving at constant velocity. 

 

 Newton’s first law of motion states that: 
    

A body will continue in its state of rest or uniform motion in a straight line unless 
a net external force acts on it. 

 

 Motion that is uniform in a straight line implies that velocity is constant. In other 
words, there is no acceleration.  

 

 Newton’s first law of motion tells the effects of what a force does. A force when applied 
on an object causes it to accelerate (change in velocity).  

 We may have more than one force acting on the object. As such, we consider the effect 
of the resultant force acting on the object. 
 

 Hence, if an object is at rest or moving with constant velocity,  
EITHER no force acts on it, OR the resultant force acting on it is zero. 

 

 Newton’s first law of motion is often called the law of inertia.  
The inertia of a body is the reluctance of a body to change its state of rest or motion. 
The mass of a body is a measure of its inertia. The larger the mass, the greater the 
inertia. It is more difficult to kick a large rock and expect it to move compared to doing 
the same to a small pebble.  
 

 Mass is the property of a body which resists change in motion (inertia). 
 

 To change the state of motion (i.e. velocity) of an object, a force (push or pull) must 
be applied to the object. However, the state of motion may remain unchanged even 
when a force is applied to the object. 

 

 Inertia can be used to explain why a force is needed to: 
 

 move a stationary object, 

 stop a moving object, 

 change the direction of an object moving in a straight line. 
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(c) describe and use the concept of weight as the force experienced by a mass in a 
gravitational field  

 

 When an object is brought from place to place, its mass remains the same. However, 
its weight may vary considerably from place to place. 
 
While it is true that you will weigh less if you have less mass, this cannot account fully 
for the difference. For example, you will weigh six times lighter on the Moon than on 
the Earth. This is not because you have lost mass. You still have the same mass. The 
difference in weight arises because of the difference in the gravitational field 
strength of the Earth and that of the Moon. 
 
 

 

The weight of a body is the gravitational force  
exerted on it by a gravitational field. 

 

 
 

 SI Unit : newton (N) 
 

 Mass is a scalar quantity, while weight is a vector quantity.  
 

 The direction of weight is always in the direction of the gravitational field 
strength. In the context of Earth, weight will always point towards the centre 
of the Earth. 

 
1.2 Newton’s second law of motion  
 
(d)  Define and use linear momentum as the product of mass and velocity. 
(e) Define and use impulse as the product of force and time of impact. 
(f) Relate resultant force to the rate of change of momentum. 
(g) Recall and solve problems using the relationship F = ma, appreciating that resultant force 

and acceleration are always in the same direction. 
 
1.2.1 Linear momentum 
 

 It gives a measure of how an object will respond to an externally applied force, e.g. 
how much force is required to get the object to stop. 

 
Mathematically:  

      
 p = m v 

 
 
Linear momentum is a vector quantity and its unit is kg m s−1 or N s.  
Direction of momentum of body is in the direction of its velocity. 
 
 
 

    weight = mass x acceleration of free fall          or        w = mg 

 

The linear momentum p of a body is defined as the product of its mass m and its velocity v. 
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1.2.2 Defining Newton’s second law of motion  
.  

 Newton's second law of motion states that: 
 

The rate of change of momentum of a body is proportional to the resultant force 
that acts on it and the momentum change takes place in the direction of the 
force. 

 

 Mathematically: 
 

       
d

d

p
F

t
  

                    

d

d

p
F k

t
   

where k is the constant of proportionality. k is taken to be 1 when the quantities used 
in computation are expressed in SI base units. 
 
 

Hence:     
d

d

p
F

t
  

 

where  
 

F is the resultant force (or net force) acting on the body; and 

d

d

p

t
 is the rate of change of momentum of the body.   

 

 If the effect of forces acting on a body is analysed over a certain time interval Δt , the 

following equation can be used:  
 

     
p

F
t





 

 

where  
 

F  is the average resultant force (or average net force) acting on the body; and 

p  is the change in momentum of the body over the time interval t .   
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Example 1  
 

An object of mass 100 kg accelerates uniformly towards the right from rest to 50 m s−1 over a 
period of 2.0 s.  
 
Calculate 
(i) the change in the object’s momentum, and 
(ii) the net force causing the acceleration. 
 
Solution 
 
 
 
 
Take right as positive: 
(i) Change in momentum p  = mv mu  

       = 100 (50) – 100 (0) 
       = 5000 kg m s−1 (directed towards the right) 
 

(ii)  Net force causing the acceleration 
p

t





 

          = 
5000

2.0
 

          = 2500 N (directed towards the right) 
 
 
 
Example 2  
 
A ball of mass 0.10 kg hits a smooth vertical wall normally with a speed of 10.0 m s−1 and 
bounces off the wall normally with a speed of 8.0 m s−1 after 0.20 s.  
 
Calculate the net force exerted on the ball during the bounce. 
 
Solution 
 
 
 
 
 
 
Take left (away from wall) as positive: 
Change in momentum of the ball  = mv mu  

     
1

0.10(8.0) 0.10( 10.0)

1.8 kg m s

  


 

From Newton’s second law,  

net force exerted on the ball during the bounce 
1.8

9.0
0.20

p

t


  


N 

                               Direction: (away from wall) 
 
Note: The net force acting on the ball is the impact force that the wall exerts on the 
           ball. 

100 kg 100 kg 

u = 0 m s−1 
v = 50 m s−1 

  a 

wall 

u = 10.0 m s-1 
 

    v = 8.0 m s-1 
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1.2.3 Applying Newtons’ second law on a body of constant mass 
 

 From Newton’s second law of motion, 

resultant force, 
momentum change

time
F  

                          

velocity change
 mass

time

 mass acceleration

 

 

 

                               
Therefore    F m a  

 
where  
m is the mass of the body; and  
a is the acceleration of the body.  
 

 The magnitude of the resultant force is obtained from F m a . 

 

 The direction of the resultant force is the same as that of the acceleration (or 
momentum change) 

 

 Steps for determining the acceleration of a constant mass: 
 

- Draw a force diagram that shows all the forces acting on the body. 
 

- Determine the resultant force acting on the body. 

- Use 
F

a
m

  to determine the acceleration of the body.   

 

Example 3 
 
Block A of mass 2.0 kg and B of mass 4.0 kg connected by a rope of negligible mass are at 
rest on a frictionless surface as shown below. If a force of 3.0 N is applied on B, determine 
the acceleration of A and B. 

 
 
 

 
Solution 
                Force diagram for A,   Force diagram for B, 
 

       a            a 
 
 
          Take rightwards to be positive: 

 
using F = ma                using F = ma 
 
T = 2.0 a  --------- (1)    3.0 – T = 4.0 a  --------- (2) 

 
where T is the tension in the rope.  
 
Solving (1) and (2), T = 1.0 N   
                                 a = 0.50 m s−2 

T 
4.0 kg 

3.0 N 
T 2.0 kg 

2.0 kg 4.0 kg 3.0 N 

A B 



 8 

Alternatively, 
 

Treating A and B as one body 
 
 
 
 
 
                                           using F = ma 

       
                                               3.0 = (4.0 + 2.0) a 
                  a  = 0.50 m s−2 

 

Example 4  
 

                   For the pulley system shown, determine the acceleration a of the masses m1 and m2 (m1 > 
m2) and the tension T in the cable in terms of m1, m2 and the acceleration of free fall g. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution 
 

   
  
 

        
 
  
 
 

 
 
 
 
 
 
 

(1) + (2),   1 2

1 2

m m
a g

m m

 
  

 
 

 

 Therefore,            1 2

1 2

2m m
T g

m m

 
  

 
 

 

 
T - m2 g =  m2 a ---------- (2) 

           m1g T = m1a  ---------- (1) 

m1 

m2 a 

a 

Force diagram for mass m1: 

a 

T 

m1 g 

Force diagram for mass m2: 
 

a 

T 

m2 g 

6.0 kg 
3.0 N 

a 
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Example 5  
 
Determine the force that the floor of a lift exerts on an 80.0 kg man when the lift 
 
(a) is at rest; 
(b) rises with a constant velocity of 2.00 m s−1; 
(c) rises with a constant acceleration of 2.00 m s−2; and 
(d) descends with a constant acceleration of 2.00 m s−2.   
 
(Take g = 9.80 m s−2) 
 
Solution 
 
Let N be the force exerted by the lift on the man.  
N is also known as the apparent weight of the man. 
 
Let a be the acceleration of the system (lift and man). 
 
Taking upwards as positive and by Newton’s second law, 
 
              N – mg =  ma  
                      N =  m (a + g) 
 
(a) At rest, a = 0 
      N = m (0 + g) = mg 
    = (80.0) (9.80) 
   = 784 N 
 
(b) At constant velocity upwards, a = 0 

   N = mg = 784 N 
 
(c) At constant acceleration upwards, a = 2.00 m s−2 

   N = m (a + g) = (80.0) (2.00 + 9.80) 
         = 944 N 
      Note:  

 Apparent weight N is larger than the true weight mg.  

 The man feels ‘heavier’ as the lift is pushing up on him with a larger force than his 
true weight.  

 
(d) Taking downwards as positive: 
   mg – N = ma  
    N =  m (g – a) 
 
      At constant acceleration downwards, a = 2.00 m s−2 

   N = m (g – a) = (80.0) (9.80 – 2.00) 
 = 624 N 
 
 
      Note:  

 Apparent weight N is smaller than the true weight mg.  

 The man feels ‘lighter’ as the lift is pushing up on him with a smaller force than his 
true weight.  

 

 

a 

N 

mg 

a 

N 

mg 
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1.2.4 Applying Newtons’ second law on a system of changing mass   
 

 There are situations where forces are acting on a system that has a changing mass with 
respect to time and a velocity change by the system due to the application of these forces. 

 

 Examples of changing mass systems: fluids; system of particles. 
 

 From Newton’s second law of motion, 

resultant force, 
momentum change

time
F  

                          
mass

 velocity change
time

   

 

dm
F v

dt
   

 
where  

v  is the velocity change; and 

dm

dt
 is the rate of change of mass of the system (unit: kg s−1). 

 

 Suppose sand is allowed to fall vertically at a steady rate of 0.10 kg s–1 onto a horizontal 
conveyor belt moving at a constant velocity of 0.050 m s–1 as shown below.  
 
The initial horizontal velocity of the sand is zero.  
The final horizontal velocity of the sand is 0.050 m s–1. 
 

 
 
 
 
 
 
 
 
 

Take right as positive: 
For every 1 second, 

o mass of sand that has fallen onto the conveyor belt = 0.10 kg 
o velocity change v of the sand = 0.050 m s–1 (horizontally, rightwards) 

o momentum change p  of the sand = 10.10 0.050 0.0050 kg m s   m v  

(horizontally rightwards) 

o resultant force acting on the sand 
10.0050 kg m s

1s

p

t


 


 

     
20.0050 kg m s

0.0050 N (horizontally rightwards)




 

o The belt provides this extra horizontal force needed for the momentum increase 
per second of the sand.  

o This is an example where the mass changes with time and the velocity gained is 
constant.  
 

v = 0.050 m s–1 

The belt provides the 
horizontal force needed 
for the momentum 
increase per second of 
the sand. 
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To apply 
dm

F v
dt

  :  

Resultant force acting on the sand = (0.050 0)(0.10) 0.0050
dm

F v
dt

     N  

 Suppose a horizontal stream of water hits a vertical wall and loses all its horizontal 
momentum. 

 
 
 
 
 
 
 
 
 
  Change in horizontal velocity of water, 0 ( )v v v      

  Horizontal force F acting on the water =
dm dm

v v
dt dt

  (in the positive direction)  

where 
dm

dt
 is the mass flow rate of the water (in kg s−1).  

 
 
 
 
Example 6  
 
A hose directs a horizontal jet of water with velocity 20 m s−1 onto a vertical wall. The cross-

sectional area of the jet is 4 25 10 m . 

 
If the density of water is 1000 kg m−3, calculate the force acting on the water, assuming the 
water is brought to rest at the wall. 
 
 
 
 
 
   
 
 
 
Solution 
  

Mass flow rate of the water          
dm d d ds

V As A Av
dt dt dt dt

 

                  4(1000)(5 10 )(20) 10    kg s−1 

Force acting on the water [0 ( 20)](10) 200 N
dm

v
dt

       (acting to the right). 

  
 

+ve 

v 

+ve 

v= 20 m s−1 
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1.2.5 Impulse  
 

 Impulse is defined as the product of force and time of impact.  
 

 Recall Newton’s second law:   

resultant force  
dp

F
dt

  

 
Integrating both sides give:   dp F dt  

f f

i i

p t

p t
dp F dt   

 

  
f

i

t

t
p F dt    

where  

p  is the change in momentum of the body over a time interval 
f it t ; and 

f

i

t

t
F dt is the impulse of the resultant force F acting over the time interval 

f it t . 

 

 Impulse is calculated as the integral of force over the time interval during which the 
force acts and is represented by the area beneath a force-time graph.                  

Hence, impulse =
f

i

t

t
F dt . It is also the product of the average net force and the time 

of impact. 
 

 The impulse acting on an object that is free to move is equal to its change in 
momentum. 
 

 The unit of impulse is N s  or 1kg m s . 

 

 The F – t graphs below show different ways that a resultant force can be applied on a 
body over a time interval 0.10 st  .  

 
Graph A shows a constant force of 50 N.  
Graph B shows a force increasing from zero to 100 N and then decreasing to zero.  

  
 
 
 
 
 
 
 
 
 
 
 
 
  Graph A     Graph B 

 

 The area under the graph is equal for both graphs. Therefore, the change in 
momentum of the body is the same for both cases. 
 

 

F 

0.10
       

t 0 

 

Fmax = 100 N 

F 

0.10
       

t 0 

F 

ti        tf   t 

p 
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 For Graph A, the change in momentum p  of the body 150 0.10 5.0 kg m s     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 For Graph B, the change in momentum p  of the body  

11
(100)(0.10) 5.0 kg m s

2

    OR  150 0.10 5.0 kg m sF t      

 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, the change in momentum of a body can be expressed as 
 

p F t    

 
where  

F  is the average resultant force acting on the body; and 

t  is the time interval over which the average resultant force is applied. 

F t  is the impulse of the average resultant force F  acting over the time interval 

t . 

 

 

 

 

 

 

 

 

 

 

 

 

F 

0.10
       

t 0 

 

Fmax = 100 N 

F 

0.10
       

t 0 
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Example 7  
 
A car of mass 1200 kg is accelerated by a uniform resultant force of 3000 N for a time of   5.0 
s. What is the gain in the momentum of the car? 
 
Solution 
 
The resultant force of 3000 N acting on the car is uniform. Therefore the average resultant 

force F  acting on the car is 3000 N.    

 

Change in momentum of the car p F t    

                = 3000  5.0  

                = 1.5  104 kg m s–1 
         in the same direction as the resultant force 
 
 

Example 8  
 
The graph shows the variation with time of contact force during the collision of a 58 g tennis 
ball with a wall. The initial velocity of the ball is 34 m s−1 perpendicular to the wall; it rebounds 
with the same speed, also perpendicular to the wall.  
 
What is Fmax, the maximum value of the contact force during the collision?  

 
 
 
 
 
 
 
 
 
 
 
 
 

Solution 
 
Taking the direction away from the wall to be the positive direction 
 

Change in momentum of ball ( )f ip m v v   = (0.058)[(34 ( 34)]  = 3.94 kg m s–1 

 

For the F - t graph,                    p F dt    

 

                                              3.94 =   3

max

1
8 6 2 10 ( )

2
F      

 

             3.94 = max0.006F  

 

                                               max 657 NF   (i.e. away from the wall) 

 

F / N 

Fmax 

0 2 6 8 t / ms 

+ve 

34 m s−1 

34 m s−1 
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1.3 Newton’s third law of motion 
 

 Forces come in pairs. If a hammer exerts a force on a nail, the nail exerts an equal but 
opposite force on the hammer. If you lean against a brick wall, the wall pushes back 
on you.  

 

 Newton’s third law of motion states that: 
 

If body A exerts a force on body B, body B will exert the same type of force of 
equal magnitude but opposite in direction on body A. 

 
 

 These two forces are often referred to as an action-reaction pair. 
 

1. They act on two different objects. 
 
2. They must be of the same type.  
 (Same type means that if one is a gravitational force, the other must also be 

gravitational, or if one is a tension, the other force must also be tensional.) 
    
3. They have the same magnitude. 
    
4. They act in opposite directions.  
 
5. They always exist in pairs, regardless of whether the objects are stationary or 

moving. 
 

 Examples of action-reaction pairs: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The force Fdoor, exerted by the boy on the 
door accelerates the door (it flies open). 

 

 At the same time, the door exerts an equal 
but opposite force Ffoot, on the boy, which 
decelerates the boy (his foot loses forward 
velocity).  

 

 The boy will be painfully aware of the 
‘reaction’ force to his ‘action’, particularly if 
his foot is bare. 

R is the force acting on wheel, by ground. 
R’ is the force acting on ground, by wheel. 
 
R and R’ is an action-reaction pair. 

Fdoor Ffoot 

R R 

R’ R’ 
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i) an apple placed in space near the Earth 

 
 
 
 
 
 
 
 
 
 
 
 
 
i) a stationary book on a table 
 
Free body diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 For a book resting on a table, discuss if the normal contact force, N, and the weight, 
W, are Newton’s 3rd law paired forces.  

 

 
 
 
 
 
 
 

Are N and W action-reaction pair? 

Weight, W 

Normal contact 
force, N 

Table 

Book 

Force on 

Earth by apple Force on apple 

by Earth 

apple 

Earth 
Notes:  

The force on apple by Earth is the 
weight of the apple. 
 
The apple is actually also attracting the 
Earth towards itself (Force on Earth by 

apple). 

Notes: 

 By replacing the name of the force using 
“force on___ by ___”, it will be clear which 2 
forces are the action-reaction pair. 

 The force on book by table is the force "felt" 
by the book. 

 The force on table by book is the force "felt" 

by the table. 

Force on book 

by table 

Force on table 

by book 

Book 

Table 
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Example 9  
 
Two blocks X and Y, of masses m and 3m respectively, are accelerated along a smooth 
horizontal surface by a force F applied to block X as shown. 
 
 
 
 
 
 
 
 
Determine the force exerted by block X on block Y during this acceleration in terms of F? 
 
Solution 
 
Drawing separate force diagrams, 
 

 
 
 
 
 
 
Let FXY be the force exerted by Y on X.  
Let FYX be the force exerted by X on Y. 
 
Taking right to be positive direction and applying Newton’s second law to X gives: 
 

   F – FXY = ma   -------------- (1) 
 

Applying Newton’s second law to Y gives: 
 

    FYX  = 3 ma     -------------- (2) 
 

where a is the acceleration of both blocks.  
 

Dividing (2) by (1) yields        3YX

XY

F

F F



  

 
                          FYX   =  3F – 3FXY  
 

By Newton’s third law, =XY YXF F .   

 
                                             Hence  4FYX = 3F  
 

                                                 FYX  =  0.75 F  
 
 

F 
X Y 

F X 

FXY 

Y 

FYX 
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2 Linear Momentum and its Conservation__________________________________ 
 

2.1 Principle of conservation of momentum 
 
(h)  State the principle of conservation of momentum.  
(i)  Apply the principle of conservation of momentum to solve simple problems including 

inelastic and (perfectly) elastic interactions between two bodies in one dimension 
(knowledge of the concept of coefficient of restitution is not required). 

(j) Show an understanding that, for a (perfectly) elastic collision between two bodies, the 
relative speed of approach is equal to the relative speed of separation. 

(k) Show an understanding that, whilst the momentum of a closed system is always conserved 
in interactions between bodies, some change in kinetic energy usually takes place. 

 

 Applying Newton’s third law to closed collision systems will lead us to the principle 
of conservation of momentum. 
 

 By a system, we mean a set of chosen objects which may interact with each other. A 
closed (or isolated) system is one in which the only (significant) forces are those 
between the objects in the system. 

 

 Consider an object 1, of mass m1 and velocity u1, colliding with object 2, of mass m2 
and velocity u2, moving in the same direction. (u1 will have to be larger than u2 in order 
for them to collide.) 

 
 
 
 
 
 

 

 During the collision, an average force F  is exerted by object 1 on object 2. By 

Newton’s third law, an equal and opposite F  is exerted by object 2 on object 1. 

 
 
 
 
 

 We consider average force F  in this case because the force may not be constant 

during the duration of contact.  

 In the very short time interval t  that both objects are in contact with each other, they 

will experience the same magnitude of impulse F t  but opposite in direction.  

 If object 1 moves with a reduced velocity v1 after collision, object 2 will move with an 
increased velocity v2 : 

 
 
 
 
 
 

 
 
 
Taking right to be the positive direction: 

m1 m2 

1 2 

u2 u1 

Before 
collision  

m1 m2 

1 2 

v2 v1 

After 
collision 

1 2 
  

During 
collision 
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Change in momentum of object 1:        
1 1 1 1 1F t p m v m u        --------------  (1) 

Change in momentum of object 2:         
2 2 2 2 2F t p m v m u       --------------  (2) 

 

NOTE: 
1p is negative; 

2p is positive. 

Substituting (2) into (1) gives:  

       
1 1 1 1 2 2 2 2( )m v m u m v m u      

1 1 1 1 2 2 2 2m v m u m v m u     

 

Therefore  
1 1 2 2 1 1 2 2m u m u m v m v    

 
Total momentum of the system = Total momentum of the system  
before collision         after collision 

 
 

 The principle of conservation of momentum states that: 
 

The total momentum of a system is constant, provided no external resultant 
force acts on it. 

 

 The principle of conservation of momentum can also be understood using the following 
equation: 

     
1 2 0p p        

 

 The principle of conservation of momentum is applicable to any system as long as 
there is no net external force acting on the system.  

 

 The principle of conservation of momentum was proven by assuming that the 
directions of travel of objects 1 and 2 are the same before and after the collision, but 
the results are valid even if they were travelling in opposite directions.   

 

 There are two common closed systems within the scope of this syllabus: 
- collisions and   
- disintegration. 

 
2.2 Collisions 
 
There are two types of collisions: elastic collisions and inelastic collisions. 
 
2.2.1 (Perfectly) Elastic Collisions 
 

 (Perfectly) elastic collisions are those in which the total kinetic energy is conserved.  
 

 Truly elastic collisions can only occur in practice on an atomic scale i.e. collisions 
between atoms and molecules.  

    

 By principle of conservation of momentum: 
 

                 1 1 2 2 1 1 2 2m u m u m v m v                        ---- (1) 

 

 By conservation of K.E.: 
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K.E. of system before collision = K.E. of system after collision 
    

       2 2 2 2

1 1 2 2 1 1 2 2

1 1 1 1

2 2 2 2
m u m u m v m v    ---- (2) 

   
These two equations can be used to solve problems involving elastic collisions.  
From equations (1) and (2), the following equation can be derived (refer to Appendix): 

  
                     

1 2 2 1u u v v                    ---- (3) 

      
(NOTE: that this is a vector equation) 

 
which shows that the relative speed of approach (u1 – u2) before collision is equal 
to the relative speed of separation (v2 – v1) after collision. 
 
Hence for (perfectly) elastic collisions, it is sufficient to use equations (1) and (3), 
instead of (1) and (2).    
 

2.2.2 Inelastic Collisions 
 

 Inelastic collisions are those in which total kinetic energy is not conserved: it may 
be converted to heat that is dissipated to the surroundings, and to a lesser extent, 
sound energy.  
 

 In the real world inelastic collisions are the most common type of collision. 
 

 By principle of conservation of momentum: 
 

                   
1 1 2 2 1 1 2 2m u m u m v m v                     ---- (1) 

 
Only equation (1) can be used for inelastic collisions to solve problems.  
 
Equation (2) cannot be used since K.E. is not conserved.  

 

 A special form of inelastic collision called completely / perfectly inelastic collision 
is one in which the two bodies stick together (or coalesce) after impact (e.g. a 
bullet being embedded in a target). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taking right to be positive:  
 

m1 m2 

1 2 

u2 u1 

Before  After 

m1 + m2 

1 2 

v 
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By principle of conservation of momentum: 
 

1 1 2 2 1 2( )m u m u m m v     

 

where  
v is the common velocity after collision. 
  
*Note that total momentum of the system is always conserved for both (perfectly) 
elastic and inelastic collisions. 

 
 

Summarising the information in a table, 

Interaction 
Total 

Momentum 
Total Kinetic 

Energy 
Remarks 

Elastic / 

Perfectly elastic 

conserved 

conserved 

the relative speed of approach  

= relative speed of separation.  

The objects always separate after 
interaction 

Inelastic 
not 

conserved 

[some KE 
changed to other 
forms of energy] 

The objects always separate after 
interaction 

Perfectly 
inelastic 

The objects stick together (or coalesce) 
after interaction. 
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Example 10 
 
The blocks in the figure below slide without friction. 
(a) What is the velocity v of the 1.6 kg block after the collision? 
(b) Is the collision elastic?  

 
 
 
 
 
 
 
Solution 
 
By principle of conservation of momentum and taking right as positive: 

(a)      
1 1 2 2 1 1 2 2m u m u m v m v     

 (1.6)(5.5) (2.4)(2.5) (1.6) (2.4)(4.9)v     

                                            v = 1.9 m s–1 

(b)     K.E. before collision  = 2 2 2 2

1 1 2 2

1 1 1 1
(1.6)(5.5) + (2.4)(2.5)  

2 2 2 2
m u m u  = 31.7 J 

      K.E. after collision     = 2 2 2 2

1 1 2 2

1 1 1 1
(1.6)(1.9) (2.4)(4.9)  

2 2 2 2
m v m v   = 31.7 J 

            Since K.E. is conserved, the collision is elastic.  
     OR 

 
1 2u u 5.5 – 2.5 = 3.0 m s–1 

   
2 1v v  4.9 – 1.9 = 3.0 m s–1 

 Since relative speed of approach = relative speed of separation, the collision is 
 elastic. 

 

Example 11 
 
Two trolleys X and Y are about to collide. The momentum of each trolley before impact is 
given in the figure below. 
 
 
 
 
 
After the collision, the trolleys travel in opposite directions and the momentum of trolley X is            
2 kg m s-1. What is the momentum of trolley Y?  
 
Solution 
                 Before:         After: 
 
 
  20 kg m s–1        12 kg m s–1                       2 kg m s–1                py 
 
By conservation of linear momentum, taking right as positive: 

 20 ( 12) ( 2) yp      

             110 kg m syp   

The momentum of trolley Y is 10 kg m s–1 to the right. 

X 

20 kg m s–1 

Y 

12 kg m s–1 

Before  After 

1.6 kg 2.4 kg 1.6 kg 2.4 kg 
5.5 ms–1 2.5 ms–1 

 
v 4.9 ms–1 
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Example 12 
 
A particle of mass m moving with speed u makes a head-on collision with an identical particle 
which is initially at rest. The particles coalesce (stick together) and move off with a common 
velocity. 
 
(a) Determine the common speed of the particles after the collision. 
(b) Determine the ratio of the kinetic energy of the system after the collision to that 
 before it. 
(c) Explain the difference in kinetic energy of the system before and after the collision. 
 

Note: A head-on collision is one where the objects remain moving along the same straight 
line joining their centres of mass before and after collision. (i.e. motions are 
collinear).   

 
Solution 
 
 
 
 
 
 
 
(a) By principle of conservation of momentum and taking right positive, 

0 ( )mu m m v     

 where v is the common speed after collision. 

  0.5v u  

(b) Initial kinetic energy, 2

1

1

2
E mu  

 Final kinetic energy, 2 2

2

1 1

2 2
E mv mv  21

(2 )
2

m v  
21

(2 ) 0.5
2

m u 1

1

2
E  

   Hence, the ratio of   2

1

0.5
E

E
  

(c) Half of the initial kinetic energy is converted to heat that is dissipated to the     
            surroundings, and to a lesser extent, sound energy. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

u 

m m m         m 

v 
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Example 13 

 
 
 
2.3 Disintegration 
 

 Disintegrations are systems that are initially intact (with no external force acting on them) 
that subsequently disintegrate (break apart) into smaller pieces. The pieces are scattered 
in different directions. Since no net external force acts on these systems, we can apply the 
principle of conservation of momentum to such systems. 

 

 However, total K.E. is obviously not conserved in this case – the system may start off with 
no K.E. at all but its fragments certainly possess K.E. upon disintegration. The K.E. may 
originate from the chemical reactions taking place within the systems or even from the 
change in mass of the reactants and products as in the case of spontaneous decay in 
nuclear reactions.  

 
Examples of disintegrations 

 
a. Before a gun is fired, the total momentum of the system, consisting of the gun and the 

shell is zero. The total momentum must remain at zero and so the gun recoils with a 
momentum equal and opposite to that of the shell immediately after firing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The momentum of the person increases during 
free fall. Explain whether or not this is a violation 
of the principle of conservation of momentum. 

Solution 
 

This is not a violation because total momentum is 
conserved for a system of interacting bodies, and 
not just for one body. For the man alone, his 
momentum will change as there is an external 
resultant force (i.e. gravitational force) acting on 
him. 

If we consider the man, Earth and bungee rope as 
the system, then the total momentum remains 
constant although the man’s momentum changes.  

As the man falls, the Earth moves upwards with a 
very tiny velocity (due to its large mass). Hence 
total momentum remains unchanged. 

 

Before firing After firing 
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 b. When a bomb explodes in mid-air, the total momentum of all the fragments just after the 
explosion must equal the total momentum of the complete bomb just before explosion. 

 
 
 
 
 
 
 
 
 
 
c. When a stationary nucleus disintegrates, the total momentum of the resulting nucleus and 

the emitted particles must add up to zero. Apparent discrepancies led to the discovery of 
new fundamental particles. 

 
 
 
 
 
 
 
 
 
 
 

Example 14 
 
Uranium-235 disintegrates by emitting an alpha particle of mass 4u and leaving a residual 
nucleus of mass 231u, where u is the atomic mass unit.  
 
Calculate the ratio of the kinetic energy of the alpha particle to that of the residual nucleus 
in this disintegration.  
 
 
 
 
 
 
 
 
 
Solution 
 
By conservation of momentum and taking right to be positive: 

                              (235 ) 0 231 ( ) 4 ( )Ru u v u v        ----------------  (1) 

Rearranging gives :  

                             
231

4R

v

v

                             ----------------  (2) 

K.E. of alpha particle

K.E. of nucleus 
 = 

2

2

1
(4 )( )

2
1

(231 )( )
2

R

u v

u v



= 

2
4 231

231 4

 
 
 

= 57.8 

Before explosion After explosion 

After disintegration Before disintegration 

Before After 

235u 231u 

4u 

v vR 
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Applications to Dynamics 
 
What happens when you fire a gun in space? 
 
Assuming an astronaut is floating freely in 
space, the gun will work just as it does on 
Earth. By Newton’s 2nd law of motion, the bullet 
will continue moving unless it encounters 
another object in space. The astronaut will also 
begin to move, in the opposite direction to the 
bullet by Newton’s 3rd law of motion.  

 
http://www.businessinsider.sg/what-would-happen-fired-gun-space-2016-
5/#7Rv7JCedDFqfL2H0.97  

 
Safety features in vehicles 
 
Car crashes are controlled by the laws 
of physics because moving cars have 
momentum. Even though cars are 
designed to crumple up and absorb 
impacts, it still poses a major risk to the 
driver and passengers. Cars have had 
seatbelts for decades, but they're a 
fairly crude form of protection.  
The airbag inflates as soon as the car 
starts to slow down in an accident and 
deflates as your head presses against 
it. For the same change in momentum, 
the airbag lengthens the time of 
collision and reduces the average 
force acting on the head.  

 

http://www.explainthatstuff.com/airbags.html  
 
Skydiving without a parachute 
 
Skydiver Luke Aikins lands safely after jumping 
7620 m from an airplane without a parachute or 
wing suit as part of 'Stride Gum Presets Heaven 
Sent' on 30 July 2016 in Simi Valley, 
California.  He reached speeds of 193 km h-1 
(53.6 m s-1) during the two-minute fall. 
A second before impact, Aikins flipped onto his 
back. He landed in a polyethylene net 
measuring 30 x 30 m that was suspended 
above the ground by four cranes. The net 
cushioned his impact by increasing the time 
duration.  

 

http://www.sciencefocus.com/article/physics/how-it-works-skydiving-without-parachute 

 

http://www.businessinsider.sg/what-would-happen-fired-gun-space-2016-5/#7Rv7JCedDFqfL2H0.97
http://www.businessinsider.sg/what-would-happen-fired-gun-space-2016-5/#7Rv7JCedDFqfL2H0.97
http://www.explainthatstuff.com/airbags.html
http://www.sciencefocus.com/article/physics/how-it-works-skydiving-without-parachute
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Appendix 
 
For an elastic collision, show that relative speed of approach = relative speed of separation. 
 
 
 
 
 
 
 

 By the principle of conservation of momentum, 
 
  Momentum of system before collision = Momentum of system after collision 

                
1 1 2 2 1 1 2 2m u m u m v m v                 ------- (1) 

 

 For a perfectly elastic collision, the kinetic energy of the system is conserved. 
 
  K.E. of system before collision = K.E. of system after collision  

              2 2 2 2

1 1 2 2 1 1 2 2

1 1 1 1

2 2 2 2
m u m u m v m v            ------- (2) 

 

  From (1), 
1 1 1 2 2 2( ) ( )m u v m v u      ---- (3) 

  From (2), 2 2 2 2

1 1 1 2 2 2( ) ( )m u v m v u      ---- (4) 

 

  Assuming 
1 1u v  and 

2 2u v , (4)  (3) : 

        1 1 2 2u v v u     
    

1 2 2 1u u v v     

 

which shows that the relative speed of approach 
1 2u u  before collision is equal to the 

relative speed of separation 
2 1v v  after collision 

 

m1 m2 

1 2 

u2 u1 

Before 
collision 

m1 m2 

1 2 

v2 v1 

After 
collision 


