N1: Numbers and Their Operations (Common Questions w/ Real-World Applications)

- Primes and Prime Factorisation, HCF, LCM, Sq, Cube, Sq Root, Cube Root (Sec 1)
- Calculations with Calculator (Sec 1)
- [Negative, Rational, Irrational, Real] numbers, Integers and Their 4 Operations (Sec 1)
- Approximation and Estimation (Sec 1)
- Standard Form (Sec 3)
- Positive, Negative, Zero and Fractional Indices (Sec 3)
- Laws of Indices (Sec 3)
- Real-World Application of Indices [Compound Interest] (Sec 3)

1. (a) Express $\sqrt[5]{121}$ in index form with base 11.	[1]
1. (b) Evaluate $3^{\frac{2}{3}} \times 24^{\frac{1}{3}}$ without using a calculator.	[2]
1. (c) Simplify $ab \div \left(\frac{2}{a}\right)^{-2}$.	[1]
2. Simplify $\frac{21p^2q^3r^0}{2r^5} \div \frac{7pq}{4p^2}$, leaving your answer in positive indices.	[2]
3. A group of students line up. If they lined up in 2s or 6s or 9s, there will be one student without a partner. Calculate the least number of students in the contingent.	[2]
4. Calculate the highest common factor of 456 and 696.	[1]
5. Solve the equation $2^{3x} \times 125^x = 100$.	[3]
6. Simplify $\frac{24c^3d^2}{(3de^2)^3} \div \frac{5c^{-2}}{10df}$.	[2]
7. Calculate $\frac{11.27^{\frac{1}{4}}}{30.67-5.23}$. Write your answer correct to 3 significant figures.	[1]
8. Without using a calculator, show that $7^{103} - 7^{101}$ is a multiple of 2.	[1]
9. Use prime factorisation to explain why 72 is not a perfect cube.	[2]
10. Simplify $\left(\frac{ab}{c}\right)^3 \times ab^{-3}c^2$.	[2]

11. (a) Given $x^9 = 9^0$, find the value of x.	[1]
11. (b) Simplify $\frac{x^2}{3y} \div \frac{x}{9y^2}$.	[1]
12. (a) Express 40 and 138 as the product of their prime factors.	[2]
12. (b) Hence, find the smallest positive integer k such that 138 k is divisible by 40.	[1]
13. A wooden cube with side 8 cm is cut into two-centimetre cubes.All of the two-centimetre cubes are then arranged to form a cuboid of height greater than 8 cm. The perimeter of the cuboid is 36 cm.Find the height of the cuboid.	
14. Jas deposited \$m into an account that paid a compound interest of 1.85% per annum. He made no other deposits or withdrawals for three years. At the end of three years, he had \$2509.26 in his account. Find the value of m, giving your answer correct to the nearest dollar.	[2]
15. (a) Solve $49^{2x+1} \div \sqrt[3]{7} = \frac{1}{343}$.	[3]
15. (b) Without using a calculator, show that $3^{1161} + 3^{1158}$ is divisible by 7.	[2]
16. Alexandar invested some money in a bank after 3 years. The rate of compound interest was fixed at 2% per annum. At the end of 3 years, Ethan has a total of \$3077.50 in his account. What was the amount of money that Ethan invested in the beginning?	[3]
17. Simplify $\left(\frac{2p}{3q}\right)^2 \div \frac{\sqrt{q^5}}{\sqrt{p}}$.	[2]
18. Given that $\frac{1}{343} = 7^k$, find <i>k</i> .	[1]
19. By approximating each number to 2 significant figures, estimate the value of $\frac{12.1 \times \sqrt{48.8}}{\sqrt[3]{27.3}}$. Show your working and give your answer to a reasonable degree of accuracy.	[2]

20. Express 0.00952 nanoseconds in megaseconds, giving your answer in standard form.	[1]
21. Without using a calculator, show that $2^{17} - 2^{14}$ is divisible by 7.	[2]
22. Simplify the expression $\sqrt[3]{\frac{y}{x^2}} \times \frac{y}{x} \div \sqrt{\frac{x^3}{9y^{-2}}}$.	[2]
23. Write the following in order of size, largest first. $-\frac{7}{8}$, -8×10^{-1} , $-0.\overline{81}$	[1]
24. (a) Calculate $\frac{\sqrt{4.73} - 3.28}{\sqrt[3]{99.7} \times 1.25}$. Write down the first four digits on your calculator display.	[1]
24. (b) The number 102 999 corrected to <i>n</i> significant figures is 103 000.Write down the largest possible value of <i>n</i>.	[1]
 25. One hundred identical drops of oil have a total mass of 4550 milligrams. 1 milligram = 1 × 10⁻³ grams. It is given that 1 cm³ of oil weighs 0.91 grams. Calculate the volume of one drop, in m³, giving your answer in standard form. 	[2]
26. The numbers 98, 784 and 1176, written as a product of their prime factors are $98 = 2 \times 7^2$, $784 = 2^4 \times 7^2$ and $1184 = 2^3 \times 3 \times 7^2$.	
(a) Find the largest possible integer, w, which divides 98, 784 and 1176.	[1]
(b) Find the smallest integer, p, such that $\sqrt[3]{\frac{784 \times 1176}{p}}$ is a whole number.	[1]
27. Solve the equation $\frac{1}{4y} = 2^{-6}$.	[2]
28. Given that $2^{x+1} + 2^x = 24$, find the value of x.	[2]
29. Simplify $\frac{(2xy)^2}{35xy^7} \div \left(\frac{x^{-1}y^{-2}}{4}\right)^{-2}$, leaving your answer in positive indices.	[2]

30. Ms Chew invested P in a bank that pays compound interest at the rate of 4% per annum compounded half-yearly. If she received \$6341.21 from the Bank after 6 years, find the value of <i>P</i> , giving your answer to the nearest whole number.	[2]
31. (a) Express 315 as a product of prime factors.	[1]
31. (b) Find the smallest whole number by which 315 must be multiplied to obtain a perfect square.	[1]
32. Given that $4^{\left(\frac{1}{2n}\right)} \div 64^{-2} = 2^5$, find the value of <i>n</i> .	[2]
33. \$10 000 was invested in an account which pays r% per annum compound interest. At the end of 3 years, the interest earned \$1910.16.Find the value of r.	[2]
34. (a) Expressed as the products of their prime factors, $196 = 2^2 \times 7^2$ $252 = 2^2 \times 3^2 \times 7$ Write down the highest common factor of 196 and 252.	[1]
34. (b) The lowest common multiple of 252 and an even number is 756.	
(i) Express 756 as the product of its prime factors.	[1]
(ii) Find the smallest possible value of the even number.	[1]
35. (a) Simplify $\frac{a^7b}{2} \times (a^3b)^{-2}$.	[1]
35. (b) Solve $\frac{2 \times 3^x}{\sqrt{3}} = 162$.	[2]
36. (a) Express 540 as the product of its prime factors.	[1]
36. (b) Find two numbers, both smaller than 100, that have a lowest common multiple of 540 and a highest common factor of 6.	[2]
 37. Kelly has 300 one-centimetre cubes. She arranges all of the cubes into a cuboid. The perimeter of the top of the cuboid is 18 cm. Each side of the cuboid has a length greater than 3 cm. Find the height of the cuboid. 	[2]

38. (a) Express 462 as a product of its prime factors.	[1]
38. (b) Written as a product of its prime factors, $1512 = 2^3 \times 3^3 \times 7$.	
(i) Find the smallest whole number n for which $462n$ is a multiple of 1512.	[1]
(ii) Explain why 1512 is not a perfect cube.	[[1]
39. (a) Calculate $\frac{3+\sqrt{-4^2+2\times 11}}{5}$. Write down the first 6 digits on your calculator display.	[1]
39. (b) Write your answer to part (a) correct to 3 decimal places.	[1]
40. (a) Given that $6^m \div 6^{-3} = 6^2$, find the value of <i>m</i> .	[1]
40. (b) Arrange the following numbers in increasing value. Show your working clearly. 0.0037×10^{6} 3.7 × 10^{5} 370 × 10^{-3} 37	[2]
40. (c) Simplify $\sqrt[3]{8x^6} \times \frac{1}{3y^{-5}}$. Leave your answer in positive index form.	[2]
41. Kyran invested \$12 000 into a fund which pays compound interest 4% per annum compounded half-yearly. Calculate the total interest earned in 5 years.	[3]

2. Simplify $\frac{21p^2q^3r^0}{2r^5} \div \frac{7pq}{4p^2}$, leaving your answer in positive indices. $\frac{\frac{21p^2q^3r^0}{2r^5} \div \frac{7pq}{4p^2}}{\frac{4p^2}{2r^5}} = \frac{\frac{21p^2q^3}{4p^2}}{\frac{2r^5}{r^5}} \times \frac{4p^2}{7pq}$ $= \frac{\frac{6p^3q^2}{r^5}}{r^5}$	[2]
 3. A group of students line up. If they lined up in 2s or 6s or 9s, there will be one student without a partner. Calculate the least number of students in the contingent. 2 = 1 × 2 6 = 1 × 2 × 3 9 = 1 × 1 × 3² LCM = 2 × 3² Least number of students = 18+1 ∴ 19 	[2]
4. Calculate the highest common factor of 456 and 696. $456 = 2^3 \times 3 \times 19 \times 1$ $696 = 2^3 \times 3 \times 1 \times 29$ HCF = $2^3 \times 3 \times 1 \times 1$ HCF = 24 \therefore HCF = 24	[1]
5. Solve the equation $2^{3x} \times 125^{x} = 100$. $2^{3x} \times 5^{3x} = 2^{2} \times 5^{2}$ By comparison, 3x = 2 $x = \frac{2}{3}$ $\therefore x = \frac{2}{3}$	[3]

10. Simplify $\left(\frac{ab}{c}\right)^3 \times ab^{-3}c^2$.	[2]
$\frac{\frac{a^3b^3}{c^3}}{\frac{b^3}{b^3}} \times \frac{\frac{ac^2}{b^3}}{b^3}$	
$= \frac{a^4}{c}$ $\therefore \frac{a^4}{c}$	
11. (a) Given $x^9 = 9^0$, find the value of x.	[1]
$x^9 = 1$	
$\frac{x = \sqrt{1}}{x = 1}$	
$\therefore x = 1$	
11. (b) Simplify $\frac{x^2}{3y} \div \frac{x}{9y^2}$.	[1]
$\frac{x^2}{2} \times \frac{9y^2}{2}$	
= 3xy	
$\therefore 3xy$	
12. (a) Express 40 and 138 as the product of their prime factors. $\frac{3}{3}$	[2]
$\therefore 40 = 2^{\circ} \times 5$ $\therefore 138 = 2 \times 3 \times 23$	
12. (b) Hence, find the smallest positive integer k such that $138k$ is divisible by 40.	[1]
$= 2^3 \times 3 \times 5 \times 23$	
Smallest positive integer $k = \frac{2^3 \times 3 \times 5 \times 23}{2 \times 3 \times 23}$	
\therefore Smallest positive integer $k = 20$	

 13. A wooden cube with side 8 cm is cut into two-centimetre cubes. All of the two-centimetre cubes are then arranged to form a cuboid of height greater than 8 cm. The perimeter of the cuboid is 36 cm. Find the height of the cuboid. Total volume = 8³ = 512 cm³ Total number of cubes = 4³ = 64 cubes Breadth of cuboid = 2 cm Length of cuboid = 16 cm Height of cuboid = ⁵¹²/_{2×16} = 16 cm ∴ 16 cm 	[2]
14. Jas deposited \$m into an account that paid a compound interest of 1.85% per annum. He made no other deposits or withdrawals for three years. At the end of three years, he had \$2509.26 in his account. Find the value of m, giving your answer correct to the nearest dollar. $A = P\left(1 + \frac{r}{100}\right)^{n}$ $\frac{2509.26}{\left(1 + \frac{1.85}{100}\right)^{3}} = m$ $m = 2374.99$ $\therefore m = 2375$	[2]
15. (a) Solve $49^{2x+1} \div \sqrt[3]{7} = \frac{1}{343}$. $7^{2(2x+1)} \div 7^{\frac{1}{3}} = 7^{-3}$ $4x + 2 - \frac{1}{3} = -3$ $4x = -\frac{14}{3}$ $x = -\frac{7}{6}$ $\therefore x = -\frac{7}{6}$	[3]
15. (b) Without using a calculator, show that $3^{1161} + 3^{1158}$ is divisible by 7. $3^{1158}(3^3 + 1)$ $= 3^{1158}(28)$ $= 3^{1158}(4 \times 7)$ Since $3^{1161} + 3^{1158}$ has a factor 7, it is therefore divisible by 7.	[2]

16. Alexandar invested some money in a bank after 3 years. The rate of compound interest was fixed at 2% per annum. At the end of 3 years, Ethan has a total of \$3077.50 in his account. What was the amount of money that Ethan invested in the beginning? $A = P\left(1 + \frac{r}{100}\right)^{n}$ $3077.50 = P\left(1 + \frac{2}{100}\right)^{3}$ $\frac{3077.50}{\left(1 + \frac{2}{100}\right)^{3}} = P$ $P = 2899.99$ $P = 2900.00 \text{ (nearest cent)}$ $\therefore 2900.00	[3]
17. Simplify $\left(\frac{2p}{3q}\right)^2 \div \frac{\sqrt{q^5}}{\sqrt{p}}$. $\frac{4p^2}{9q^2} \times \frac{p^{\frac{1}{2}}}{q^{\frac{1}{2}}}$ $= \frac{4p^{\frac{5}{2}}}{9q^{\frac{9}{2}}}$ $\therefore \frac{4p^{\frac{5}{2}}}{9q^{\frac{9}{2}}}$	[2]
18. Given that $\frac{1}{343} = 7^k$, find k. $7^{-3} = 7^k$ k = -3 $\therefore k = -3$	[1]
 19. By approximating each number to 2 significant figures, estimate the value of ^{12.1×√48.8}/_{³√27.3}. Show your working and give your answer to a reasonable degree of accuracy. ^{12×√49}/_{³√27} = 28 ≈ 30 (2 s.f.) ∴ 30 	[2]

20. Express 0.00952 nanoseconds in megaseconds, giving your answer in standard form. $\begin{array}{l} 0.00952 \times 10^{-9}s = x \times 10^{6}s\\ \hline 9.52 \times 10^{-3} \times 10^{-9}\\ \hline 10^{6}\end{array} = x\\ \hline x = 9.52 \times 10^{-18}\\ \hline \cdot 9.52 \times 10^{-18} \text{ megaseconds} \end{array}$	[1]
21. Without using a calculator, show that $2^{17} - 2^{14}$ is divisible by 7. $2^{14}(2^3 - 1)$ $= 2^{14}(7)$ Since $2^{17} - 2^{14}$ has a factor 7, it is therefore divisible by 7.	[2]
22. Simplify the expression $\sqrt[3]{\frac{y}{x^2}} \times \frac{y}{x} \div \sqrt{\frac{x^3}{9y^{-2}}}$. $\frac{\frac{y^{\frac{1}{3}}}{x^{\frac{2}{3}}} \times \frac{y}{x} \div \frac{x^{\frac{1}{3}}y}{3}}{3}$ $= \frac{\frac{y^{\frac{4}{3}}}{x^{\frac{5}{3}}} \times \frac{3}{x^{\frac{1}{3}}y}}{x^{\frac{5}{6}}}$ $\Rightarrow \frac{3y^{\frac{1}{3}}}{x^{\frac{6}{6}}}$	[2]
23. Write the following in order of size, largest first. $-\frac{7}{8}, -8 \times 10^{-1}, -0.\overline{81}$ $\therefore -8 \times 10^{-1}, -0.\overline{81}, -\frac{7}{8}$	[1]
24. (a) Calculate $\frac{\sqrt{4.73}-3.28}{\sqrt[3]{99.7}\times1.25}$. Write down the first four digits on your calculator display. $\therefore 0.190$	[1]
 24. (b) The number 102 999 corrected to <i>n</i> significant figures is 103 000. Write down the largest possible value of <i>n</i>. ∴ n = 5 	[1]

25. One hundred identical drops of oil have a total mass of 4550 milligrams. [2] 1 milligram = 1×10^{-3} grams. It is given that $1 cm^3$ of oil weighs 0.91 grams. Calculate the volume of one drop, in m^3 , giving your answer in standard form. 100 drops →4550 milligrams 100 drops \rightarrow 4.55 g 1 drop \rightarrow 0.0455 g $\frac{0.0455}{0.91} = 0.05 \ cm^3$ $\frac{0.05}{100^3} = 5 \times 10^{-8} m^3$ $\therefore 5 \times 10^{-8} m^3$ 26. The numbers 98, 784 and 1176, written as a product of their prime factors are $98 = 2 \times 7^2$, $784 = 2^4 \times 7^2$ and $1184 = 2^3 \times 3 \times 7^2$. (a) Find the largest possible integer, w, which divides 98, 784 and 1176. [1] $w(HCF) = 2 \times 1 \times 7^2$ w = 98 $\therefore w = 98$ (b) Find the smallest integer, p, such that $\sqrt[3]{\frac{784 \times 1176}{p}}$ is a whole number. [1] [2] 27. Solve the equation $\frac{1}{4y} = 2^{-6}$. $\frac{1}{4y} = \frac{1}{2^6}$ 4y = 64y = 16 $\therefore y = 16$ 28. Given that $2^{x+1} + 2^x = 24$, find the value of x. [2] $2^{x}(2 + 1) = 24$ $2^{x} = 8$ $2^{x} = 2^{3}$ x = 3 $\therefore x = 3$

29. Simplify $\frac{(2xy)^2}{35xy^7} \div \left(\frac{x^{-1}y^{-2}}{4}\right)^{-2}$, leaving your answer in positive indices. $\frac{4x^2y^2}{35xy^7} \div \left(\frac{1}{4xy^2}\right)^{-2}$ $= \frac{4x^2y^2}{35xy^7} \div \left(4xy^2\right)^2$ $= \frac{4x^2y^2}{35xy^7} \times \frac{1}{16x^2y^4}$ $= \frac{1}{140xy^9}$ $\therefore \frac{1}{140xy^9}$	[2]
 30. Ms Chew invested \$P in a bank that pays compound interest at the rate of 4% per annum compounded half-yearly. If she received \$6341.21 from the Bank after 6 years, find the value of P, giving your answer to the nearest whole number. 6341.21 = P(1 + 4÷2/100)^{6×2} 5000.00 = P P = 5000 (nearest whole number) ∴ P = 5000 	[2]
31. (a) Express 315 as a product of prime factors. $\therefore 315 = 3^2 \times 5 \times 7$	[1]
31. (b) Find the smallest whole number by which 315 must be multiplied to obtain a perfect square. $315x = 3^{2} \times 5^{2} \times 7^{2}$ $x = 35$ $\therefore 35$	[1]
32. Given that $4^{\left(\frac{1}{2n}\right)} \div 64^{-2} = 2^5$, find the value of <i>n</i> . $2^{2\left(\frac{1}{2n}\right)} \div 2^{-12} = 2^5$ $\frac{1}{n} - (-12) = 5$ $\frac{1}{n} = -7$ $-\frac{1}{7} = n$ $\therefore n = -\frac{1}{7}$	[2]

33. \$10 000 was invested in an account which pays $r\%$ per annum compound interest. At the end of 3 years, the interest earned \$1910.16. Find the value of r . $I = A - P$ $I = P\left(1 + \frac{r}{100}\right)^n - P$ $1910.16 = 10\ 000\left(1 + \frac{r}{100}\right)^3 - 10\ 000$ $\frac{1910.16+10\ 000}{10\ 000} = \left(1 + \frac{r}{100}\right)^3$ $\frac{\sqrt[3]{1910.16+10\ 000}}{10\ 000} = \left(1 + \frac{r}{100}\right)$ $\frac{\sqrt[3]{1910.16+10\ 000}}{10\ 000} - 1 = \frac{r}{100}$ $100\left(\sqrt[3]{\frac{1910.16+10\ 000}{10\ 000}} - 1\right) = r$ $r = 6$ $\therefore r = 6$	[2]
34. (a) Expressed as the products of their prime factors,	[1]
$196 = 2^{2} \times 7^{2}$	
$252 = 2^{2} \times 3^{2} \times 7$ Write down the highest common factor of 106 and 252	
while down the highest common factor of 190 and 252. $HCE = 2^2 \times 1 \times 7$	
$HCF = 2 \times 1 \times 7$ $HCF = 28$	
$\therefore HCF = 28$	
34. (b) The lowest common multiple of 252 and an even number is 756.	
(i) Express 756 as the product of its prime factors.	[1]
$\therefore 756 = 2^2 \times 3^3 \times 7$	
(ii) Find the smallest possible value of the even number.	[1]
$LCM = 756 = 2^2 \times 3^3 \times 7$	
$252 = 2^2 \times 3^2 \times 7$	
$x = 2 \times 3^3 \times 1$	
x = 54	
·· 54	

35. (a) Simplify $\frac{a^7 b}{2} \times (a^3 b)^{-2}$.	[1]
$\frac{a^{7}b}{2} \times \left(\frac{1}{a^{3}b}\right)^{2}$ $= \frac{a^{7}b}{2} \times \left(\frac{1}{a^{6}b^{2}}\right)$ $= \frac{a}{2b}$ $\therefore \frac{a}{2b}$	
35. (b) Solve $\frac{2 \times 3^x}{\sqrt{2}} = 162$.	[2]
$\frac{2 \times 3^{x}}{3^{\frac{1}{2}}} = 2 \times 3^{4}$ $3^{x - \frac{1}{2}} = 3^{4}$ $x = 4 - \frac{1}{2}$ $\therefore 4 - \frac{1}{2}$	
36. (a) Express 540 as the product of its prime factors. $\therefore 540 = 2^2 \times 3^3 \times 5$	[1]
36. (b) Find two numbers, both smaller than 100, that have a lowest common multiple of 540 and a highest common factor of 6. $LCM = 2^{2} \times 3^{3} \times 5$ $HCF = 2 \times 3$ $x = 2^{2} \times 3 \times 5$ $y = 2 \times 3 \times 1$ $\therefore 54 \text{ and } 60$	[2]

37. Kelly has 300 one-centimetre cubes. She arranges all of the cubes into a cu The perimeter of the top of the cuboid Each side of the cuboid has a length g Find the height of the cuboid. Trial and Error Method: $3 \times 2 + 2x = 18$ x = 6 V = lbh $h = \frac{300}{3 \times 6}$ $h = \frac{50}{3}$	boid. is 18 cm. reater than 3 cm. $4 \times 2 + 2x = 18$ $x = 5$ $V = lbh$ $h = \frac{300}{4 \times 5}$ $h = 15$	[2]
$\frac{29}{29} = \frac{13}{20} \frac{100}{100} \frac{100}$		
$\therefore 462 = 2 \times 3 \times 7 \times 11$		
38. (b) Written as a product of its prime factors, $1512 = 2^3 \times 3^3 \times 7$.		
(i) Find the smallest whole number <i>n</i> for which 462 <i>n</i> is a multiple of 1512. 462 <i>n</i> must be completely divisible by 1512 $\frac{2\times3\times7\times11\times n}{2^3\times3^3\times7}$ $= \frac{11\times n}{2^2\times3^2}$ $n = 2^2 \times 3^2$ $n = 36$ $\therefore n = 36$		
(ii) Explain why 1512 is not a perfect cube. $1512 = 2^{3} \times 3^{3} \times 7$ $\sqrt[3]{1512} = \sqrt[3]{2^{3} \times 3^{3} \times 7}$		[[1]
$\sqrt[3]{1512} = 2 \times 3 \times 7^{\frac{1}{3}}$		
Since $7^{\frac{1}{3}}$ is not an integer, 1512 is not a perfect cube.		

39. (a) Calculate $\frac{3+\sqrt{-4^2+2\times 11}}{5}$.	[1]
Write down the first 6 digits on your calculator display. $\therefore 1.08989$	
39. (b) Write your answer to part (a) correct to 3 decimal places. ∴1.090	[1]
40. (a) Given that $6^m \div 6^{-3} = 6^2$, find the value of <i>m</i> . m - (-3) = 2 m + 3 = 2 m = -1 $\therefore m = -1$	[1]
40. (b) Arrange the following numbers in increasing value. Show your working clearly. 0.0037×10^{6} 3.7 × 10 ⁵ 370 × 10 ⁻³ 37 ∴ 370 × 10 ⁻³ , 37, 0.0037 × 10 ⁶ , 3.7 × 10 ⁵	[2]
40. (c) Simplify $\sqrt[3]{8x^6} \times \frac{1}{3y^{-5}}$. Leave your answer in positive index form. $\frac{2x^2 \times \frac{y^5}{3}}{=\frac{2x^2y^5}{3}}$ $\frac{2x^2y^5}{3}$	[2]
 41. Kyran invested \$12 000 into a fund which pays compound interest 4% per annum compounded half-yearly. Calculate the total interest earned in 5 years. I = A - P I = 12 000 (1 + 4+2/100)^{5×2} - 12 000 I = 2627.93304 I = 2627.93 (nearest cent) ∴ \$2627.93 	[3]