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Mathematical Formulae 

1. ALGEBRA 
 
Quadratic Equation 
        For the equation , 

 

 
Binomial Expansion 

 

where  is a positive integer and  

 
2. TRIGONOMETRY 

 
Identities 

 

 

 
Formulae for  
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1 (i) Differentiate x2 ln3xwith respect to x. [2] 
  

dy
dx

= x2 3
3x

⎛
⎝⎜

⎞
⎠⎟
+ ln3x(2x)

= x + 2x ln3x
  

 
 

 
 (ii) Hence find x ln3x∫ dx . [3] 

  

∫ x + 2x ln3xdx = x2 ln3x +C
∫ xdx + ∫ 2x ln3xdx = x2 ln3x +C

∫ 2x ln3xdx = x2 ln3x − x
2

2
+C

∫ x ln3xdx = 1
2
x2 ln3x − x

2

4
+ D

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

–	apply	product	rule	

	–	apply	anti-differentiation	

–	separating	terms	to	integrate	
and	integration	of	x	



 
2 Express 

x3 +1
x2 +1( ) x − 2( ) in partial fractions. 

 
[5] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
x3 +1

x3 − 2x2 + x − 2
= 1+ 2x2 − x + 3

(x2 +1)(x − 2)
 

Let 
 

 
2x2 − x + 3
(x2 +1)(x − 2)

= Ax + B
x2 +1

+ C
x − 2

2x2 − x + 3= (Ax + B)(x − 2)+C(x2 +1)
 

By Substitution: 
 At x = 2, 

 
2(2)2 − 2+ 3= C(5)

C = 9
5

  

 
At x = 0, 
 
3= −2B +C

2B = 9
5
− 3

B = − 3
5

  

By comparing coefficient of x2, 
A+C = 2

A = 2− 9
5
= 1
5

  

 
x3 +1

(x2 +1)(x − 2)
= 1+ x − 3

5(x2 +1)
+ 9
5(x − 2)

  

 
 
 
 
 
 
 
 
 

	–	Use	long	division	to	convert	improper	
to	proper	rational	function	

	–	Decomposition	of	partial	
fractions	into	its	correct	form		



 
3 

 

The quadratic equation 3x2 + 2x +1= 0  has roots α and β.  
 

(i) Show that the value of α 3 + β 3  is 10
27

. 
 

[3] 
  

3x2 + 2x +1= 0

x2 + 2
3
x + 1
3
= 0

α + β = − 2
3

αβ = 1
3

 

 

α 3 + β 3

= α + β( ) α 2 −αβ + β 2( )
= −2
3

α + β( )2 − 3αβ⎡
⎣⎢

⎤
⎦⎥

= −2
3

−2
3

⎛
⎝⎜

⎞
⎠⎟

2

−1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −2
3

−5
9

⎛
⎝⎜

⎞
⎠⎟

= 10
27

  

 

 
 (ii) Find a quadratic equation whose roots are 1

α 3 and 1
β 3

. 
 

[3] 
 1

α 3 +
1
β 3

= β 3 +α 3

α 3β 3

=

10
27
1
27

= 10

 

 

–	for	obtaining	sum	and	
product	of	roots	α	and	β.	

–	for	re-expressing		 	into	
α+β	and	αβ	.	Acceptable	too:

	

	

	–	for	finding	sum	of	roots	



y 

-3 

A (0.6, 3) 

x 

 

1
α 3

1
β 3

⎛
⎝⎜

⎞
⎠⎟

= 1
α 3β 3

= 1

1
3

⎛
⎝⎜

⎞
⎠⎟

3

= 27

 

 

x2 −10x + 27 = 0   
 

4  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 The diagram shows part of the graph y = r − q 3− px , where p,  q and r are positive 
constants. The graph has a vertex at A (0.6, 3) and y-intercept of -3. 

 
 
 

 
(i) Determine the values of p, q and r. 

 
[3] 

 

3− px = 0
px = 3

x = 3
p

3
p
= 0.6

p = 5
r = 3

At the y-intercept of -3, x = 0, 

 

O 

	–	for	finding	product	of	roots	



y cm 

x cm 

3 cm 

−3= 3− q 3

3q = 6
q = 2

  

 (ii) State the value or range of values of k such that k = r − q 3− px  has 
       (a) 1 solution, [1] 
  

k = 3  
 

 

       (b) 2 solutions. [1] 
  

 
k < 3 
 

 

   
5 A buoy is formed by two identical right circular cones of sheet iron joined 

by its bases with a radius of x cm. The buoy has a vertical height of y cm 
and a slant height of 3 cm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 (i) Express y in terms of x.  [1] 
  

y2 + x2 = 32

y = ± 9− x2

y = 9− x2
(-ve rejected as vertical height is positive)  

 
 
 
 
 
 
 
 
 

 

y cm 
3 cm 

–	applying	Pythagoras’	Theorem	to	obtain	y	in	
terms	of	x	



 (ii) Given that x can vary, find the exact value of x for which the volume, V, 
of the buoy is stationary. 

 
[4] 

 
V = 2

3
π x2 y

= 2
3
π x2 9− x2

dV
dx

= 2
3
π x2 1

2
9− x2( )

−1
2 −2x( )⎡

⎣
⎢

⎤

⎦
⎥ + 9− x2 4π

3
x

⎛
⎝⎜

⎞
⎠⎟

= −2π x3

3 9− x2
+ 9− x2 4π

3
x

⎛
⎝⎜

⎞
⎠⎟

= 1

3 9− x2
−2π x3 + 4π x(9− x2 )⎡⎣ ⎤⎦

= 1

3 9− x2
36π x − 6π x3⎡⎣ ⎤⎦

  

At stationary point, 

 

dV
dx

= 0

1

3 9− x2
36π x − 6π x3⎡⎣ ⎤⎦ = 0

36π x − 6π x3⎡⎣ ⎤⎦ = 0

x(6− x2 ) = 0

x = 0,x = ± 6

  

 
 (iii) Determine with reasons whether this value of V is a maximum or  

       minimum.   
[2] 

 Using first derivative test, 
x 

6
−

  6  6
+

  
dV
dx

 
>0 0 <0 

Volume is maximum. 
Using second derivative test, 

d 2V
dx2

= 2π
3

(18− 9x2 ) 9− x2 − (18x − 3x3) 1
2
9− x2( )−

1
2 (−2x)

9− x2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  

When 

x = 6
d 2V
dx2

= −43.5< 0
  

Volume is maximum 

 

	-expressing	volume	of	buoy	in	terms	of	
x	

	-applying	product	rule	to	
find	dV/dx	

	-identifying	that	dV/dx	=	0	at	
stationary	point	

x=0	rejected;	
-ve	Rejected	as	radius	x	is	positive		



 
 
 
 
 

 (iv) Find the exact surface area of the buoy when V is stationary, leaving 
your answer in terms of π . 

 
[1] 

 
 
 
 
 

 
 

Surface area  

 
= 2π x( ) 3( )
= 6 6πcm2

  

 

 

6 The equation of a polynomial is given by p(x) = 2x3 + 2ax2 − x2 + ax − a 	where a is a 
constant. 

 (i) Find the remainder when p(x) is divided  by (x + 1). [1] 
  

p(−1)

= 2 −1( )3 + 2a −1( )2 − −1( )2 + a(−1)− a
= −2+ 2a −1− a − a
= −3

  

 
Remainder = -3 
 

 

 (ii) Show that (2x – 1) is a factor of p(x) . [2] 
 

p 1
2

⎛
⎝⎜

⎞
⎠⎟

= 2 1
2

⎛
⎝⎜

⎞
⎠⎟

3

+ 2a 1
2

⎛
⎝⎜

⎞
⎠⎟

2

− 1
2

⎛
⎝⎜

⎞
⎠⎟

2

+ a 1
2

⎛
⎝⎜

⎞
⎠⎟
− a

= 1
4
+ a
2
− 1
4
+ a
2
− a = 0

  

Since remainder = 0, (2x – 1) is a factor of p(x).  
 
 
 
 
 

 (iii) By showing clearly your working, factorise p(x) . [2] 
  

           2     2a – 1           a           -a 
 
0.5                 1               a           a 
 
          2          2a           2a            0 
 
Alternatively, by long division 

 

	-either	first	or	second	derivative	test	
–	conclusion	that	volume	is	maximum	

	–	for	finding	p(1/2)	or	
using	long	
division/synthetic	division	

	-conclusion	stating	
remainder	=	0,	therefore	
(2x-1)	is	a	factor	of	p(x).	

	–	Using	synthetic	
division/long	division	



x2 + ax + a

2x −1 2x3 + (2a −1)x2 + ax + a

2x3 − x2

_____________________
2ax2 + ax
2ax2 − ax

_____________________
2ax + a
2ax − a

 

 
 
2x3 + 2ax2 − x2 + ax − a = (2x −1)(x2 + ax + a)   
 

 (iv) Find the range of values of a for which the equation p(x) = 0has only  
       one real root. 

[3] 

  
(2x −1)(x2 + ax + a) = 0   
For p(x) = 0 to have only one real root, 

a( )2 − 4(1)(a) < 0
a2 − 4a < 0
a(a − 4) < 0
0 < a < 4

  

 

7 The table below shows the data obtained from an experiment on the vertical 
motion based on the oscillation of a spring with different masses attached to 
it. 
 
Mass, x kg 0.02 0.03 0.04 0.05 0.15 
Frequency of 
oscillations, y  

16 13 11.4 10 6 

 
It is known that the mass, x kg, and the frequency of oscillations per second, 
y, are related by the equation xy2 = k , where k is a constant.  

 

 
(a) Plot y2 against 1

x
and draw a straight line graph. 

 

y2 = k
x

 

1
x

 
50 33.3 25 20 6.67 

y2  256 169 129.96 100 36 

  

 
[3] 

	-apply	discriminant	<	0	

	–	solve	inequality	by	factorising	



 – table of values 
 – 5 plotted points 
 – straight line that passes through the points 
 

 (b) Use your graph to estimate  
   
 (i) the frequency of oscillations when a mass of 0.08 kg is attached to the 

spring, 
[1] 

  

x = 0.08
1
x
= 12.5

y2 = 65
y = 8.06

  

 

 (ii) the mass which produces 15 oscillations per second, [1] 
 y = 15

y2 = 225
1
x
= 44

x = 0.0227

  

 
 

 

 (iii) the value of k.  [1] 
  

k = 230− 0
45− 0

= 5.11   

 

 (c) When the spring is replaced by a second spring, the relation between y 

and x is represented by y2 = 2
x
+80 .  

 
 
 

 
 (i) On the same diagram, draw the line representing the second spring. [1] 
  

[B1] – drawing the line, needs to pass through vertical intercept 
y2 80 130 180 
1/x 0 25 50 

 

 

 (ii) Hence, explain how to find the mass which produces the same frequency 
of oscillations by both springs. 

 
[2] 

Both the lines intersect at (25, 130).          
Acceptable range of 1/x-coord 24<1/x<26; Acceptable range of y2-coord 125 < y2 < 135 
 
The intersection point indicates the mass that produces the same frequency of oscillations by 
both springs  = 1/25 = 0.0400g  
 
 – Acceptable range  
1/24 < mass < 1/26 
0.0417g < mass < 0.0385g 

From graph, read off corresponding value of y2  
Acceptable range   

 – Acceptable range 7.75 < y < 8.37 

From graph, read off corresponding value of 1/x 
Acceptable range 43 < 1/x < 45 

 - Acceptable range 0.0233 < x < 0.0222 

 – Acceptable range 
  5 < k < 5.22 



 



8 
(i) Prove that sec A+ tan A−1

1− sec A+ tan A
≡ 1+ sin A
cos A

.  
 

[5] 

  

LHS

= sec A+ tan A− (sec
2 A− tan2 A)

1− sec A+ tan A

= sec A+ tan A− (sec A+ tan A)(sec A− tan A)
1− sec A+ tan A

= (sec A+ tan A)[1− (sec A− tan A)]
1− sec A+ tan A

= sec A+ tan A

= 1
cos A

+ sin A
cos A

= 1+ sin A
cos A

  

 

 

 
(ii) Hence solve the equation sec A+ tan A−1

1− sec A+ tan A
= 3cos A  for 0 < A < 2π .  

 
[5] 

 1+ sin A
cos A

= 3cos A

1+ sin A = 3cos2 A
1+ sin A = 3(1− sin2 A)
1+ sin A = 3− 3sin2 A
3sin2 A+ sin A− 2 = 0
3sin A− 2( ) sin A+1( ) = 0
sin A = 2

3
, sin A = −1

  

Basic angle = 0.72973 
 

A = 0.730,2.41 A = 3π
2

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

-using	trigo	identity	 		

-applying	
		

-factoring	out	sec	A	+	tan	A	

-division	of	1-	sec	A	+	tan	A	

-conversion	of	sec	A	&	tan	A	in	terms	of	sin	A	&	cos	A	

-use	of	identity 	to	form	
quadratic	equation	in	trigo	function	

-solve	to	obtain	values	for	sin	A	

-use	result	from	trigo	identity	in	8(i)	



A 

O 

B 

D 

C 

O 

9  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 The diagram shows a circular field with centre O and radius 50 m.  
A, B and C are points on the circumference of the field and  
angle ABC = θ. D is a point on BC such that OD is parallel to AC.  
The trapezium AODC is the jogging path of a man.  
 

 

 (i) Explain why BD = DC = 50cosθ .  [2] 
 Method 1 

Angle BDO = Angle OMA = 90! 	
Angle OBD = Angle AOM = θ 	
Triangle OBD is similar to Triangle AOM. 
OA
BO

= OM
BD

= 1

OM = BD
	

Since OM = DC, DC = BD. 
Using triangle OBD,  

cosθ = BD
50

BD = 50cosθ
  

 
Method 2 

Angle ACB = 90!  (right angle in a semicircle) 

cosθ = BC
100

BC = 100cosθ
 

 
Angle ODB = 90! (corresponding angles since OD is parallel to AC) 
 

 

		

50 m 

-identifying	right	angle	and	applying	trigo	ratio	to	find	
BC	

M 

	–	Identify	similar	triangles	
to	use	corresponding	
lengths	

	–	use	trigo	ratios	to	find	
BD/BC	



cosθ = BD
50

BD = 50cosθ
DC = 100cosθ −50cosθ = 50cosθ
∴BD = DC

  

 (ii) Show that the perimeter, L m, of the jogging path AODC can be expressed in 
the form p + qcosθ + r sinθ ,	where p, q and r are constants to be found.   

 
 

[3] 
  

sinθ = AC
100

AC = 100sinθ

sinθ = OD
50

OD = 50sinθ
L = 50+50cosθ +100sinθ +50sinθ
= 50+50cosθ +150sinθ

  

 

 

 (iii) Express L in the form of p + Rcos(θ −α )where R > 0  
      and  0! <α < 90! .  

 
[3] 

 L = 50+50cosθ +150sinθ
= 50+ 502 +1502 cos θ −α( )
= 50+ 25000 cos θ − 71.6!( )

 
tanα = 150

50
= 3

α = 71.6!
 

 
 
 

 

 (iv) Hence state the maximum perimeter, L m, of the jogging path OACD.   
       Find the value of θ at which this occurs. 

 
[2] 

 Maximum L =50+ 25000 =208 
Occurs when 

 

cos θ − 71.6!( ) = 1
θ − 71.6! = 0!

θ = 71.6!
  

 
 
 
 
 
 
 
 
 
 

 

	-identifying	corresponding	right	angle	and	
applying	trigo	ratio	to	find	BD	

	
	–	find	AC	using	trigo	ratio	
	
	
	–	find	OD	using	trigo	ratio	

–	Obtaining	 /158	(to	3sf)	

	–	Obtaining	 	
	–	Finding		 		

-equating	max	of	

	to	findθ.	

		



10 (a) Sketch the graph of y = log3 x .  [2] 
  

y = log3 x =
ln x
ln3

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 – shape of graph 
– indication of x-intercept 

 

 (b) Express log9 4+ log3(x − 4) = 2log3 x as a quadratic equation in x and  

      explain why there are no real solutions. [4] 
  

log3 4
log3 9

+ log3(x − 4) = log3 x
2

log3 4
2

+ log3(x − 4) = log3 x
2

log3 4
1
2 + log3(x − 4) = log3 x

2

4
1
2 x − 4( ) = x2
2x −8 = x2

x2 − 2x +8 = 0

 

Discriminant 

 = −2( )2 − 4(1)(8)
= −28 < 0

  

There are no real solutions. 
 
 
 
 
 
 
 
 
 

 

	–	apply	change	of	base	and	
power	law	

	–	apply	product	law	

	–	obtain	quadratic	equation	

	–	explain	why	no	real	solutions	using	
discriminant	

y 

x 1      O 



y 

x O 

 (c) Given that  logb(x
2 y) = m  and logb(x

3y) = n , express,  
      logb x 	and logb y  in terms of m and n. [4] 
 

logb x
2 y( ) = m

logb x
2 + logb y = m

2logb x + logb y = m− − − (1)

 

 

logb x
3y( ) = n

logb x
3 + logb y = n

3logb x + logb y = n− − − (2)

 

(2) – (1)  
logb x = n−m

logb y

= m− 2(n−m)
= 3m− 2n
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The diagram shows part of the curve y = 4cos x

2
⎛
⎝⎜

⎞
⎠⎟

that meets the x-axis at x = π

and x = 3π . The line x = 3π
2

meets the x-axis at R and the curve at P. The 

normal to the curve at P meets the x-axis at Q.  
 

 

 (i) Find the equation of the normal at P, expressing your answer in exact form. [4] 

	

	 	

		

R 

P 

Q 

-	apply	product	and	power	laws	
to	obtain	equation	(1)	

	–	apply	product	and	power	
laws	to	obtain	equation	(2)	



 
y = 4cos x

2
⎛
⎝⎜

⎞
⎠⎟

dy
dx

= −4sin x
2

⎛
⎝⎜

⎞
⎠⎟
1
2

⎛
⎝⎜

⎞
⎠⎟
= −2sin x

2
⎛
⎝⎜

⎞
⎠⎟

 

At  x = 3π
2

,  

gradient of tangent  

= −2sin 3π
4

⎛
⎝⎜

⎞
⎠⎟

= −2 1
2

⎛
⎝⎜

⎞
⎠⎟

= − 2

 

Gradient of normal = 1
2

  

 
Coordinate of P: 

y = 4cos x
2

⎛
⎝⎜

⎞
⎠⎟

= 4cos 3π
4

⎛
⎝⎜

⎞
⎠⎟

= 4 − 2
2

⎛

⎝
⎜

⎞

⎠
⎟

= −2 2

  

P 3π
2
,−2 2

⎛
⎝⎜

⎞
⎠⎟

 

Equation of normal: 

 

y − −2 2( ) = 1
2
x − 3π

2
⎛
⎝⎜

⎞
⎠⎟

y = x

2
− 3π
2 2

− 2 2
  

OR 

y = 2
2
x − 3 2

4
π − 4

2
 (equivalent forms are acceptable)  

 
 
 
 
 
 
 

 

-Differentiating	to	find	
gradient	of	tangent	

	–	evaluation	of	gradient	
of	normal	

	–	finding	coordinate	of	P	

	–	finding	equation	of	
normal	



 (ii) Find the exact coordinates of Q. [2] 
 At y = 0, 

x

2
− 3π
2 2

− 2 2 = 0

x

2
= 2 2 + 3π

2 2

x = 4+ 3π
2

Q(4+ 3π
2
,0)

  

 

 (iii) Find the exact area of the shaded region.  [5] 
  

Area 
 

=
0

π

∫4cos
x
2

⎛
⎝⎜

⎞
⎠⎟
dx +

π

3π
2

∫ 4cos
x
2

⎛
⎝⎜

⎞
⎠⎟
dx

=
4sin

x
2

⎛
⎝⎜

⎞
⎠⎟

1
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
0

π

+
4sin

x
2

⎛
⎝⎜

⎞
⎠⎟

1
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
π

3π
2

= 8sinπ
2
+ 8sin 3π

4
−8sinπ

2

= 8+ 8 2
2

⎛

⎝
⎜

⎞

⎠
⎟ −8

= 8+ 4 2 −8

= 16− 4 2units2   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

–	Expression	or	function	to	
represent	area	for	 	
	–	Expression	or	function	to	
represent	area	below	x-axis		

-Integration	of	trig	
function	

	–	evaluation	of	limits	

	–	area	in	exact	form	



12 A circle, C1 has equation x2 + y2 +8x −12y +16 = 0 .  

   
 (i) Find the radius and the coordinates of the centre of C1. [3] 
 

x2 +8x + y2 −12y +16 = 0

x + 4( )2 −16+ y − 6( )2 − 36+16 = 0
x + 4( )2 + y − 6( )2 = 62

  

 
Radius = 6 
Centre = (-4, 6) 
 

 

 (ii) The lowest point on the circle is A. Explain why A lies on the x-axis.  [1] 
 Since the circle has centre at (-4, 6) with radius 6, the lowest point on the circle 

is (-4, 0). Therefore, A lies on the x-axis.   
 

 

   
 A second circle, C2 , has a diameter PQ. The point P has coordinates (-1, 3) and the 

equation of the tangent to C2 at Q is 2y = x −18 . 
   
 (iii) Find the equation of the diameter PQ and hence the coordinates of Q. [4] 
  

2y = x −18

y = x
2
− 9

 

Gradient of tangent = ½ 
Gradient of diameter = -2 
Equation of diameter PQ: 
y − 3= −2(x +1)
y = −2x +1

  

To find coord of Q, find intersection between equation of tangent and equation 
of diameter 
 

−2x +1= x
2
− 9

2.5x = 10
x = 4
y = −7
Q(4,−7)

  

 
 
 
 
 
 
 
 

 

-	completing	the	square	

–	find	gradient	of	diameter	PQ	

	–	find	intersection	between	equation	of	
tangent	and	equation	of	diameter	



 (iv) Find the equation of the circle, C2. [3] 
 Length of PQ 

= −1− 4( )2 + (3+ 7)2
= 25+100
= 125

  

Radius = 125
2

 

Midpoint of PQ  
 

= −1+ 4
2

, 3− 7
2

⎛
⎝⎜

⎞
⎠⎟

= 3
2
,−2

⎛
⎝⎜

⎞
⎠⎟

  

Equation of the circle, C2, 
 

x − 3
2

⎛
⎝⎜

⎞
⎠⎟

2

+ y + 2( )2 = 125
2

⎛

⎝
⎜

⎞

⎠
⎟

2

x − 3
2

⎛
⎝⎜

⎞
⎠⎟

2

+ y + 2( )2 = 1254

  

 

 (v) Determine whether the circles C1 and  C2 intersect each other. [2] 
 Distance between centre of circles C1 and  C2 

= −4− 3
2

⎛
⎝⎜

⎞
⎠⎟

2

+ 6+ 2( )2

= 9.71

  

Sum of radii of circles C1 and  C2 

= 125
2

+ 6

= 11.6
 

Since distance between centre of circles C1 and  C2 < sum of radii, both 
circles C1 and  C2 intersect each other. 
 
 
 
 

 

	
	
	
	
	

END OF PAPER 
	

	–	finding	length	of	diameter	to	
obtain	radius		

	–	finding	center	of	circle	

	–	computing	distance	
between	centre	of	circles	
and	sum	of	radii	


