Qn	Suggested MS
1(a)	$s = ut + \frac{1}{2}gt^2$
	Since $u = 0$,
	$s = \frac{1}{2}gt^2$
	$g=\frac{2s}{t^2}$
	$g = \frac{2(5.88)}{(1.1)^2}$
	$g = 9.72 \text{ m s}^{-1}$
(b)	<i>t</i> should be recorded for every 100cm of h e.g. 100cm, 200cm till 600cm. Plot the graph for h against t^2 and get a best fit line. Obtain $g = 2 \times \text{gradient}$.
	The best fit line reduces/removes the systematic error that might be present if the vertical intercept is non-zero. This results in a more accurate value of q .
(c)	Loss in GPE = $mgh = (0.010)(9.72)(5.88) = 0.571J$
(d)	$U = m(\frac{2h}{t^2})h$
	$U = \frac{2mh^2}{t^2}$
	Hence
	$\frac{\Delta U}{U} = \frac{\Delta m}{m} + 2\frac{\Delta h}{h} + 2\frac{\Delta t}{t}$
	$\frac{\Delta U}{0.571} = \frac{1}{10} + 2(\frac{1}{588}) + 2(\frac{0.1}{1.1})$
	$\Delta U = 0.163 \mathrm{J}$
	$U \pm \Delta U = (0.6 \pm 0.2) J$

$s_A = vt - (1)$		
$s_{n} = ut$	$+\frac{1}{2}at^{2}=0.5(2.5)(t^{2})$	
-8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
$\mathbf{S}_{A} = \mathbf{S}_{B}$		
8.5(<i>t</i>) =	$=\frac{2.5}{2}(t^2)$	
t = 6.8	S	
$\mathbf{S}_{B} = 0.5$	$5(2.5)(6.8)^2 = 57.8m$	
displace	ment / m	
	Car B	
	Cail	
	Car A	
57.0		
57.8		
	time	
0	6.8 <i>unie</i> / s	
Vertical	component	
$V_y^2 = U_y$	$^{2}+2gs_{y}$	
$v_y = \sqrt{2}$	$\overline{gs_y} = \sqrt{2(9.81)(6.5)} = 11.3 \ ms^{-1}$	
tan <i>θ</i> =	11.3	
	11.5	
$\theta = 44.5$	5°	
Final ho	prizontal velocity is the smaller	
The oth	er component of the velocity is correct	
θ will the	neretore be larger	
	$S_{A} = vt$ $S_{B} = ut$ $S_{A} = S_{B}$ $8.5(t) =$ $t = 6.8$ $S_{B} = 0.2$ displace 57.8 57.8 0 Vertical $V_{y}^{2} = U_{y}$ $V_{y} = \sqrt{2}$ $tan \theta =$ $\theta = 44.2$ Final hor θ will the	

4(a)	e.m.f. is the amount of non-electrical energy converted into electrical energy per unit
	charge passing through the terminals of the cell (source).
	p.d. is the amount of electrical energy converted to other forms of energy per unit charge
	passing from one point to the other.
(b)(i)	Draw best fit line. Emf = 9.0 V
(b)(ii)	Read off two points along best fit line.
	(0,9.0) and (1.800, 5.4)
	V = E - Ir
	5.4 = 9.0 - 1.8(r)
	r = 2.0 Ω
(b)(iii)	Add a switch in correct location.
	When the switch is used, it will result in an open circuit between the resistors and the
	cell. Since no current flows through the cell, the terminal potential difference is the same
	as the emf.
(C)	p.d. across 2R = $(\frac{25+25}{3(25)+15}) \times E$
	Since galvanometer reads zero,
	p.d. across $2R = p.d.$ across R_c
	$(\frac{25+25}{3(25)+15}) \times E = (\frac{R_c}{R_c+15}) \times E$
	R_{c} = 18.8 Ω

5(a)	electron
(b)(i)	PSYV
(b)(ii)	Electrons experience a magnetic force.
	The accumulation of the electrons causes a potential difference to be set up.
(iii)	$F_e = F_B$
	$e \frac{V_H}{d} = evB$ $V_H = 0.020 \times 56 \times 0.28$ $= 0.31 \text{ V}$
(b)(iv)	Deflection would be opposite, so positive charges will accumulate on opposite face as
	before.
	Hence, polarity of the hall voltage will not change.

6(a)	Apply Charles' law	
	$V_1 V_2$	
	$T_1 T_2$	
	$V_{1} = T_{2}V_{1} = (273.15 + 58)(52.1)$	
	$v_2 = T_1 = (273.15 + 41)$	
	$V_2 = 54.9 \text{ cm}^3$	
(b)	The real gas does not behave like an ideal gas.	
(C)	Pressure: Piston is free to move in and out	
	Amount of gas: cap stops gas leaving or entering the syringe and the piston seals the	
	gas	
(d)	Increase in T causes the molecules to move with higher kinetic energy	
	The particle will exert a larger force on the wall as the (rate of) change in momentum	
	when the particle collide with the wall will be larger.	
	To ensure pressure stays the same, V must increase so that the frequency of the	
	collisions must decrease	

7)a)	Rate of decay
b)i)	$N = \frac{1}{222} \times 6.02 \times 10^{23}$
	$N = 2.71 \times 10^{21}$
ii)	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{3.8 \times 24 \times 60 \times 60} = 2.11 \times 10^{-6}$
	$A = \lambda N = (2.11 \times 10^{-6})(2.71 \times 10^{21}) = 5.73 \times 10^{15}$
iii)	$A = A_{o}e^{-\lambda t}$
	$0.01 = e^{-\lambda t}$
	$t = -\frac{\ln(0.01)}{\frac{\ln 2}{3.8 \times 24 \times 60 \times 60}}$ = 2.18 \times 10 ⁶ s
iv)	$\Delta m = (222.017576 - 218.008966 - 4.002602)$
	= 0.006008u
	$E = \Delta mc^2$
	$= 0.006008(1.66 \times 10^{-27})(3 \times 10^{8})^{2} = 8.98 \times 10^{-13J}$
	$E = N \Delta m c^2$
	$=\frac{(2.71\times10^{21})8.98\times10^{-13}}{1.6\times10^{-19}}=1.52\times10^{28}eV=1.52\times10^{22}MeV$
v)	As the area of the GM tube cannot fully enclose the sample and therefore it can only capture a fraction of the total activity

(d)(iii)	$P = I^2 R$
	$=(15\times10^{6})^{2}(5.6\times10^{-9})$
	$= 1.26 \times 10^{6}$
	$\approx 1.3 \times 10^{6} W$
(e)	Magnetic force provides for the centripetal force.
	$Bqv = mr\omega^2$
	$= m(r\omega)\omega$
	$= m v \omega$
	$\omega = \frac{Bq}{D}$
	m
	$-\frac{(5.3)(1.60 \times 10^{-19})}{(1.60 \times 10^{-19})}$
	$-\frac{1}{2 \times 1.66 \times 10^{-27}}$
	$= 2.554 \times 10^8 \text{ rad s}^{-1}$
	$2\pi f = 2.554 \times 10^8$
	$f = \frac{2.554 \times 10^8}{10^8}$
	$r = \frac{1}{2\pi}$
	$=40.65 \times 10^{6}$ Hz
	\approx 41 MHz
(f)	Neutral beams are unaffected by the magnetic fields hence they are able to propagate
	in a straight line before entering the into plasma.

(g)	volume of the torus $V = 2\pi^2 Ra^2$
	$=2\pi^{2}(6.2)(2^{2})$
	$= 489.53 \text{ m}^3$
	$S = kn^2 E$
	$= \left(3.57 \times 10^{-23}\right) \left(10^{20}\right)^2 \left(17.6 \times 10^6 \times 1.60 \times 10^{-19}\right)$
	$= 1.0053 \times 10^{6} \text{ W m}^{-3}$
	$Q = \frac{SV}{P_{CRH} + P_{NBI}}$
	(1.0053)(489.53)
	20+33
	= 9.29
	≈ 9.3