# **CHEMICAL BONDING TUTORIAL**

### Interatomic Bonding

| Properties       | substance      | structure   | Describe bonding and     |
|------------------|----------------|-------------|--------------------------|
|                  |                |             | relate it to the physica |
|                  |                |             | properties               |
| (a) A hard and   | NaC <i>l</i>   | Giant ionic | Strong ionic bonds requ  |
| brittle solid.   |                | lattice     | great amt of energy to   |
|                  |                |             | overcome. When the       |
|                  |                |             | regular arrangement o    |
|                  |                |             | the oppositely charged   |
|                  |                |             | ions are disrupted,      |
|                  |                |             | repulsion between like   |
|                  |                |             | charges causes the latti |
| <u></u>          |                |             | to break down.           |
| (b) A solid that | Cu             | Giant       | Strong Metallic bo       |
| conducts         |                | metallic    | require great amt        |
| electricity and  |                | structure   | energy to overcome. S    |
|                  |                |             | of delocalised electro   |
| 1065°C.          |                |             | are the mobile char      |
|                  |                |             | camers than enac         |
| (c) A solid that | Diamond        | Giant       | Electrical conductivity. |
| cuts through     | Diamona        | covalent    | bonds with 4 other       |
| metal and does   |                | lattice     | atoms in a 3D tetrahed   |
| not conduct      |                | (Giant      | arrangement, making t    |
| electricity.     |                | molecular   | lattice verv strong.     |
| y-               |                | lattice)    | All valence e used       |
|                  |                |             | sigma bond formation     |
|                  |                |             | absence of mobile char   |
|                  |                |             | carriers.                |
| (d) A substance  | I <sub>2</sub> | Simple      | Covalent bonding with    |
| that sublimates  |                | molecular   | molecule                 |
| when heated.     |                | structure   | • Weak intermolecular    |
|                  |                |             | force of attraction      |
|                  |                |             | between molecules        |

|          |                                                                                                          |                   |                            | that can be easily                          |  |  |
|----------|----------------------------------------------------------------------------------------------------------|-------------------|----------------------------|---------------------------------------------|--|--|
|          |                                                                                                          |                   |                            | overcome with heat.                         |  |  |
|          | (a) A solid that                                                                                         | Graphite          | Giant covalent             | Eorms covalent bond with 3                  |  |  |
|          |                                                                                                          | Oraphice          | lattice (Giant             | other C atoms in a 2D network               |  |  |
|          | can be used as                                                                                           |                   |                            | boxagonal carbon rings ->                   |  |  |
|          | a lubricant.                                                                                             |                   |                            | nexagonal carbon nings =>                   |  |  |
|          |                                                                                                          |                   | lattice)                   | grapnene layer                              |  |  |
|          |                                                                                                          |                   |                            | Weak intermolecular force of                |  |  |
|          |                                                                                                          |                   |                            | attraction between layers                   |  |  |
|          |                                                                                                          |                   |                            | causing the layers to slide                 |  |  |
|          |                                                                                                          |                   |                            | over each other easily.                     |  |  |
|          |                                                                                                          |                   |                            |                                             |  |  |
|          | 2010 MCQ 6                                                                                               |                   |                            |                                             |  |  |
| 1(b)     | Which diagram best repre                                                                                 | esents the struct | ure of solid magnes        | sium oxide?                                 |  |  |
|          |                                                                                                          |                   | -                          |                                             |  |  |
|          | A                                                                                                        |                   | в                          |                                             |  |  |
|          | a a a                                                                                                    |                   | a a                        |                                             |  |  |
|          |                                                                                                          | φ                 |                            |                                             |  |  |
|          |                                                                                                          |                   | NY AN                      |                                             |  |  |
|          |                                                                                                          | 4                 |                            |                                             |  |  |
|          | a a a                                                                                                    |                   | No No                      |                                             |  |  |
|          | Y-Y-                                                                                                     | -9                |                            | ~                                           |  |  |
|          |                                                                                                          |                   |                            |                                             |  |  |
|          | с                                                                                                        |                   | D                          |                                             |  |  |
|          | 2 2                                                                                                      |                   | N 2                        |                                             |  |  |
|          |                                                                                                          | of of             |                            |                                             |  |  |
|          |                                                                                                          | Ĭ                 | A of a                     |                                             |  |  |
|          |                                                                                                          | 4                 |                            |                                             |  |  |
|          |                                                                                                          |                   |                            |                                             |  |  |
|          | 2 de                                                                                                     | 4                 |                            |                                             |  |  |
|          |                                                                                                          | 0                 | Ŭ                          |                                             |  |  |
|          |                                                                                                          |                   |                            |                                             |  |  |
| <u> </u> | Magnesium oxide is                                                                                       | an ionic comp     | ound with formu            | la MgO. In the solid state the              |  |  |
|          | oppositely charged ior                                                                                   | ns are held in fi | xed positions by           | strong ionic bonds. in an orderly           |  |  |
|          | manner, forming a reg                                                                                    | ular 3-dimensi    | onal crystal lattice       | e structure.                                |  |  |
|          |                                                                                                          |                   | -                          |                                             |  |  |
|          | From the formula, it o                                                                                   | an be deduced     | that each Mg <sup>2+</sup> | ion is surrounded by 6 O <sup>2-</sup> ions |  |  |
|          | while each O <sup>2-</sup> ion is surrounded by 6 Mg <sup>2+</sup> ions. Note: The arrangement should be |                   |                            |                                             |  |  |
|          | alternating between the two lons.                                                                        |                   |                            |                                             |  |  |
|          | Ans: C                                                                                                   |                   |                            |                                             |  |  |
| 1(c)     |                                                                                                          |                   |                            |                                             |  |  |
| 1(C)     | I he melting point of calci                                                                              | um, 839°C, is mu  | uch higher than the        | e melting point of sodium, 98°C.            |  |  |
|          | vvnich statement is most                                                                                 | relevant in expla | ining the difference       | ÷?                                          |  |  |
|          |                                                                                                          |                   |                            |                                             |  |  |
|          | A The calcium atom                                                                                       | is larger than th | e sodium atom.             |                                             |  |  |
|          | B The calcium atom is heavier than the sodium atom.                                                      |                   |                            |                                             |  |  |

|              | C                                                                                                                                | The calcium ion, Ca <sup>2+</sup> , has a higher charge than the sodium ion, Na <sup>+</sup> .                                                           |  |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|              | D                                                                                                                                | The calcium ion, Ca <sup>2+</sup> , contains more electrons than the sodium ion, Na <sup>+</sup> .                                                       |  |  |  |  |
|              | Calciu                                                                                                                           | m and sodium have giant metallic lattices.                                                                                                               |  |  |  |  |
|              | Meltin                                                                                                                           | g point magnitude reflects metallic bond strength.                                                                                                       |  |  |  |  |
|              | Giant                                                                                                                            | metallic lattice consists of cations in a sea of delocalized electrons, thus metallic bond strength                                                      |  |  |  |  |
|              | Increa                                                                                                                           | Ses with<br>Greater number of valence electrons involved in delocalization                                                                               |  |  |  |  |
|              | 2)                                                                                                                               | Cation of higher charge over size ratio when factor 1 is the same.                                                                                       |  |  |  |  |
|              | ,                                                                                                                                |                                                                                                                                                          |  |  |  |  |
|              | Staten                                                                                                                           | nent C is the answer as it implies that there are greater number of valence electrons involved in                                                        |  |  |  |  |
|              | the se                                                                                                                           | a of delocalised electrons for calcium than sodium.                                                                                                      |  |  |  |  |
|              |                                                                                                                                  |                                                                                                                                                          |  |  |  |  |
| 2            | Which                                                                                                                            | statement(s) are correct?                                                                                                                                |  |  |  |  |
|              |                                                                                                                                  |                                                                                                                                                          |  |  |  |  |
|              | 1                                                                                                                                | HCl (aq) cannot conduct electricity.                                                                                                                     |  |  |  |  |
|              | "                                                                                                                                | Covalent bond is a weak bond compared to ionic bond as boiling point of $H_2O$ is lower than                                                             |  |  |  |  |
|              |                                                                                                                                  | Inal of MgO.                                                                                                                                             |  |  |  |  |
|              |                                                                                                                                  | Motals can be distinguished from ionic compounds by their electrical conductivity in the                                                                 |  |  |  |  |
|              | IV                                                                                                                               | solid state                                                                                                                                              |  |  |  |  |
|              |                                                                                                                                  |                                                                                                                                                          |  |  |  |  |
|              | Α                                                                                                                                | Statements I and III are correct.                                                                                                                        |  |  |  |  |
|              | В                                                                                                                                | Statements II and IV are correct.                                                                                                                        |  |  |  |  |
|              | С                                                                                                                                | Statement III and IV are correct.                                                                                                                        |  |  |  |  |
|              | D                                                                                                                                | Statements I, III and IV are correct                                                                                                                     |  |  |  |  |
|              |                                                                                                                                  |                                                                                                                                                          |  |  |  |  |
|              | 1                                                                                                                                | False. Simple covalent molecule with acidic or basic properties will dissociate in water to form                                                         |  |  |  |  |
|              |                                                                                                                                  | H <sup><math>+</math></sup> or OH lons. E.g HC <i>l</i> , HNO <sub>3</sub> , NH <sub>3</sub> . Thus HC <i>l</i> is an electrical conductor in aq medium. |  |  |  |  |
|              |                                                                                                                                  | False. Magnitude of B.pt of H <sub>2</sub> O is not indicative of the covalent bond strength in H <sub>2</sub> O since                                   |  |  |  |  |
|              |                                                                                                                                  | boiling overcomes the intermolecular hydrogen bonding NOT the covalent bond.                                                                             |  |  |  |  |
|              |                                                                                                                                  |                                                                                                                                                          |  |  |  |  |
|              |                                                                                                                                  | lonic bond and covalent bond are interatomic bonds, they are relatively strong compared to                                                               |  |  |  |  |
|              |                                                                                                                                  | IMF.                                                                                                                                                     |  |  |  |  |
|              |                                                                                                                                  | Since ionic bonds are broken in the giant ionic lattice of MgO, its b,pt is much higher compared                                                         |  |  |  |  |
|              |                                                                                                                                  |                                                                                                                                                          |  |  |  |  |
|              | Ш                                                                                                                                | True. Eg. Na <sub>2</sub> SO <sub>4</sub> . Ionic bonds between Na <sup>+</sup> and SO <sub>4</sub> <sup>2-</sup> ions, covalent bonds between S and O   |  |  |  |  |
|              |                                                                                                                                  | in SO <sub>4</sub> <sup>2-</sup> ion.                                                                                                                    |  |  |  |  |
|              |                                                                                                                                  |                                                                                                                                                          |  |  |  |  |
|              | IV                                                                                                                               | True. Metals conduct electricity in solid state due to the mobile sea of delocalised electrons,                                                          |  |  |  |  |
|              |                                                                                                                                  | while fonic compounds DO NOT conduct electricity in solid state as the fons are fixed in                                                                 |  |  |  |  |
|              |                                                                                                                                  | positions. Hence, this can be used to distinguish metal non-tonic compounds.                                                                             |  |  |  |  |
| 3(2)         | Boron                                                                                                                            | trifluoride and ammonia reacts in a 1:1 mole ratio to form a single compound. Describe the                                                               |  |  |  |  |
| <b>J</b> (a) | type o                                                                                                                           | f bond formed during this reaction.                                                                                                                      |  |  |  |  |
|              | N ator                                                                                                                           | n in ammonia <b>forms a dative bond</b> to B atom in BF <sub>3</sub> .                                                                                   |  |  |  |  |
|              |                                                                                                                                  |                                                                                                                                                          |  |  |  |  |
|              | BinB                                                                                                                             | $F_3$ is short of 2 electron to attain octet while N in NH <sub>3</sub> has a lone pair.                                                                 |  |  |  |  |
|              | hence                                                                                                                            | $BE_2$ and $NH_2$ reacts 1:1 ratio where lone pair of N in NH <sub>2</sub> is used to form a coordinate (dative)                                         |  |  |  |  |
|              | nence BF3 and NH3 reacts 1:1 ratio where ione pair of N in NH3 is used to form a coordinate (dative) covalent bond with B in BF2 |                                                                                                                                                          |  |  |  |  |



- 4 Explain the following observations.
  - i. Magnesium oxide is used in making bricks for lining high temperature furnaces; while sodium chloride cannot be used for this purpose. Explain this observation in terms of structure and bonding.

Both MgO and NaCl have giant ionic lattice structures.

- Product of charges (q<sub>+</sub> × q<sub>-</sub>) is larger for MgO and interionic distance (r<sub>+</sub> + r<sub>-</sub>) is smaller for MgO.
- Since  $|L.E| \propto \left| \frac{q_+ \times q_-}{r_+ + r_-} \right|$ , magnitude of lattice energy of MgO is greater than NaC*l*.
- More energy is needed to overcome the stronger ionic bonds in MgO than in NaCl.

- MgO has a higher mp than NaC*I*, hence can be used in lining of high temp. furnaces.
- ii. At room temperature and pressure, CO<sub>2</sub> is a gas, while SiO<sub>2</sub> is a solid of high melting temperature.
   CO<sub>2</sub> exists as simple molecular structure with weak intermolecular forces/ instantaneous dipole induced dipole (id-id) interactions between CO<sub>2</sub> molecules. SiO<sub>2</sub> exists as a giant covalent structure whereby all atoms are bonded to each other by strong covalent bonds.

The energy supplied at room temperature is sufficient to overcome weak intermolecular forces between  $CO_2$  molecules to allow  $CO_2$  to exist as a gas.

However, energy is insufficient to overcome the strong covalent bonds in  $SiO_2$  hence,  $SiO_2$  exist as solids at room temperature.

Note: must relate back to physical states of the compounds at rtp. The question is not focusing about the mp/bp.

iii. SiC has a higher melting point (2730 °C) than SiGe (1176 °C)

Both SiC and SiGe have giant covalent lattice structure. C atom has smaller atomic radius than that of Ge and hence there is more effective overlap of orbitals between Si and C atoms as compared to Si and Ge. More energy is required to break the stronger covalent bonds in SiC than that of SiGe. Therefore, SiC has higher melting point than SiGe.

## **Dot-and-Cross Diagram and VSEPR**

5 Fill up the table below for the following compounds:

| compound                                               | 'dot-and-cross'<br>diagram                                                                                                                             | <ul> <li>(i) Draw the Lewis</li> <li>structure and name the</li> <li>shape wrt central atom</li> <li>(ii) Indicate the bond angle</li> <li>in the diagram</li> </ul> | Bonds or<br>intermolecular<br>forces broken<br>during melting or<br>boiling process |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| (i) Al <sub>2</sub> O <sub>3</sub><br>(m.p.<br>2072°C) | $2\left[Al\right]^{3+}3\left[\overset{*}{\cdot}\overset{*}{\overset{*}{\overset{*}{\Omega}}}\overset{*}{\overset{*}{\overset{*}{\Omega}}}\right]^{2-}$ | NA                                                                                                                                                                   | Ionic bond                                                                          |
| (ii) A/C/₃<br>(m.p.<br>192°C)                          | :C <i>l</i> :<br>:C <i>l</i> -×Å <i>l</i> וC <i>l</i> :                                                                                                | CI<br>AI<br>CI<br>Trigonal planar<br>120°                                                                                                                            | Instantaneous<br>dipole-induced<br>dipole                                           |
| (iii) PC <i>l</i> 3 (I)                                | :C/··× P ··C/:<br>:C/:                                                                                                                                 | Cl P. Cl<br>107° Cl<br>trigonal pyramidal, 107°                                                                                                                      | Permanent<br>dipole-permanent<br>dipole<br>&<br>Id-id                               |
| (iv) CH <sub>2</sub> C <i>l</i> <sub>2</sub> (I)       | H<br>: Ċl··× Ċ<br>H                                                                                                                                    | H<br>109.5°<br>H<br>C'''Cl<br>Cl<br>tetrahedral, 109.5°                                                                                                              | Permanent<br>dipole-permanent<br>dipole<br>&<br>Id-id                               |
| (v) PC <i>l</i> <sub>5</sub> (s)                       | :C/:<br>:C/·×Ř×·C/:<br>:C/:C/:                                                                                                                         | CI<br>90°<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI                                                                                                | Instantaneous<br>dipole-induced<br>dipole                                           |
| (vi) HCN                                               | HוC:×N ×                                                                                                                                               | $H \xrightarrow{180^{\circ}} N$<br>Linear                                                                                                                            | Permanent<br>dipole-permanent<br>dipole<br>&<br>Id-id                               |

| compound                                                                                                                        | 'dot-and-cross'<br>diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>(i) Draw the Lewis</li> <li>structure and name the</li> <li>shape wrt central atom</li> <li>(ii) Indicate the bond angle</li> <li>in the diagram</li> </ul> | Bonds or<br>intermolecular<br>forces broken<br>during melting or<br>boiling process |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| (vii) XeF <sub>4</sub>                                                                                                          | F ** F<br><b>*Xe</b><br>F ** F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F F<br>F F<br>Square planar<br>90°                                                                                                                                   | Instantaneous<br>dipole-induced<br>dipole                                           |
| (viii) H <sub>2</sub> O <sub>2</sub>                                                                                            | H•× over set over the set of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>around each O<br>Bent 105°                                                                                                                                      | Hydrogen Bond<br>&<br>Id–id                                                         |
| (ix) Na <sub>2</sub> O <sub>2</sub>                                                                                             | $2\left(\operatorname{Na}\right)^{+}\left(\underbrace{\cdot}_{xx}\overset{xx}{\underset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{x}}{\overset{xx}{\overset{xx}}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{x}}{\overset{xx}{\overset{xx}}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}}{\overset{xx}{\overset{xx}{\overset{xx}{\overset{xx}{$ | NA                                                                                                                                                                   | Ionic bond                                                                          |
| (x) (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub><br>Salt formed from<br>H <sub>2</sub> SO <sub>4</sub> and NH <sub>3</sub> . | 2 $\begin{bmatrix} H \\ H \cdot \cdot N \\ H \cdot \cdot N \\ H \end{bmatrix}^{+}$<br>$\begin{bmatrix} : \ddot{0} : : \\ \vdots \ddot{0} : \end{bmatrix}^{2-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2 \begin{bmatrix} H \\ H \\ H \end{bmatrix}^{+}$<br>tetrahedral about N and S<br>$\left[ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}^{2-}$                 | lonic bond                                                                          |

6 A stable molecule containing atoms of the elements, X, Y and Z has the following structure.



Which option is a possible combination of the elements?

|   | <u>X</u> | <u>Y</u> | <u>Z</u>        |
|---|----------|----------|-----------------|
| A | N        | P        | <mark>C/</mark> |
| В | 0        | S        | C <i>l</i>      |
| С | В        | Ν        | Н               |
| D | Р        | 0        | F               |

- Y formed 5 covalent bonds → Group 15, Period 3 and beyond
- X formed 3 covalent bonds. Could be Group 13 or 15.
- Z formed 1 covalent bond  $\rightarrow$  Either hydrogen or Group 17
- 7 MTBE is a constituent of petrol. What are the values of angle P and angle Q in a molecule of MTBE? angle P  $H_3C - C - O - C$

|   | anyle r | angle Q |
|---|---------|---------|
| Α | 90°     | 105°    |
| В | 90°     | 180°    |
| С | 109°    | 105°    |
| D | 109°    | 180°    |



#### Answer C

- Central atom, C, has 4 bond pairs and no lone pair → Tetrahedral in shape with bond angle of 109.5°
- Central atom, **O**, has 2 bond pairs and 2 lone pair → Bent in shape with bond angle of 105°
- **8** Using VSEPR theory, predict which compound in each of the following pair of molecules has a larger bond angle.
  - (a)  $BCl_3$  and  $NCl_3$  (b)  $H_2S$  and  $PH_3$
  - (a) BC<sub>b</sub> has 3 bond pairs whereas NC<sub>b</sub> has 3 bond pairs and 1 lone pair. By VSEPR theory, the electron regions around the central atom arrange themselves to be as far apart as possible to minimise mutual repulsion. Therefore, BC<sub>b</sub> has a trigonal planar shape and the bond angle is 120 ° whereas NC<sub>b</sub> has a trigonal pyramidal shape and the bond angle is 107 °.
    BC<sub>b</sub> has a larger bond angle.
  - (b) H<sub>2</sub>S and PH<sub>3</sub> has 4 electron regions each, having tetrahedral electron geometry. H<sub>2</sub>S has 2 bond pairs and 2 lone pairs whereas PH<sub>3</sub> has 3 bond pairs and 1 lone pair. By VSEPR theory, lone pair-lone pair repulsion is stronger than lone pair-bond pair repulsion which is in turn stronger than bond pair-bond pair repulsion. In H<sub>2</sub>S, the stronger lone pair-lone pair repulsion forces the bond pairs to be closer together, decreasing the bond angle to 105° as compared to 107° in PH<sub>3</sub>. Therefore, PH<sub>3</sub> has a larger bond angle.

#### **9** [N10/III/4c]

(a) Draw 'dot-and-cross' diagrams to show the bonding in the molecules of NO<sub>2</sub>, O<sub>3</sub> and BF<sub>3</sub>.

In the molecule NO<sub>2</sub>, the central atom is nitrogen. In each case you should distinguish carefully between electrons originating from the central atom and those from the two outermost atoms. Include all lone pairs in your diagrams.



(b) Suggest a value for the bond angles in each of the three molecules, giving reasons for your choice.

All molecules have electron geometry of trigonal planar.

 $BF_3$  – central atom has 3 bond pairs and 0 lone pair. Therefore, equal repulsive forces between the B-F bonds results in a bond angle of 120 °.



 $O_3$  – central atom has 2 bond pairs and 1 lone pair. Since lone pair-bond pair repulsion > bond pair-bond pair repulsion , estimated angle = 118 ° (slightly less than 120°).



 $NO_2$  – central N atom has 2 bond pairs (1 single covalent bond and 1 double bond) and 1 unpaired electron. The unpaired electron cause less repulsion than a lone pair so estimated angle = 130 ° (Note: accept angles greater than angle given for O<sub>3</sub> but less than 180 °, assuming that the repulsion of unpaired electron is less than the repulsion of bond pair (2e<sup>-</sup>))



(c) The compound FO<sub>2</sub> does not exist but ClO<sub>2</sub> does. By considering the possible types of bonding in the two compounds suggest reasons for this difference. (Assume the halogen atom occupies the central position in each of these molecules.)

C/O<sub>2</sub> - C/ would have to expand its octet of electrons to bond with 2 O as shown below. C/, being in period 3, has a total of 9 orbitals in n = 3 quantum shell to accommodate additional electrons from the bonded atoms. Thus, C/ can have expanded octet structure to form C/O<sub>2</sub>.

 Image: Close of the bonded atoms of the bonded atoms of the bonded atoms. Thus, C/ can have expanded octet structure to form C/O<sub>2</sub>.

 Image: Close of the bonded atoms of the bonded atoms. Thus, C/ can have expanded octet structure to form C/O<sub>2</sub>.

 Image: Close of the bonded atoms of the bonded atoms. Thus, C/ can have expanded octet structure to form C/O<sub>2</sub>.

 Image: Close of the bonded atoms of the bonded atoms. Thus, C/ can have expanded octet structure would not exist.

 FO<sub>2</sub> does not exist as F is in period 2. The valence electrons of F are found in the n = 2 principal quantum shell can only accommodate a maximum of eight valence electrons since there are a total of 4 orbitals in n = 2 quantum shell. Therefore, F cannot have expanded octet structure to form FO<sub>2</sub>.

|     |      | It would also not be favourable for F to form 2 dative bonds with O as F is too electronegative to form 2 dative bonds. |                                                          |                                                                                            |  |  |  |  |
|-----|------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|
| (d) | Mod  | Modified from 2016 P3 Q1 (b)                                                                                            |                                                          |                                                                                            |  |  |  |  |
|     | Car  | bon monoxide reacts with                                                                                                | n boron hydride, BH <sub>3</sub> , at                    | thigh pressure to give one product <b>W</b> .                                              |  |  |  |  |
|     | (i)  | Give the dot-and-cross<br>showing the bonding in t<br>covalent) bonds it conta                                          | diagram of CO and the product <b>W</b> , clearly ir ins. | BH <sub>3</sub> . Hence draw dot-cross diagram<br>indicating any coordination bond (dative |  |  |  |  |
|     | (ii) | Use a Lewis diagram, in                                                                                                 | dicate the bond angles                                   | with respect to each central atom in <b>W</b> .                                            |  |  |  |  |
|     | (i)  | H·×B×∙H<br>×<br>H                                                                                                       | :C:**O*                                                  | dative bond<br>H ··· B ··· C ··· O ··<br>H ··· W<br>H Product W                            |  |  |  |  |
|     | (ii) | 0=C-B/109.5                                                                                                             |                                                          |                                                                                            |  |  |  |  |

## Polarity and Intermolecular Forces

| 10 | (a)         | Draw the Lewis structure of the following molecules and indicate for each one the polarity of each of the bonds it contains, and the overall polarity of the molecule.<br>Hence classify the following molecules as polar or non-polar.                                                                                                                                        |                                                              |                      |                                     |                                   |        |  |  |
|----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------|-------------------------------------|-----------------------------------|--------|--|--|
|    |             | NH <sub>3</sub> , SF <sub>6</sub> , CH <sub>2</sub> =CH <sub>2</sub> , CH <sub>3</sub> OH, C <i>l</i> F <sub>3</sub> , CH <sub>3</sub> OCH <sub>3</sub> , N <sub>2</sub> H <sub>4</sub>                                                                                                                                                                                        |                                                              |                      |                                     |                                   |        |  |  |
|    |             |                                                                                                                                                                                                                                                                                                                                                                                |                                                              | H<br>H <sub>Al</sub> | C=C<br>H<br>bsence of<br>blar bonds | •• H                              |        |  |  |
|    |             | Only show<br>shape wrt<br>atoms with<br>polar bonds                                                                                                                                                                                                                                                                                                                            | F<br>CI<br>F<br>F<br>F                                       | CI                   | H <sub>3</sub> CH <sub>3</sub>      | H H ···<br>Weak net<br>dipole     | 1      |  |  |
|    |             |                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                      |                                     |                                   |        |  |  |
|    |             | Non-pola<br>SF <sub>6</sub> , CH <sub>2</sub> =C                                                                                                                                                                                                                                                                                                                               | r<br>H <sub>2</sub>                                          | NH <sub>3</sub> , CH | <b>Pola</b><br>H₃OH, CH₃C           | ar<br>DCH3, CIF3 N2H4             |        |  |  |
|    | (b)         | Hence, classify the molecules in <b>(a)</b> according to the main type of intermolecular forces present.                                                                                                                                                                                                                                                                       |                                                              |                      |                                     |                                   |        |  |  |
|    |             | Instantaneous dipole-<br>induced dipole                                                                                                                                                                                                                                                                                                                                        | Permanent<br>permanent                                       | dipole-<br>dipole    | Hydr                                | ogen bonds                        |        |  |  |
|    |             | SF <sub>6</sub> , CH <sub>2</sub> =CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                             | CH <sub>3</sub> OCH <sub>3</sub> , C <i>l</i> F <sub>3</sub> | 3                    | NH <sub>3</sub> , CH <sub>3</sub>   | OH, N <sub>2</sub> H <sub>4</sub> |        |  |  |
|    | 2019        | P2 01(b)                                                                                                                                                                                                                                                                                                                                                                       |                                                              |                      |                                     |                                   |        |  |  |
|    | (c)         | Table 1.2 shows the electron                                                                                                                                                                                                                                                                                                                                                   | egativity values of                                          | the atoms i          | in phosgene                         | e, Cl <sub>2</sub> C=O.           |        |  |  |
|    | . ,         |                                                                                                                                                                                                                                                                                                                                                                                | Tabl                                                         | e 1.2                |                                     |                                   |        |  |  |
|    |             |                                                                                                                                                                                                                                                                                                                                                                                | atom                                                         | electron             | egativity                           |                                   |        |  |  |
|    |             |                                                                                                                                                                                                                                                                                                                                                                                | carbon                                                       | 2.                   | .5                                  |                                   |        |  |  |
|    |             |                                                                                                                                                                                                                                                                                                                                                                                | chionne                                                      | 3.                   | .0<br>5                             |                                   |        |  |  |
|    |             |                                                                                                                                                                                                                                                                                                                                                                                | oxygon                                                       |                      |                                     |                                   |        |  |  |
|    | (i)         | Explain what is meant by the                                                                                                                                                                                                                                                                                                                                                   | term electronega                                             | tivity.              |                                     | [2]                               |        |  |  |
|    | <b>\</b> ⁼∕ | Electronegativity is a measur                                                                                                                                                                                                                                                                                                                                                  | e of the ability of                                          | an element           | to attract a                        | shared pair of ele                | ctrons |  |  |
|    |             | in a covalent bond towards its                                                                                                                                                                                                                                                                                                                                                 | self.                                                        |                      |                                     |                                   |        |  |  |
|    | (ii)        | Predict all possible intermole<br>Explain how these forces aris                                                                                                                                                                                                                                                                                                                | cular forces which<br>se.                                    | could exist          | between pl                          | hosgene molecule<br>[3]           | S.     |  |  |
|    | (ii)        | Explain how these forces arise.       [3]         Instantaneous dipole-induced dipole (Id-id) arises due to random movement of electrons giving rise to uneven distribution of electron cloud of a molecule, creating an instantaneous dipole. The instantaneous dipole induces an opposite dipole on adjacent molecules resulting in attractive forces between the molecules. |                                                              |                      |                                     |                                   |        |  |  |



#### **Structure and Physical Properties**

**11** The boiling points of four compounds are given in the table below.

| Compound           | Boiling point/ °C |
|--------------------|-------------------|
| H <sub>2</sub> O   | 100               |
| CH <sub>3</sub> OH | 65                |
| SiH <sub>4</sub>   | -107              |
| CH <sub>4</sub>    | -164              |

Explain the differences in boiling point between

#### (a) CH<sub>4</sub> and SiH<sub>4</sub>

Both CH<sub>4</sub> and SiH<sub>4</sub> are covalent compounds with simple molecular structures. They are nonpolar and have instantaneous dipole-induced dipole (id-id) interactions between molecules. SiH<sub>4</sub> has a larger electron cloud than CH<sub>4</sub>, dipole is more easily induced resulting in stronger id-id interactions.

More energy is required to overcome the stronger id-id interactions between SiH $_4$  molecules than those between CH $_4$  molecules.

Therefore, SiH<sub>4</sub> has a higher boiling point than CH<sub>4</sub>.

#### (b) H<sub>2</sub>O and CH<sub>3</sub>OH

Both  $H_2O$  and  $CH_3OH$  are covalent compounds with simple molecular structures. They are polar with H-bonds between molecules.

 $H_2O$  have more extensive H-bonds (average 2 per molecule) than CH\_3OH (average 1 per molecule).

More energy is required to overcome the more extensive H-bonds between  $H_2O$  molecules. Therefore,  $H_2O$  has a higher boiling point than  $CH_3OH$ . **12** The boiling points of three organic compounds are given in the table below.

| Compound | Molecular formula                                                  | <i>M</i> r |
|----------|--------------------------------------------------------------------|------------|
| Α        | CH <sub>3</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>3</sub>   | 74         |
| В        | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH | 74         |
| С        | (CH <sub>3</sub> ) <sub>3</sub> COH                                | 74         |

Explain, in the following pairs, why the first compound is more volatile than the second compound

#### (a) A and B

Both are covalent compounds with simple molecular structures. They are polar molecules with the same  $M_r$ .

Less energy is required to overcome the weaker permanent dipole-permanent dipole interactions between  $CH_3CH_2OCH_2CH_3$  than the stronger H-bonds between  $CH_3CH_2CH_2CH_2CH_2OH$  molecules

Therefore, compound A is easier to vaporise thus more volatile than compound B.

#### (b) C and B

Both are covalent compounds with simple molecular structures. They are polar molecules with the same  $M_r$ . Both compounds have hydrogen bonding (H- bond) and instantaneous dipole-induced dipole (id-id) interaction between the molecules.

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH is a straight chain molecule and it has a larger surface area of contact, dipoles are more easily induced as compared to branched chain (CH<sub>3</sub>)<sub>3</sub>COH. Less energy is needed to overcome the weaker id-id interactions between (CH<sub>3</sub>)<sub>3</sub>COH molecules than those between CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH molecules. Therefore, (CH<sub>3</sub>)<sub>3</sub>COH is easier to vaporise thus more volatile than CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH.

(Note: strengths of H-bond in  $CH_3CH_2CH_2CH_2OH$  and in  $(CH_3)_3COH$  are similar, so students have to recognise that it is the id-id (due to different surface area of contact) that explains their difference in boiling points.)

- **13** Referring to table in question **5**, explain the following observations.
  - (i)  $A_{l_2}O_3$  conducts electricity in molten state while  $A_lC_{l_3}$  in molten state does not.  $A_{l_2}O_3$  has a giant ionic lattice structure, while and  $A_lC_{l_3}$  has a simple molecular structure. In molten state,  $A_{l^{3+}}$  and  $O^{2-}$  ions in  $A_{l_2}O_3$  act as mobile charge carrier to conduct electricity.  $A_lC_{l_3}$  molecules are electrically neutral, hence it cannot conduct electricity in molten state.
  - (ii) Difference in physical state of  $PCl_3$  and  $PCl_5$ .

Both  $PCl_3$  and  $PCl_5$  have simple molecular structure.

- There is permanent dipole-permanent dipole (pd-pd) and instantaneous dipole-induced dipole (id-id) interaction between PCl<sub>3</sub> molecules, while there is id-id between PCl<sub>5</sub> molecules.
- PCl<sub>5</sub> has a larger electron cloud, dipole is more easily induced, to give a stronger id-id interaction between PCl<sub>5</sub> molecules.
- At room temperature, there is sufficient energy to overcome pd-pd & id-id interactions between PC*l*<sub>3</sub> molecules, but not the stronger id-id interaction between PC*l*<sub>5</sub> molecules.
- Therefore, PCl<sub>5</sub> exists as solid while PCl<sub>3</sub> exists as liquid.

- 14 Explain why the following pairs of molecules differ in their boiling point despite having the same Mr and functional groups.
  - (a) The boiling point of cis-dichloroethene is 333 K, whereas that of trans-dichloroethene is 321 K.



In cis-dichloroethene, the bond dipole moments are not cancelled out. Cis-dichloroethene has a net dipole moment and it is polar.

In trans-dichloroethene, the bond dipole moments are cancelled out. Trans-dichloroethene has zero net dipole moment and it is non-polar.

More energy is needed to overcome the stronger permanent dipole-permanent dipole and instantaneous dipole-induced dipole (id-id) interactions between cis-dichloroethene molecules than the id-id interactions between trans-dichloroethene molecules.

Therefore, cis-dichloroethene has a higher boiling point than trans-dichloroethene.

(b) The boiling point of **R** is higher than **Q**.



In Q, due to the close proximity of the 2 COOH groups, intramolecular (internal) hydrogen bonding are formed, leaving fewer sites for intermolecular H-bonding. R forms only intermolecular H-bonds. More energy is required to overcome the more extensive intermolecular H-bonding between R molecules than between Q molecules.

Therefore, **R** has a higher boiling point than **Q**.

#### **Solubility**

- 15 Predict with explanations whether or not the following solute is soluble in the given solvent
  - Solute: CH<sub>3</sub>CH<sub>2</sub>OH / Solvent: H<sub>2</sub>O (a)

Energy given out in the formation of hydrogen bonding (H-bonds) between CH<sub>3</sub>CH<sub>2</sub>OH and H<sub>2</sub>O molecules is sufficient to overcome the H-bonds between CH<sub>3</sub>CH<sub>2</sub>OH molecules and those between H<sub>2</sub>O molecules. Therefore, CH<sub>3</sub>CH<sub>2</sub>OH is soluble in H<sub>2</sub>O.

(b) Solute: NH<sub>4</sub>NO<sub>3</sub> / Solvent: benzene, C<sub>6</sub>H<sub>6</sub>.

> NH<sub>4</sub>NO<sub>3</sub> does not dissociate to give ions in a non-polar solvent (C<sub>6</sub>H<sub>6</sub>). No favourable interaction is possible between NH<sub>4</sub>NO<sub>3</sub> and C<sub>6</sub>H<sub>6</sub>. There is insufficient energy to overcome the strong ionic bonds between NH4<sup>+</sup> and NO3<sup>-</sup> and instantaneous dipole-induced dipole interactions between C<sub>6</sub>H<sub>6</sub>.

Therefore, NH<sub>4</sub>NO<sub>3</sub> is insoluble in C<sub>6</sub>H<sub>6</sub>.

16 Ammonia and hydrogen chloride gases are soluble in water because they interact with the solvent.

 $\begin{array}{rcl} \mathsf{HC}l(\mathsf{g}) + \mathsf{aq} & \to & \mathsf{H}^+ \left(\mathsf{aq}\right) + \mathsf{C}l^- \left(\mathsf{aq}\right) \\ \mathsf{NH}_3(\mathsf{g}) + \mathsf{aq} & \to & \mathsf{NH}_3 \left(\mathsf{aq}\right) \end{array}$ 

Use suitable diagrams to illustrate all the possible interactions between the dissolved gas and **a water molecule**.



For NH<sub>3</sub>(aq) :



#### **Application questions**

- 17 Provide an explanation for the following observations.
  - (a) Ice is less dense than water.

Due to the formation of four permanent hydrogen bonding (H-bonds) per  $H_2O$  molecule in ice, ice has a more open structure than liquid water. Ice occupies a larger volume than water for the same number of molecules/ same mass of water. Therefore, ice is less dense than water.

(b) The relative molecular mass of ethanoic acid is 120 in benzene, C<sub>6</sub>H<sub>6</sub>. Formation of intermolecular hydrogen bonding is more energetically favourable than instantaneous dipole induced dipole (id-id). Instead of forming id-id with non-polar solvent like benzene, two ethanoic acid molecules dimerises via intermolecular hydrogen bonding. As a result, the apparent M<sub>r</sub> is double of 60.



**18** Vaporization occurs when some molecules in a liquid possesses enough kinetic energy to escape from the surface of the liquid at a given temperature.

Saturated vapour pressure is the pressure on the walls of the container exerted by the gas molecules vaporized from the surface of the liquid in a closed container when the rates of condensation and evaporation are equal.

Boiling occurs when the vapour pressure is equal to the external pressure which is usually the atmospheric pressure (101 kPa).

The graph below shows the vapour pressures of three liquids at varying temperatures.



(a) The identities for liquids A and B could be ethanol (CH<sub>3</sub>CH<sub>2</sub>OH) and propanone (CH<sub>3</sub>COCH<sub>3</sub>). Based on the graph, identify liquids A and B and explain your reasoning. [4]
 A: propanone [1]. B: ethanol [1]

At any given temperature, **A** has a higher vapour pressure than B (**A** has a lower boiling point than B) [½], showing that the intermolecular forces in A are weaker than that in B.

Permanent dipole-permanent dipole interactions between propanone molecules [½] is weaker [½] than the hydrogen bonds between ethanol molecules [½]. [correct identification and comparison of strength of IMF] At any given temperature, more propanone molecules have enough kinetic energy to overcome the intermolecular forces and exist as vapour, resulting in a higher vapour pressure. Therefore, A is propanone and B is ethanol.

(b) Suggest a possible identity for C. H<sub>2</sub>O, boiling point ≈100 °C (Temp = 100 °C when pressure = 101 kPa) **19** The type of bonding (covalent, ionic or metallic) present in a substance can be determined and predicted using the van Arkel triangle based on the values of electronegativity of the element.

Difference in electronegativity between the element(s) is plotted along the *y*-axis and the average electronegativity of the element(s) is plotted along the *x*-axis.

The electronegativity data for oxygen and germanium, Ge, and some selected elements from Period 3 of the Periodic Table are given below.

| element           | Na   | Al   | Si   | Ge   | S    | Cl   | 0    |
|-------------------|------|------|------|------|------|------|------|
| electronegativity | 0.93 | 1.61 | 1.90 | 2.01 | 2.58 | 3.16 | 3.61 |

In addition, some of the Period 3 elements and their compounds have been plotted on the van Arkel triangle given below.



- Using your knowledge of the Period 3 elements and their compounds plotted above, state the type of bonding present at each of these bonding extremes, labelled as A, B and C, on the triangle.
  - A Metallic bonding
  - B Ionic bonding
  - C Covalent bonding
- (ii) Germanium oxide has a giant molecular structure. On the van Arkel triangle above, plot the point corresponding to the oxide of germanium. Hence explain if the melting point of the oxide of germanium would be lower or higher than that of the oxide of silicon. [3]

average electronegativity for Ge and O =  $\frac{2.01+3.61}{2}$  = 2.81 (accept 2.60 - 3.00) difference in electronegativity for Ge and O = 3.61 - 2.01 = 1.60 (accept 1.40 - 1.80) The coordinates for GeO<sub>2</sub> is (2.81,1.60) [1]

Oxide of germanium has a <u>lower</u> melting point (giant covalent lattice) [1] Ge is below Si in Group 14 with a <u>bigger atomic size</u>; overlap of the atomic orbitals of Ge and O will be <u>less effective</u> than those of Si and O; the covalent bonds between Ge and O are weaker. [1]